

Motif Programming Manual
1 Preface...1

1.1 The Plot..1
1.2 Assumptions...2
1.3 How This Book Is Organized..3
1.4 Related Documents..5
1.5 Conventions Used in This Book..6
1.6 Obtaining Motif...6
1.7 Obtaining the Example Programs..7

1.7.1 FTP...7
1.7.2 FTPMAIL..7
1.7.3 BITFTP..8
1.7.4 UUCP...9
1.7.5 Copyright...9
1.7.6 Compiling the Example Programs...9

1.8 Notes on Z−Mail..9
1.9 Acknowledgments..10
1.10 We'd Like to Hear From You...12

2 Introduction to Motif...13
2.1 A True Story..13
2.2 Basic User−interface Concepts..15
2.3 What Is Motif?...16
2.4 Designing User Interfaces..18

3 The Motif Programming Model..21
3.1 Basic X Toolkit Terminology and Concepts...21
3.2 The Xm and Xt Libraries...23
3.3 Programming With Xt and Motif...24

3.3.1 Header Files...26
3.3.2 Setting the Language Procedure..27
3.3.3 Initializing the Toolkit...28
3.3.4 Creating Widgets...30
3.3.5 Setting and Getting Widget Resources..32
3.3.6 Event Handling for Widgets..37
3.3.7 The Event Loop..42

3.4 Summary..42

4 Overview of the Motif Toolkit...43
4.1 The Motif Style..43
4.2 Application Controls..45

4.2.1 The Primitive Widget Class...46
4.2.2 Gadgets..51

4.3 Application Layout..52
4.3.1 The Manager Widget Class..54
4.3.2 Geometry Management..56
4.3.3 Gadget Management..57
4.3.4 Keyboard Traversal..58

4.4 Putting Together a Complete Application...59
4.4.1 The Main Window...59
4.4.2 Menus...61

i

Motif Programming Manual
4 Overview of the Motif Toolkit

4.4.3 The Window Manager...62
4.4.4 Dialogs...66
4.4.5 Pixmaps..71
4.4.6 Color..73

4.5 Changes in Motif 1.2..75
4.5.1 General Toolkit Changes...76
4.5.2 Specific Widget Changes...78
4.5.3 Changes to the Example Programs..80

4.6 Summary..80

5 The Main Window...81
5.1 Creating a MainWindow..82
5.2 The MenuBar...87

5.2.1 Creating a PulldownMenu...88
5.2.2 SimpleMenu Callback Routines..90
5.2.3 A Sample Application..92

5.3 The Command and Message Areas..100
5.4 Using Resources...104
5.5 Summary..105
5.6 Exercises..106

6 Introduction to Dialogs..107
6.1 The Purpose of Dialogs..107
6.2 The Anatomy of a Dialog..110
6.3 Creating Motif Dialogs..111

6.3.1 Dialog Header Files...112
6.3.2 Creating a Dialog...112
6.3.3 Setting Resources...113
6.3.4 Dialog Management...114
6.3.5 Closing Dialogs..118
6.3.6 Generalizing Dialog Creation..119

6.4 Dialog Resources...120
6.4.1 The Default Button..120
6.4.2 Initial Keyboard Focus...122
6.4.3 Button Sizes...122
6.4.4 The Dialog Title...123
6.4.5 Dialog Resizing..123
6.4.6 Dialog Fonts...124

6.5 Dialog Callback Routines..124
6.6 Piercing the Dialog Abstraction...127

6.6.1 Convenience Routines...127
6.6.2 The DialogShell...128
6.6.3 Internal Widgets...130

6.7 Dialog Modality...131
6.7.1 Implementing Modal Dialogs..133
6.7.2 Forcing an Immediate Response..136

6.8 Summary..142

ii

Motif Programming Manual
7 Selection Dialogs...143

7.1 Types of SelectionDialogs...143
7.2 SelectionDialogs..144

7.2.1 Callback Routines..148
7.2.2 Internal Widgets...149

7.3 PromptDialogs...150
7.4 The Command Widget...152
7.5 FileSelectionDialogs..154

7.5.1 Creating a FileSelectionDialog..156
7.5.2 Internal Widgets...157
7.5.3 Callback Routines..158
7.5.4 File Searching..158

7.6 Summary..164

8 Custom Dialogs...165
8.1 Modifying Motif Dialogs...165

8.1.1 Modifying MessageDialogs...165
8.1.2 Modifying SelectionDialogs..168

8.2 Designing New Dialogs...172
8.2.1 The Shell..173
8.2.2 The Manager Child..173
8.2.3 The Control Area...174
8.2.4 The Action Area...174

8.3 Building a Dialog...176
8.3.1 The Shell..183
8.3.2 The Manager Child..184
8.3.3 The Control Area...185
8.3.4 The Action Area...186

8.4 Generalizing the Action Area..188
8.5 Using a TopLevelShell for a Dialog..194
8.6 Positioning Dialogs..196
8.7 Summary..198

9 Manager Widgets...199
9.1 Types of Manager Widgets..199
9.2 Creating Manager Widgets..200
9.3 The BulletinBoard Widget...202

9.3.1 Resources...202
9.3.2 Geometry Management..203

9.4 The Form Widget...207
9.4.1 Form Attachments..207
9.4.2 Attachment Offsets..213
9.4.3 Position Attachments...216
9.4.4 Additional Resources...219
9.4.5 Nested Forms...220
9.4.6 Common Problems..222

9.5 The RowColumn Widget...224
9.5.1 Rows and Columns..226
9.5.2 Homogeneous Children...230
9.5.3 Callbacks..231

iii

Motif Programming Manual
9 Manager Widgets

9.6 The Frame Widget...233
9.7 The PanedWindow Widget..236

9.7.1 Pane Constraints..239
9.7.2 Sashes...242

9.8 Keyboard Traversal..242
9.8.1 Turning Traversal Off..244
9.8.2 Modifying Tab Groups..246
9.8.3 Handling Event Translations..247
9.8.4 Processing Traversal Manually..248

9.9 Summary..251

10 ScrolledWindows and ScrollBars...252
10.1 The ScrolledWindow Design Model...252

10.1.1 The Automatic Scrolling Model..252
10.1.2 The Application−defined Scrolling Model..253

10.2 Creating a ScrolledWindow...255
10.2.1 Automatic Scrolling...255
10.2.2 Application−defined Scrolling...256
10.2.3 Additional Resources...256
10.2.4 An Automatic ScrolledWindow Example...256

10.3 Working Directly With ScrollBars..260
10.3.1 Resources...262
10.3.2 Orientation...265
10.3.3 Callback Routines..266

10.4 Implementing True Application−defined Scrolling...269
10.5 Working With Keyboard Traversal in ScrolledWindows..279
10.6 Summary..281
10.7 Exercises..281

11 The DrawingArea Widget...282
11.1 Creating a DrawingArea Widget...282
11.2 Using DrawingArea Callback Functions...283

11.2.1 Handling Input Events...284
11.2.2 Redrawing a DrawingArea..287

11.3 Using Translations on a DrawingArea...290
11.4 Using Color in a DrawingArea..296
11.5 Summary..301
11.6 Exercises..301

12 Labels and Buttons...303
12.1 Labels...303

12.1.1 Creating a Label...304
12.1.2 Text Labels...305
12.1.3 Images as Labels..306
12.1.4 Label Sensitivity..308
12.1.5 Label Alignment..309
12.1.6 Multi−line and Multi−font Labels...310

12.2 PushButtons...313
12.2.1 PushButton Callbacks..314

iv

Motif Programming Manual
12 Labels and Buttons

12.2.2 Multiple Button Clicks...316
12.3 ToggleButtons..318

12.3.1 Creating ToggleButtons...319
12.3.2 ToggleButton Resources..320
12.3.3 ToggleButton Pixmaps..321
12.3.4 ToggleButton Callbacks..323
12.3.5 RadioBoxes..324
12.3.6 CheckBoxes...328

12.4 ArrowButtons...331
12.5 DrawnButtons..336
12.6 Summary..339
12.7 Exercise..340

13 The List Widget..341
13.1 Creating a List Widget...342
13.2 Using ScrolledLists..345
13.3 Manipulating Items..346

13.3.1 Adding Items..347
13.3.2 Finding Items...350
13.3.3 Replacing Items...351
13.3.4 Deleting Items..352
13.3.5 Selecting Items...353
13.3.6 An Example...355

13.4 Positioning the List..359
13.5 List Callback Routines...361

13.5.1 The Default Action..361
13.5.2 Browse and Single Selection Callbacks...362
13.5.3 Multiple Selection Callback...364
13.5.4 Extended Selection Callback...365

13.6 Summary..366
13.7 Exercises..366

14 The Scale Widget..367
14.1 Creating a Scale Widget...367
14.2 Scale Values...370
14.3 Scale Orientation and Movement...371
14.4 Scale Callbacks..371
14.5 Scale Tick Marks...375
14.6 Summary..376

15 Text Widgets...377
15.1 Interacting With Text Widgets...378

15.1.1 Inserting Text...378
15.1.2 Selecting Text..379

15.2 Text Widget Basics..381
15.2.1 The Textual Data..381
15.2.2 Single and Multiple Lines..383
15.2.3 Scrollable Text...384
15.2.4 Text Positions..390

v

Motif Programming Manual
15 Text Widgets

15.2.5 Output−only Text...396
15.3 Text Clipboard Functions..399

15.3.1 Getting the Selection..403
15.3.2 Modifying the Selection Mechanisms...403

15.4 A Text Editor...404
15.5 Text Callbacks...412

15.5.1 The Activation Callback..412
15.5.2 Text Modification Callbacks..415
15.5.3 The Cursor Movement Callback..423
15.5.4 Focus Callbacks...425

15.6 Text Widget Internationalization...425
15.6.1 Text Representation...425
15.6.2 Text Output..427
15.6.3 Text Input...427

15.7 Summary..430
15.8 Exercises..430

16 Menus..431
16.1 Menu Types...431
16.2 Creating Simple Menus..434

16.2.1 Popup Menus...434
16.2.2 Cascading Menus...437
16.2.3 Option Menus..440

16.3 Designing Menu Systems..442
16.3.1 Menu Titles..444
16.3.2 Menu Items..445
16.3.3 Mnemonics...445
16.3.4 Accelerators...446
16.3.5 The Help Menu..447
16.3.6 Sensitivity..448
16.3.7 Tear−Off Menus..450

16.4 General Menu Creation Techniques..452
16.4.1 Building Pulldown Menus...452
16.4.2 Building Cascading Menus..455
16.4.3 Building Popup Menus..459
16.4.4 Building Option Menus...466

16.5 Summary..470
16.6 Exercises..470

17 Interacting With the Window Manager...471
17.1 Interclient Communication..471
17.2 Shell Resources..472

17.2.1 Shell Positions..473
17.2.2 Shell Sizes..473
17.2.3 The Shell's Icon..477

17.3 VendorShell Resources..479
17.3.1 Window Manager Decorations..479
17.3.2 Window Menu Functions...481

17.4 Handling Window Manager Messages..482

vi

Motif Programming Manual
17 Interacting With the Window Manager

17.4.1 Adding New Protocols...485
17.4.2 Saving Application State...486

17.5 Customized Protocols..488
17.6 Summary..491
17.7 Exercises..491

18 The Clipboard..493
18.1 Simple Clipboard Copy and Retrieval...494

18.1.1 Copying Data...497
18.1.2 Retrieving Data..498
18.1.3 Querying the Clipboard for Data Size...501

18.2 Copy by Name...502
18.3 Clipboard Data Formats...507
18.4 The Primary Selection and the Clipboard..508

18.4.1 Clipboard Functions With Text Widgets...509
18.4.2 The Owner of the Selection...510

18.5 Implementation Issues...511
18.6 Summary..512

19 Drag and Drop..513
19.1 Using Drag and Drop...513
19.2 The Drag and Drop Model...515

19.2.1 The Drag Source..516
19.2.2 The Drop Site...518
19.2.3 The Drag Icon..519
19.2.4 Protocols..521
19.2.5 The Programming Model...522

19.3 Customizing Built−in Drag and Drop..524
19.3.1 Specifying the Drag Protocol...525
19.3.2 Turning Off Drag and Drop Functionality...527
19.3.3 Modifying the Visual Effects...528

19.4 Working With Drag Sources..529
19.4.1 Creating a Drag Source..536
19.4.2 Starting the Drag..537
19.4.3 Converting the Data...538
19.4.4 Modifying an Existing Drag Source..539
19.4.5 Providing Custom Drag−over Visuals...542
19.4.6 Cleaning Up...544

19.5 Working With Drop Sites..545
19.5.1 Creating a Drop Site...552
19.5.2 Modifying an Existing Drop Site...553
19.5.3 Handling the Drop..554
19.5.4 Providing Help...556
19.5.5 Providing Custom Drag−under Visuals...560

19.6 Summary..561

20 Compound Strings...563
20.1 Internationalized Text Output..563
20.2 Creating Compound Strings...564

vii

Motif Programming Manual
20 Compound Strings

20.2.1 The Simple Case..564
20.2.2 Font List Tags..566
20.2.3 Compound String Segments..570
20.2.4 Multiple−font Strings...573

20.3 Manipulating Compound Strings...575
20.3.1 Compound String Functions..575
20.3.2 Compound String Retrieval...577
20.3.3 Compound String Conversion...577

20.4 Working With Font Lists...579
20.4.1 Creating Font Lists...579
20.4.2 Retrieving Font Lists...583
20.4.3 Querying Font Lists...583

20.5 Rendering Compound Strings..584
20.6 Summary..586

21 Signal Handling..587
21.1 Handling Signals in Xlib..588
21.2 Handling Signals in Xt...590
21.3 An Example...592
21.4 Additional Issues..597
21.5 Summary..598

22 Advanced Dialog Programming...599
22.1 Help Systems...599

22.1.1 Multi−level Help..603
22.1.2 Context−sensitive Help..606

22.2 Working Dialogs..607
22.2.1 Using Work Procedures...609
22.2.2 Using Timers..613
22.2.3 Processing Events..613
22.2.4 Updating the Display...619
22.2.5 Avoiding Forks..620

22.3 Dynamic Message Symbols...622
22.4 Summary..627

23 Introduction to UIL ...628
23.1 Overview of UIL and Mrm..628

23.1.1 Using UIL and Mrm...628
23.1.2 Advantages and Disadvantages of UIL..629

23.2 The...630
23.3 Describing an Interface With UIL...631

23.3.1 Starting and Ending a Module...633
23.3.2 Specifying Module−wide Options...635
23.3.3 Include Files...636
23.3.4 Adding Comments...636
23.3.5 Overview of UIL Language Syntax...636
23.3.6 Sections of a UIL Module..638

23.4 Compiling the UIL Module...640
23.5 Structure of an Mrm Application...640

viii

Motif Programming Manual
23 Introduction to UIL

23.5.1 Initializing the Application..643
23.5.2 Creating the Interface...646
23.5.3 Displaying the Interface...647

23.6 Summary..648

24 Using the UIL Compiler..649
24.1 Compiler Options...649

24.1.1 Output File...649
24.1.2 Include Path...649
24.1.3 Generate Listing...650
24.1.4 Set Locale...650
24.1.5 Suppress Warnings...651
24.1.6 Machine Listing...651
24.1.7 Use WML Description...651

24.2 Errors, Warnings, and Informational Messages...651
24.2.1 Severe Error Messages...651
24.2.2 Regular Error Messages...651
24.2.3 Warning Messages...652
24.2.4 Informational Messages...653

24.3 Summary..654

25 Creating a User Interface With UIL ..655
25.1 Viewing UIL Examples...655
25.2 Defining and Creating Widgets...658

25.2.1 Specifying Widget Attributes..659
25.2.2 Sharing Widgets Among Modules...665
25.2.3 The Widget Creation Process...667

25.3 Defining and Fetching Values...670
25.3.1 Sharing Values Between Modules...670
25.3.2 Fetching Values...671
25.3.3 Numeric Values...674
25.3.4 Text−related Values...676
25.3.5 Colors...684
25.3.6 Pixmaps..686
25.3.7 Widget Classes...690
25.3.8 Keysyms...690
25.3.9 Translation Tables..691

25.4 Working With Callbacks..691
25.5 Using Lists...692
25.6 Exporting Application Data...696

25.6.1 Declaring Identifiers in UIL...696
25.6.2 Exporting Identifiers From Application Code...696

25.7 Summary..697

26 Building an Application With UIL...699
26.1 Defining the User Interface..699

26.1.1 The Main Application Window...700
26.1.2 The Menu System..703
26.1.3 Dialog Boxes..706

ix

Motif Programming Manual
26 Building an Application With UIL

26.2 Creating the Application..708
26.2.1 Widget IDs...714
26.2.2 Callbacks..715
26.2.3 The Error Dialog..715

26.3 Summary..716

27 Advanced UIL Programming...717
27.1 Using Non−Motif Widgets..717

27.1.1 The Widget Creation Procedure...717
27.1.2 Widget Include Files..720
27.1.3 Creating User−defined Widgets...721

27.2 Organizing UIL Modules...724
27.2.1 Using Separate Modules..725
27.2.2 Organizing Within a Module...725
27.2.3 Supporting Internationalization...725
27.2.4 Organizing With Include Files...727
27.2.5 Creating Reusable Components...727

27.3 Specifying Resource Values..728
27.3.1 Resource Name Checking..728
27.3.2 Resource Type Checking...728
27.3.3 Resource Type Support..729
27.3.4 Callback Specifications..729
27.3.5 Wildcard Specification...729
27.3.6 User Customization..730
27.3.7 Dynamic Updating...730
27.3.8 Guidelines for Setting Resources...730

27.4 Using Lists Effectively..731
27.4.1 Specifying Common Resources...731
27.4.2 Reusing Components...732

27.5 Prototyping an Interface With UIL..736
27.5.1 Managing Widgets...736
27.5.2 Creating Widgets...738

27.6 Summary..741

28 Additional Example Programs...742
28.1 A Postcard Interface for Mail..742
28.2 A Bitmap Display Utility...750
28.3 A Memo Calendar..759

x

1 Preface

By convention, a preface describes the book itself, while the introduction describes the subject matter. You should
read through the preface to get an idea of how the book is organized, the conventions it follows, and so on.

This book describes how to write applications using the Motif toolkit from the Open Software Foundation (OSF). The
Motif toolkit is based on the X Toolkit Intrinsics (Xt), which is the standard mechanism on which many of the toolkits
written for the X Window System are based. Xt provides a library of user−interface objects called widgets and
gadgets, which provide a convenient interface for creating and manipulating X windows, colormaps, events, and other
cosmetic attributes of the display. In short, widgets can be thought of as building blocks that the programmer uses to
construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user−interface policy whatsoever. That is
the job of a user−interface toolkit such as Motif. Motif provides a complete set of widgets designed to implement the
application look and feel specified in the Motif Style Guide and the Motif Application Environment Specification.

The book provides a complete programmer's guide to the Motif toolkit. While the OSF/Motif toolkit is based on Xt,
the focus of the book is on Motif itself, not on the Intrinsics. Detailed information about Xt is provided by
Volume Four, X Toolkit Intrinsics Programming Manual, and references are made to that volume throughout the
course of this book. You are not required to have Volume Four in order to use this book effectively, as the books are
not companion volumes, but complementary ones. However, truly robust applications require a depth of knowledge
about Xt and Xlib, the layer on which Xt itself is based, that is not addressed in this book alone. We never leave you
completely in the dark about Xt or Xlib functions that we use or reference, but you won't learn everything there is to
know about them through this particular volume.

This book covers Motif 1.2, which is the latest major release of the Motif toolkit. Motif 1.2 is based on Release 5 of
the Xlib and Xt specifications (X11R5). This release of Motif provides many new features, as well as a number of
enhancements to existing functionality. All of the changes in Motif 1.2 are summarized in Section #smotif12, which
provides references to other sections that describe the changes in more detail.

1.1 The Plot

There are several plots and subplots in this book and the stories told are intertwined. Our primary goal is to help you
learn about the Motif environment from both the programmer's and the user's perspectives. However, we are talking to
you as a programmer, not as a user. We treat the user as a third party who is not with us now. In order to create an
application for the user, you sometimes have to assume her role, so at times we may ask you to play such a role to
help you think about things from the user's perspective rather than the programmer's.

Each chapter begins by discussing the goals that Motif is trying to achieve using a particular widget or gadget. For
example, before we describe how to create a FileSelectionDialog, we introduce the object visually and conceptually,
discuss its features and drawbacks, and put you in the role of the user. Once you understand what the user is working
with, you should have a better perspective on the task of presenting it to her.

The next subplot is that of application design. Many design concepts transcend the graphical user interface (GUI) and
are common to all programs that interact with users. You could even interpret this book as a programmer's guide that
happens to use Motif as an example. As you read the material, you should stop and think about how you might
approach a particular interface method if you were using another toolkit instead of Motif. A wild concept, perhaps, but
this approach is the key to better application design and to toolkit independence. If Motif changes in a later release, or

1

if you decide to port your application to another toolkit or even another windowing system, the more generalized your
code is, the easier it will be to bring it into a new realm successfully.

The last story we are telling is that of general programming technique. By providing you with examples of good
programming habits, styles, and usages, we hope to propagate a programming methodology that has proven to be
successful over the years. These techniques have been applied to applications that have been ported to multiple
architectures and operating systems. As an added bonus, we have thrown in a number of interesting programming
tricks. No, these are not hacks, but conveniences that are particular to C, to UNIX, or even to the X Window System.
We don't focus on these things, but they are made available to you in passing, so you should have no problem
identifying them when they come up.

This book is intended to be used as a programmer's manual, not a reference manual. Volume Six B, Motif Reference
Manual, contains reference material for all of the Motif library functions and widget classes. We have tried to identify
those features of the toolkit that are most important for general discussion, so we do not discuss every aspect of the
Motif toolkit in the body of this book.

Any major software development effort, especially in its early stages, has bugs that prevent certain features from
being used and the Motif toolkit is no exception. There are some bugs in the Motif toolkit that have not yet been
worked out, but this does not imply that the toolkit is poorly written or riddled with errors. Throughout the book, we
try to alert you to any potential problems you may encounter due to bugs. In some cases, there are things that work in
Motif, but they are poorly designed, and we don't recommend that you use them. Again, we provide an explanation of
what's going on and sometimes describe an alternative solution. There are also some features, resources, and functions
available in the toolkit that are not supported by OSF. OSF reserves the right to change anything not publicly
documented, so rather than discuss undocumented features, we simply ignore them.

We should also point out that this book is not intended to solve all your problems or answer all your questions
concerning Motif or its toolkit. It is not going to spoon feed you by giving you step−by−step instructions on how to
achieve a particular task. You are encouraged, and even expected, to experiment on your own with the example
applications or, better yet, with your own programs. We want to provide you with discussion and examples that
provoke you into asking questions like, "What would happen if I changed this program to do this?" It would be
unrealistic to believe that we could address every problem that might come up. Rather than approaching situations
using overly specific examples, we discuss them in a generalized way that should be applicable to many different
scenarios.

1.2 Assumptions

The basic method for creating simple applications in Motif is conceptually simple and straightforward. Even if you
only dabble in C, you can probably understand the concepts well enough to do most things. However, unless you have
a strong handle on the C programming language, there is an upper limit to what you will be able to do when you try to
create a full−featured, functioning application. After all, the user−interface portion of most applications should make
up no more than 30−40% of the total code. The functionality of an application is up to you and is not discussed here.
Without a strong background with C, or some other structured programming language, you might have a problem
keeping up with the material presented here.

This book also assumes that you are familiar with the concepts and architecture of the X Toolkit Intrinsics, which are
presented in Volume Four, X Toolkit Intrinsics Programming Manual, Motif Edition, and Volume Five, X Toolkit
Intrinsics Reference Manual. A basic understanding of the X Window System is also useful. For some advanced
topics, the reader may need to consult Volume One, Xlib Programming Manual, and Volume Two, Xlib Reference
Manual.

1 Preface 1.2 Assumptions

2

1.3 How This Book Is Organized

While this book attempts to serve the widest possible audience, that does not imply that the material is so simple that
it is only useful to novice programmers. In fact, this book can be considered an advanced programmer's handbook,
since in many places, it assumes a fairly sophisticated knowledge of many features of the X Window System.

Each chapter is organized so that it gets more demanding as you read through it. Each chapter begins with a short
introduction to the particular Motif element that is the subject of the chapter. The basic mechanics involved in creating
and manipulating the object are addressed next, followed by the resources and other configurable aspects of the object.
If there is any advanced material about the object, it is presented at the end of the chapter. Many chapters also include
exercises that suggest how the material can be adapted for uses not discussed explicitly in the text.

While the chapters may be read sequentially, it is certainly not required or expected that you do so. As you will soon
discover, there are many circular dependencies that justify skipping around between chapters. Since there is no
organization that would eliminate this problem, the material is not organized so that you "learn as you go." Instead, we
organized the material in a top−down manner, starting with several chapters that provide an introduction to the Motif
look and feel, followed by chapters organized on a widget−by−widget basis. The higher−level manager widgets are
discussed first, followed by the primitive widgets and gadgets. Advanced material is positioned at the end of the book,
since the details are not of paramount importance to the earlier material. The last four chaapters are devoted to UIL.

In short, everything is used everywhere. Starting at the beginning, however, means that we won't necessarily assume
you know about the material that is referenced in later chapters. On the other hand, the later chapters may make the
assumption that you are aware of material in earlier chapters.

The book is broken down into twenty six chapters and one appendix as follows:

Chapter 1
Introduction to Motif answers the question "Why Motif?" and suggests some of the complexities that the
programmer has to master in order to make an application easy to use.

Chapter 2
The Motif Programming Model teaches the fundamentals of Motif by example. It presents a simple "Hello,
World" program that shows the structure and style common to all Motif programs. Much of this material is
already covered in detail in Volume Four, X Toolkit Intrinsics Programming Manual, Motif Edition, so the
chapter can be read as a refresher, or a light introduction for those who haven't read the earlier book. The
chapter references Volume Four and Volume One, Xlib Programming Manual, to point out areas that the
programmer needs to understand before progressing with Motif.

Chapter 3
Overview of the Motif Toolkit explains what is involved in creating a real application. The chapter discusses
the arrangement of primitive widgets in an interface, the use of dialog boxes and menus, and the relationship
between an application and the window manager. The chapter also describes all of the changes in Release 1.2
of the Motif toolkit. After reading this chapter, the programmer should have a solid overview of Motif
application programming and be able to read the remaining chapters in any order.

Chapter 4
The Main Window describes the Motif MainWindow widget, which can be used to frame many types of
applications. The MainWindow is a manager widget that provides a MenuBar, a scrollable work area, and
various other optional display and control areas.

Chapter 5
Introduction to Dialogs describes the fundamental concepts that underly all Motif dialogs. It provides a
foundation for the more advanced material in the following chapters. In the course of the introduction, this
chapter also provides details on Motif's predefined MessageDialog classes.

1 Preface 1.3 How This Book Is Organized

3

Chapter 6
Selection Dialogs presents the more complex Motif−supplied dialogs for displaying selectable items, such as
lists of files or commands, to the user.

Chapter 7
Custom Dialogs describes how to create new dialog types, either by customizing Motif dialogs or by creating
entirely new dialogs.

Chapter 8
Manager Widgets provides detailed descriptions of the various classes of Motif manager widgets. Useful
examples explore the various methods of positioning components in Form and RowColumn widgets.

Chapter 9
ScrolledWindows and ScrollBars describes the ins and outs of scrolling, with particular attention to
application−defined scrolling, which is often required when the simple scrolling provided by the
ScrolledWindow widget is insufficient.

Chapter 10
The DrawingArea Widget describes the Motif DrawingArea widget, which provides a canvas for interactive
drawing. The chapter simply highlights, with numerous code examples, the difficulties that may be
encountered when working with this widget, rather than trying to teach Xlib drawing techniques. Some
knowledge of Xlib is assumed; we direct the reader to Volume One, Xlib Programming Manual, for
additional information.

Chapter 11
Labels and Buttons provides an in−depth look at labels and buttons, the most commonly−used primitive
widgets. The chapter discusses the Label, PushButton, ToggleButton, ArrowButton, and DrawnButton widget
classes.

Chapter 12
The List Widget describes yet another method for the user to exert control over an application. A List widget
displays a group of items from which the user can make a selection.

Chapter 13
The Scale Widget describes how to use the Scale to display a range of values.

Chapter 14
Text Widgets explains how the Text and TextField widgets can be used to provide text entry in an application,
from a single data−entry field to a full−fledged text editor. Special attention is paid to problems such as how
to mask or convert data input by the user so as to control its format. The chapter also discusses the
internationalization features of the widgets provided in Motif 1.2.

Chapter 15
Menus describes the menus provided by the Motif toolkit. The chapter examines how menus are created and
presents some generalized menu creation routines.

Chapter 16
Interacting With the Window Manager provides additional information on the relationship between an
application and the Motif Window Manager (mwm). It discusses the shell widget resources and window
manager protocols that can be used to communicate with the window manager.

Chapter 17
The Clipboard describes a way for the application to interact with other applications. Data is placed on the
clipboard, where it can be accessed by other windows on the desktop, regardless of the applications with
which they are associated.

Chapter 18
Drag and Drop presents the drag and drop mechanism for transferring data that is provided in Motif 1.2. The
chapter describes the built−in drag and drop features of the Motif toolkit and provides examples of adding
drag and drop functionality to an application.

Chapter 19

1 Preface 1.3 How This Book Is Organized

4

Compound Strings describes Motif's technology for encoding font and directional information in the strings
that are used by almost all Motif widgets. It discusses how to use compound strings in an internationalized
application.

Chapter 20
Signal Handling presents the problems that can be encountered when mixing UNIX signals with X
applications. It explains how signals work and why they can wreak such havoc with X, and suggests
workarounds that can help you to minimize the damage.

Chapter 21
Advanced Dialog Programming describes the issues involved in creating multi−stage help systems, using
WorkingDialogs that allow the user to interrupt long−running tasks, and dynamically changing the pixmaps
displayed in a dialog.

Chapter 22
Introduction to UIL introduces Motif's User Interface Language (UIL) and the Motif Resource Manager
(Mrm). It presents a "Hello, World" program that shows the basic structure of an application that uses UIL
and Mrm.

Chapter 23
Using the UIL Compiler describes how to use the UIL compiler.

Chapter 24
Creating a User Interface With UIL presents details about the syntax and usage of UIL, as well as the various
Mrm functions that are associated with the different UIL constructs.

Chapter 25
Building an Application With UIL describes how the various components of UIL and Mrm come together in a
real application by presenting a text−editor program.

Chapter 26
Advanced UIL Programming describes some advanced UIL programming techniques that can make it easier
to use UIL to prototype a user interface.

Appendix
Additional Example Programs provides several additional examples that illustrate techniques not discussed in
the body of the book.

1.4 Related Documents

The following books on the X Window System are available from O'Reilly & Associates:

Volume Zero
X Protocol Reference Manual

Volume One
Xlib Programming Manual

Volume Two
Xlib Reference Manual

Volume Three
X Window System User's Guide, Motif Edition

Volume Four
X Toolkit Intrinsics Programming Manual, Motif Edition

Volume Five
X Toolkit Intrinsics Reference Manual

Volume Six B
Motif Reference Manual

Volume Seven
XView Programming Manual (with accompanying reference volume)

1 Preface 1.4 Related Documents

5

Volume Eight
X Window System Administrator's Guide

PHIGS Programming Manual
PHIGS Reference Manual
PEXlib Programming Manual
PEXlib Reference Manual
Quick Reference

The X Window System in a Nutshell

1.5 Conventions Used in This Book

Italic is used for:

UNIX pathnames, filenames, program names, user command names, options for user commands, and variable
expressions in syntax sections.

•

New terms where they are defined.•

Typewriter Font is used for:

Anything that would be typed verbatim into code, such as examples of source code and text on the screen.•
Variables, data structures (and fields), symbols (defined constants and bit flags), functions, macros, and a
general assortment of anything relating to the C programming language.

•

All functions relating to Motif, Xt, and Xlib.•
Names of subroutines in example programs.•

Italic Typewriter Font is used for:

Arguments to functions, since they could be typed in code as shown but are arbitrary names that could be
changed.

•

Boldface is used for:

Names of buttons and menus.•

1.6 Obtaining Motif

If your hardware vendor is an OSF member, they may be able to provide Motif binaries for your machine. Various
independent vendors also provide binaries for some machines. Source licenses must be obtained directly from OSF:

OSF Direct
Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
USA
+1 617 621−7300
Internet: direct@osf.org

1 Preface 1.5 Conventions Used in This Book

6

1.7 Obtaining the Example Programs

The example programs in this book are available electronically in a number of ways: by FTP, FTPMAIL, BITFTP,
and UUCP. The cheapest, fastest, and easiest ways are listed first. If you read from the top down, the first one that
works for you is probably the best. Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the
Internet but can send and receive electronic mail to internet sites (this includes CompuServe users). Use BITFTP if
you send electronic mail via BITNET. Use UUCP if none of the above works.

Versions of the example programs for both Motif 1.2 and Motif 1.1 are available electronically. If you want the Motif
1.2 version, use the filename examples12.tar.Z, as shown in the sample sessions below. The filename for the Motif 1.1
version is examples11.tar.Z.

1.7.1 FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you should
type in boldface.

 % ftp ftp.uu.net
 Connected to ftp.uu.net.
 220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
 Name (ftp.uu.net:paula): anonymous
 331 Guest login ok, send domain style e−mail address as password.
 Password: paula@ora.com (use your user name and host here)
 230 Guest login ok, access restrictions apply.
 ftp> cd /published/oreilly/xbook/motif
 250 CWD command successful.
 ftp> binary (Very important! You must specify binary transfer for compressed files.)
 200 Type set to I.
 ftp> get examples12.tar.Z
 200 PORT command successful.
 150 Opening BINARY mode data connection for examples12.tar.Z.
 226 Transfer complete.
 ftp> quit
 221 Goodbye.
 %

If the file is a compressed tar archive, extract the files from the archive by typing:

 % zcat examples12.tar.Z | tar xf −

System V systems require the following tar command instead:

 % zcat examples12.tar.Z | tar xof −

If zcat is not available on your system, use separate uncompress and tar commands.

1.7.2 FTPMAIL

FTPMAIL is a mail server available to anyone who can send electronic mail to and receive it from Internet sites. This
includes any company or service provider that allows email connections to the Internet. Here's how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands you want to run. The server
will run anonymous FTP for you and mail the files back to you. To get a complete help file, send a message with no

1 Preface 1.7 Obtaining the Example Programs

7

subject and the single word "help" in the body. The following is an example mail session that should get you the
examples. This command sends you a listing of the files in the selected directory, and the requested example files. The
listing is useful if there's a later version of the examples you're interested in.

 % mail ftpmail@online.ora.com
 Subject:
 reply−to paula@ora.com Where you want files mailed
 open
 cd /published/oreilly/xbook/motif
 dir
 mode binary
 uuencode
 get examples12.tar.Z
 quit

A signature at the end of the message is acceptable as long as it appears after "quit."

All retrieved files will be split into 60KB chunks and mailed to you. You then remove the mail headers and
concatenate them into one file, and then uudecode or atob it. Once you've got the desired file, follow the directions
under FTP to extract the files from the archive.

VMS, DOS, and Mac versions of uudecode, atob, uncompress, and tar are available.

1.7.3 BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting files, and it sends you
back the files by electronic mail. BITFTP currently serves only users who send it mail from nodes that are directly on
BITNET, EARN, or NetNorth. BITFTP is a public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a complete help file, send HELP as
the message body.

The following is the message body you should send to BITFTP:

 FTP ftp.uu.net NETDATA
 USER anonymous
 PASS your Internet email address (not your bitnet address)
 CD /published/oreilly/xbook/motif
 DIR
 BINARY
 GET examples12.tar.Z
 QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from the archive. Since you are
probably not on a UNIX system, you may need to get versions of uudecode, uncompress, atob, and tar for your
system. VMS, DOS, and Mac versions are available. The VMS versions are on gatekeeper.dec.com in
/archive/pub/VMS.

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BITNET.

1 Preface 1.7.3 BITFTP

8

1.7.4 UUCP

UUCP is standard on virtually all UNIX systems, and is available for IBM−compatible PCs and Apple Macintoshes.
The examples are available by UUCP via modem from UUNET; UUNET's connect−time charges apply.

You can get the examples from UUNET whether you have an account or not. If you or your company has an account
with UUNET, you will have a system with a direct UUCP connection to UUNET. Find that system, and type:

 uucp uunet\!~/published/oreilly/xbook/motif/examples12.tar.Z yourhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should appear some time later
(up to a day or more) in the directory /usr/spool/uucppublic/yourname. If you don't have an account but would like
one so that you can get electronic mail, then contact UUNET at 703−204−8000.

It's a good idea to get the file /published/oreilly/xbook/motif/ls−lR.Z as a short test file containing the filenames and
sizes of all the files in the directory.

Once you've got the desired file, follow the directions under FTP to extract the files from the archive.

1.7.5 Copyright

The example programs are written by Dan Heller and Paula Ferguson for the Motif Programming Manual, Copyright
1994 O'Reilly & Associates, Inc. Permission to use, copy, and modify these programs without restriction is hereby
granted, as long as this copyright notice appears in each copy of the program source code.

For the purposes of making the book easier to read, the above copyright notice does not appear in the program
examples. However, the copyright does exist in the electronic form of the programs available on the Internet.

1.7.6 Compiling the Example Programs

Once you have the examples and you've unpacked the archive as described above, you're ready to compile them. The
easiest way is to use imake, a program supplied with the X11 distribution that generates proper Makefiles on a wide
variety of systems. imake uses configuration files called Imakefiles that are included with the examples. If you have
imake, you should go to the top−level directory containing the examples, and type:

 % xmkmf
 % make Makefiles
 % make

The examples all have the same application class for purposes of the app−defaults file. The class name is "Demos"
a n d t h e a p p − d e f a u l t s f i l e (D e m o s) i n t h e m a i n e x a m p l e s d i r e c t o r y s h o u l d b e p l a c e d i n
/usr/lib/X11/app−defaults/Demos on a UNIX system. If you can't write to that directory, or if your normal X11
directory tree is installed elsewhere, you should set the environment variable XAPPLRESDIR to the directory where
you installed the examples.

1.8 Notes on Z−Mail

Many of the screenshots in this book that are not based on the example programs are of Z−Mail, an electronic mail
program. Z−Mail is the culmination of years of work, starting with a freely−distributed program called Mail User's
Shell (Mush). Mush's only GUI interface was SunView, although it also supported tty and curses interfaces. Over the

1 Preface 1.7.4 UUCP

9

course of writing this book, I developed the Motif interface for Z−Mail that you see here, which was my reality−check
that what I preach really does work.

It should be mentioned that Z−Mail also supports an OPEN LOOK interface. To do the OPEN LOOK version, I chose
to use OLIT (OPEN LOOK Intrinsics Toolkit) because, like Motif, it is based on the X Toolkit Intrinsics. Xt is a great
environment for developing applications for the X environment. I also believe that the best applications are those
whose user interfaces can be abstracted, generalized, and modularized so that you can unplug one interface and plug in
another. My approach to doing that is also reflected in this book, although not as a major topic.

Since the first writing of this book, I'm happy to say that Z−Mail has become a great success. It has been ported to
Microsoft Windows and to the Apple Macintosh, both of which have graphical user environments that are
substantially different from Motif in look, feel, and API implementations. However, the models described in this
book, namely the abstraction and generalization of core components from one another, were maintained throughout
the course of the porting processes.
Dan Heller

1.9 Acknowledgments

The current edition of this book was updated to cover Motif 1.2, including drag and drop and internationalization, by
Paula Ferguson. Dave Brennan, of HaL Computer Systems, took on the unenviable task of learning everything he
could about UIL and Mrm, in order to write the UIL programming material for this edition. He did a great job of
covering a complex subject.

Adrian Nye deserves recognition for allowing me to work on this project, when I'm sure that he had other projects he
would have liked to send my way. I don't think either one of us had any idea how involved this update project would
become. He also provided editorial support that helped keep me on track in the final stages of the work on the book.

The other writers at O'Reilly & Associates in Cambridge, Valerie Quercia and Linda Mui, provided support that kept
me sane while I was working on the book. Their willingness to listen and offer advice is greatly appreciated. Extra
gratitude goes to Valerie Quercia for her help with the screen dumps for the book.

David Flanagan deserves credit for always being willing to answer my questions about the technical details of Motif
and X. Douglas Rand, Scott Meeks, and David Brooks at OSF answered questions and helped review the new
material. Daniel Jahn, of SAS Institute, Inc., also provided valuable review comments for this edition.

Special thanks go to the people who worked on the production of this book. The final form of this book is the work of
the staff at O'Reilly & Associates. The authors would like to thank Chris Reilly for the figures, Donna Woonteiler,
Chris Tong, and Ellie Cutler for indexing, Lenny Muellner for tools support, and Stephen Spainhour, Clairemarie
Fisher O'Leary, Kismet McDonough, and Eileen Kramer for copyediting and production of the final copy. Thanks also
to Donna Woonteiler for her patience in helping me understand the production process.

Finally, I'd like to thank my friends for putting up with me when I kept telling them that I'd be done working non−stop
in a month or two. Special thanks to my housemate, Meredith Hunt, who put up with me when I was stressed out and
not much fun to live with, and who took care of the cats when I wasn't around. My friends Karen Lewis and Liz
Bradley opened their house to me when I needed to escape and be someplace where there are mountains. And thanks
to the great people at the Boston Rock Gym, who provided me with a much−needed outlet for climbing the walls.

Despite the efforts of all of these people, the authors alone are responsible for any errors or omissions that remain.
Paula M. Ferguson

1 Preface 1.9 Acknowledgments

10

The first edition of this book took over a year and a half to write and compile from the beginning. But when I look
back on the entire effort, and I think about what it takes to do things like this (and other difficult things in life), I
realize that what it really requires is a state of mind and a mental model that lends itself to seeing the big picture and
choosing to do what's necessary to get the job done.

To this, I can only credit one person, Tim O'Reilly, my friend and editor of this book. It's his approach to life, his
values, his way of thinking about things, and his talent for expressing them is what has influenced me more than
anything else in adopting the kind of mental framework necessary to write a book like this (or to start my company,
Z−Code Software, or to do anything I do in life). He never gives me advice when I ask for it, nor does he tell me what
to do. Instead, he uses quotes, cites anecdotes, or just describes an abstract thought that always seems to be
appropriate to every situation. In short, he's shown me a way of thinking about things that appreciates the big picture. I
take this with me wherever I go, and in whatever I do. Without it, I couldn't have written this book.

Those who worked most closely with me on the project include Irene Jacobson, who dedicated long hours to
meticulous editing and support. Her intuition and insistence on proper use of words saved many cuts of Tim O'Reilly's
scalpel. David Lewis also gets super−high marks for his excellent feedback, for his technical expertise, and for
helping take care of certain Z−Mail ports while I was busy hunched over this computer. More thanks go to the great
folks at Z−Code Software, Bart Schaefer and Don Hatch, for not laughing at me when I told people for at least six
months that the book would take "just two more weeks now." (I really meant it, too!) Actually, they helped quite a bit
with reading nroff'd manuscripts, and by taking care of the business whenever I was at O'Reilly & Associates' offices
in "Bahston."

The figures in this book come in two forms: screendumps and hand−generated figures done by Chris Reilly. What a
super job he did−−and always on time. And how can I thank Kismet McDonough, Lenny Muellner, Rosanne Wagger,
Mike Sierra, Eileen Kramer, and the other production folks at O'Reilly & Associates, who did a wonderful job of
copyediting, proofing, page layout, and all the other things that make the difference between a manuscript and a
finished book. And that's not all: Ellie Cutler wrote the index. Tony Marotto of Cambridge Computer Associates
figured out how to convert our screen dumps into PostScript files and how to scale screen dumps without the moire
and plaid patterns you see in many books. He used Jeff Poskanzer's pmbplus to convert xwd dumps to gif format, and
then wrote a set of image−processing programs that shift and enhance the tones. Daniel Gilly took on the enormous
job of developing the reference appendices when it became clear that I wouldn't have time.

Enthusiastic applause goes to Libby Hanna (do I get a real official OSF/Motif decoder ring now!!??), David Brooks,
Scott Meeks, Susan Thompson, Carl Scholz, Benjamin Ellsworth, and the entire cast at OSF in Cambridge for their
support. And, of course, everyone on the motif−talk mailing list. (I wish I could remember all your names!)

People I can't forget: Bill "Rock" Petro, Akkana, Mike Harrigan at NCD for the terminal, Danny Backx at BIM (sorry
I didn't get you any review copies!), John Harkin, and certain folks at Sun that I'd love to mention, but I can't because
they're into that OL−thang and they wouldn't want to be associated with the M−word, Jordan Hayes, Paula Ferguson,
and Kee Hinckley (just because he's cool). Also thanks to Ralph Swick and Donna Converse at the X Consortium for
being somewhat patient with me.

Added thanks to Lynn Vaughn at CNN for keeping me informed about what's going on in the world, since I have no
time to look out the window; to Short Attention−Span Theatre, for keeping me amused; and to Yogurt World, for
keeping me fed.

This book was written using a Sun workstation, the vi editor (for which I guess I ought to thank Bill Joy), SoftQuad's
sqtroff, X11R4 and various versions of Motif (1.0 through 1.1.3).

For catching and reporting errors that have been fixed in the second printing, I'd like to thank Akkana, Wayne
Robertz, Glen Shute, Scott Strool, Trevor Taylor, Peter Wagner, Andrew Wason, Tim Weinrich, and Bill Wohler.

1 Preface 1.9 Acknowledgments

11

Dan Heller

1.10 We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability, but you may find that features
have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing:

 O'Reilly & Associates, Inc.
 103 Morris Street, Suite A
 Sebastopol, CA 95472
 1−800−998−9938 (in the US or Canada)
 1−707−829−0515 (international/local)
 1−707−829−0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@ora.com (via the Internet)
uunet!ora!info (via UUCP)

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com (via the Internet)

1 Preface 1.10 We'd Like to Hear From You

12

2 Introduction to Motif

This chapter answers the question "Why Motif?" in terms of the development of applications that are "easy enough for
your mother to use." It suggests some of the complexities that the programmer has to master in order to make an
application simple.

Congratulations! After slaving behind the computer for months, fighting a deadline that seemed impossible to meet,
you've finished your software product and it's a big hit. The critics love it, you're in the money, and everyone,
including your mother, is buying your new product. Just as everything seems to be going your way, your worst
nightmare comes true: your mother calls and asks you how to use it.

An unlikely scenario? Not if you're developing applications to run under the Motif graphical user interface (GUI). As
a proposed standard for graphical user interfaces, Motif may be implemented on a wide range of computer platforms,
from large IBM mainframes right down to the PC that your mom may be using. The Open Software Foundation
(OSF), developer of the Motif GUI, hopes to reach all kinds of computers and computer users no matter how
advanced (or limited) their computer skills may be.

So, will your mom really call you for help? Well, mine did. In fact, she did something worse. She wanted me to
explain how to use a software product I didn't write. I didn't know how her software worked or even what it was.
Fortunately, though, the software was based on Microsoft Windows, which has more than a passing similarity to
Motif. The experience of providing technical support to my mother reminded me of some of the fundamental concepts
behind the design of a user interface and the role of the application programmer in carrying out that design.

2.1 A True Story

Before I tell my story, let me start with a little background. I have been developing software for the X Window
System for several years. Every now and then, when the family gets together for dinner, someone always asks the
same thing, "So, explain it to me again: just what is it that you do?" I launch into my usual speech: "It's called X
Windows, dad... uh, no, mom, it's computer software... it's rather hard to explain, but..." The attention span lasts only
until the next course is served, at which time the discussion turns to new ways for cooking eggplant. Little did I realize
that something actually registered with someone in my family, because shortly thereafter, I got a call from my mom.

Mom: Guess what?!

Me: What?

Mom: Our company is switching to a new line of software based on your work!

Me: Really? You're going to use electronic mail?

Mom: No, all of our insurance packages use this new software that runs under Windows. You wrote that, didn't you?

Me: No, mom. I write software using X Windows −− and I didn't write X, I just use it. I think you're talking about
Microsoft Windows. You're using it with your PC, right?

Mom: That's right, but it looks exactly like your software, so I figured you could show me how to use it. I have never
seen this stuff before.

13

(Uh, oh... I see it coming now. Last time she wanted me to help her explain her computer to her, I ended up translating
the entire DOS 2.0 user's guide into English, which she conveniently forgot in about a week.)

Me: Mom, I don't know Microsoft Windows, I know X Windows and they're not the same...

Mom: You mean you won't help me?

Me: You don't understand −− I can't help you. MS−Windows has nothing to do with X...

Silence.

Me: I don't think I'm getting through to you.

Silence.

Me: Ok, I'll be right over...

Despite all my explanations of the X Window System, the only keyword my mom remembered was Windows. I had
high hopes, though, because I was actually going to teach her something related to what I do for a living. And this
time she had to listen because her job depended on it.

After some fidgeting with diskettes and other necessary start−up procedures, I finally got Microsoft Windows 3.0 up
and running. Sure enough, it looked just like Motif. Several applications came up by default: a clock, an editor of
some sort, and a little calendar program. Immediately, the questions started flying at me:

Mom: How do you access those buttons at the top of the window?

Me: Those are called Pulldown Menus and every application has them. They are located in what is called a MenuBar.

Mom: What does "F1" mean?

Me: The "F" denotes a function key and the "1" indicates it's the first function key. Pressing it gives you help
depending on where the cursor is. For example...

Mom (interrupting): Why are these keys labeled "ALT?" What do they do?

Me: Oh, those are used in conjunction with other keys. You press "ALT" and then some other key and you get special
attention, like...

Mom (growing frustrated): Look what you did. Now there are too many windows up. How do I get back to the one I
was using?

Me (fighting for words): Well, you see, you can move from one window to the next or between elements within a
window by using the Tab key and possibly some other key like the Control key, the Shift key, or the Alt key, or
maybe a combination of several of these keys depending on where you want to go...

Mom (sitting back and sighing): Oh, that's way too complicated, I'll never remember all that. And just look at those
colors−−they're awful.

Me (trying to sound encouraging): You can change them using this tool...

2 Introduction to Motif 2 Introduction to Motif

14

It was a long grueling day, but she eventually figured out how to do most of what she had to do. After she memorized
those actions she used most frequently, she seemed quite capable and no longer needed my supervision. Her favorite
trick was Alt−F3, which closed a window and terminated a program. Because she had several things figured out, I
thought I'd dare teach her something new.

Me: You know, if you don't want to use that key sequence, you can define it yourself by...

Mom (protecting the computer like it was her only child): NO! Don't touch anything! I know how to use it now, so
don't confuse me any more!

My fault. I figured that since she was pleased that she could change window colors, she'd be eager to make other
aesthetic alterations. Her reaction to my offer to teach her how to change keyboard input foreshadowed what was
about to come. I was in the other room when I heard a screech: "The computer is broken! The Alt−F3 thingy you
showed me doesn't work any more!" Sure enough, it didn't work on the window she was trying to use it on, but as we
discovered, that was the only window on the screen where it didn't work. It turned out that the program she tried it on
didn't understand the Alt−F3 thingy. It was devastating for my mom and, needless to say, she will never run that
program again.

We never did get to her new insurance software; we didn't have to. All she needed to learn was how to use the
graphical user interface. She now reports having figured out her company's software "all by herself" and I can't take
credit for teaching her.

2.2 Basic User−interface Concepts

There are many lessons an application designer can learn from this story. As it so happens, the designer and the
application programmer are often the same person. But whether you are the designer of the software or an engineer
responsible for implementing someone else's design, there are still some basic principles that will benefit you in your
work. Let's begin with the basics drawn from this particular story:

All applications running on a user's workstation should have a consistent interface design. Programs that
deviate from the expected design will almost assuredly confuse the user even if the changes were intended for
the user's benefit. Chances are also high that the user will not want to use the questionable software again.

•

Users rely on rote memory; they will remember seemingly complicated interface interaction techniques
provided that the functions they perform are useful and are invoked frequently. There is a limit, however, to
how much users want to remember. It is important that essential or frequently used functions follow
memorable patterns.

•

Users, especially novices, will probably not want to customize or alter their applications in any way. If they
do, the available methods must be as easy and painless as possible.

•

If you are a cast−in−stone UNIX software engineer, you may be quite skeptical about this last point. It is true that,
traditionally, UNIX applications are extremely flexible, offering the user many options for modifying functional or
aesthetic details. One of the first things the hard−core X programmer learns is that "the user is always right; if he
wants to customize his interface, by God you had better let him."

This principle is absolutely correct. Unfortunately, many early X applications carry it too far and end up "spineless."
Many such programs actually require the user to make certain customizations in order for the program to be usable or
attractive. For some programs, the problem worsens if unreasonable customization settings are given, since there is no
sanity−checking for unreasonable configurations.

So far, such customization issues have not gotten out of hand because UNIX and X applications are used almost

2 Introduction to Motif 2.2 Basic User−interface Concepts

15

exclusively by technical people who understand the environment and know how to work within it. But it is now time
to consider users who know absolutely nothing about computers and who don't want to−−they are only using your
software because they have to.

2.3 What Is Motif?

So, back to Motif. What is it and how can it help you solve your user−interface design goals? To start, Motif is a set of
guidelines that specifies how a user interface for graphical computers should look and feel. This term describes how
an application appears on the screen (the look) and how the user interacts with it (the feel).

the figure shows a Motif application.

A Motif application

The user interacts with the application by typing at the keyboard, and by clicking, selecting, and dragging various
graphic elements of the application with the mouse. For example, any application window can be moved on the screen
by moving the pointer to the top of the window's frame (the title bar), pressing and holding down a button on the
mouse, and dragging the window to a new location. The window can be made larger or smaller by pressing a mouse
button on any of the resize corners and dragging.

Most applications sport buttons that can be clicked with the mouse to initiate application actions. Motif uses clever
highlighting and shadowing to make buttons, and other components, look three−dimensional. When a button is
clicked on, it actually appears to be pressed in and released.

2 Introduction to Motif 2.3 What Is Motif?

16

A row of buttons across the top of most applications forms a menu bar. Clicking on any of the titles in the menu bar
pops up a menu of additional buttons. Buttons can also be arranged in palettes that are always visible on the screen.
When a button is clicked, the application can take immediate action or it can pop up an additional window called a
dialog box. A dialog box can ask the user for more information or present additional options.

This style of application interaction isn't new to most people, since the Apple MacIntosh popularized it years ago.
What is different about Motif is that the graphical user interface specification is designed to be independent of the
computer on which the application is running.

Motif was designed by the Open Software Foundation (OSF), a non−profit consortium of companies such as
Hewlett−Packard, Digital, IBM, and dozens of other corporations. OSF's charter calls for the development of
technologies that will enhance interoperability between computers from different manufacturers. Targeted
technologies range from user interfaces to operating systems.

Part of OSF's charter was to choose an appropriate windowing system environment that would enable the technology
to exist on as wide a range of computers as possible. It was decided that the OSF/Motif toolkit should be based on the
X Window System, a network−based windowing system that has been implemented for UNIX, VMS, DOS,
Macintosh, and other operating systems. X provides an extremely flexible foundation for any kind of graphical user
interface.

When used properly, the Motif toolkit enables you to produce completely Motif−compliant applications in a relatively
short amount of time. At its heart, though, Motif is a specification rather than an implementation. While most Motif
applications are implemented using the Motif toolkit provided by OSF, it would be quite possible for an application
implemented in a completely different way to comply with the Motif GUI. The specification is captured in two
documents: the Motif Style Guide, which defines the external look and feel of applications, and the Application
Environment Specification, which defines the application programmer's interface (API). Both books have been
published for OSF by Prentice−Hall and are available in most technical bookstores.

The Motif specifications don't have a whole lot to say about the overall layout of applications. Instead, they focus
mainly on the design of the objects that make up a user interface−−the menus, buttons, dialog boxes, text entry, and
display areas. There are some general rules, but for the most part, the consistency of the user interface relies on the
consistent behavior of the objects used to make it up, rather than their precise arrangement.

The Motif specification is broken down into two basic parts:

The output model describes what the objects on the screen look like. This model includes the shapes of
buttons, the use of three−dimensional effects, the use of cursors and bitmaps, and the positioning of windows
and subwindows. Although some recommendations are given concerning the use of fonts and other visual
features of the desktop's, Motif is flexible in most of these recommendations.

•

The input model specifies how the user interacts with the elements on the screen.•

The key point of the specification is that consistency should be maintained across all applications. Similar
user−interface elements should look and act similarly regardless of the application that contains them.

Motif can be used for virtually any application that interacts with a computer user. Programs as conceptually different
as a CAD/CAM package or an electronic mail application still use the same types of user−interface elements. When
the user interface is standardized, the user gets more quickly to the point where he is working with the application,
rather than just mastering its mechanics.

My experience with Microsoft Windows and my mother's new software demonstrates how far Motif has come in
reaching this goal. I was faced with a window system that I had literally never seen before and an operating system I

2 Introduction to Motif 2.3 What Is Motif?

17

rarely use (DOS), but that didn't prevent me from using the application. This is not a coincidence; I knew how to use
MS−Windows because its user−interface is based on the same principles as Motif. Motif can be seen as a superset of
both MS−Windows and Presentation Manager. Even though the others came first, Motif views them as specific
implementations of an abstract specification.

The Motif interface was intentionally modeled after IBM's Common User Access (CUA) specification, which defines
the interface for OS/2 and Microsoft Windows. The reason for this is twofold: first, there is a proven business model
for profiting from an "open systems" philosophy; second, the level of success and acceptance of Microsoft Windows
in the PC world is expected to be quite substantial. As a result, more and more vendors are jumping on the bandwagon
and are supporting Motif as their native graphical interface environment.

Just as my mom becomes more and more familiar with how to use Windows−based software, so too are thousands of
other PC users. As the PC world migrates to UNIX and other larger−scale computers, so too will their applications. In
order to keep their customer base, the developers of those PC applications will adopt Motif as the GUI for the UNIX
versions of their software. As a result, the next few years will see the number of Motif users and developers grow
astronomically as Motif becomes the focal point for software and hardware companies alike.

You have two options for making applications Motif−compliant. You can write the entire application yourself, and
make sure that all your user−interface features conform to the Motif GUI specifications, or you can use a
programming toolkit, which is a more realistic option. A toolkit is a collection of prewritten functions that implement
all the features and specifications of a particular GUI.

However, a toolkit cannot write an application for you, nor can it enforce good programming techniques. It isn't going
to tell you that there are too many objects on the screen or that your use of colors is outrageous. The job of Motif is
solely to provide a consistent appearance and behavior for user−interface controls. So, before we jump into the
mechanics of the Motif toolkit, let's take a moment longer with the philosophy of graphical user interfaces.

2.4 Designing User Interfaces

The principles behind an effective user interface cannot be captured in the specifications for Motif or any other GUI.
Even though the Motif toolkit specifies how to create and use its interface elements, there is still quite a bit left unsaid.
As the programmer, you must take the responsibility of using those elements effectively and helping the user to be as
productive as possible. You must take care to keep things simple for the beginner and, at the same time, not restrict
the more experienced user. This task is perhaps the most difficult one facing the programmer in application design.

There is frequently no right or wrong way to design an interface. Good user−interface design is usually a result of
years of practice: you throw something at a user, he plays with it, complains, and throws it back at you. Experience
will teach you many lessons, although we hope to guide you in the right direction, so that you can avoid many
common mistakes and so that the ones that you do make are less painful.

So, rather than having absolute commandments, we rely on heuristics, or rules of thumb. Here is a rough list to start
with:

Keep the interface as simple as possible.•
Make direct connections to real−world objects or concepts.•
If real−world metaphors are not available, improvise.•
Don't forget to keep the interface simple.•
Don't restrict functionality to accommodate simplicity.•

This list may sound flippant, but it is precisely what makes designing an interface so frustrating. Keeping an interface

2 Introduction to Motif 2.4 Designing User Interfaces

18

as simple as possible relies on various other factors, the most basic of which is intuition. The user is working with
your application because he wants to solve a particular problem or accomplish a specific task. He is going to be
looking for clues to spark that connection between the user interface and the preconceived task in his mind. Strive to
make the use of an application obvious by helping the user form a mental mapping between the application and
real−world concepts or objects. For example, a calculator program can use buttons and text areas to graphically
represent the keypad and the one−line display on a calculator. Most simple calculators have the common digit and
arithmetic operator keys; a graphical display can easily mimic this appearance. Other examples include a
programmatic interface to a cassette player, telephone, or FAX machine. All of these could have graphical equivalents
to their real−world counterparts.

The reason these seemingly obvious examples are successful interface approaches is because they take advantage of
the fact that most people are already familiar with their real−life counterparts. But there is another, less obvious
quality inherent in those objects: they are simple. The major problem concerning interface design is that not
everything is simple. There isn't always a real−world counterpart to use as a crutch. In the most frustrating cases, the
concept itself may be simple, but there may not be an obvious way to present the interaction. Of course, once someone
thinks of the obvious solution, it seems odd that it could have been difficult in the first place.

Consider the VCR. Conceptually, a VCR is a simple device, yet statistics say that 70% of VCR owners don't know
how to program one. How many times have you seen the familiar 12:00−AM flashing in someone's living room?
Researchers say that this situation occurs because most VCRs are poorly designed and are "too featureful." They're
half−right; the problem is not that they are too featureful, but that the ways to control those features are too
complicated. Reducing the capabilities of a VCR isn't going to make it easier to use; it's just going to make it less
useful. The problem with VCRs is that their designers focused too much on functionality and not enough on usability.

So, how do you design an interface for a VCR when there is no other object like it? You improvise. Sure, the VCR is a
simple device; everyone understands how one is supposed to work, but few people have actually designed one that is
easy to use until recently. Maybe you've heard about the new device that, when connected to your VCR, enables you
to have a complete TV program guide displayed on your screen in the bar−graph layout similar to the nightly
newspaper listings. All you have to do is point and click on the program you want to record and that's it−−you're done.
No more buttons to press, levels of features to browse through, dials to adjust or manuals to read. At last, the right
interface has been constructed. None of the machine's features have been removed. It's just that they are now
organized in an intuitive way and are accessible in an simple manner.

This method for programming VCRs satisfies the last two heuristics. Functionality has not been reduced, yet
simplicity has been heightened because a creative person thought of a new way to approach the interface. The lesson
here is that no object should be difficult to use no matter how featureful it is or how complex it may seem. You must
rely heavily on your intuition and creativity to produce truly innovative interfaces.

Let's return to computer software and how these principles apply to the user−interface design model. The first
heuristic is simplicity, which typically involves fewer, rather than more, user−interface elements on the screen.
Buttons, popup menus, colors, and fonts should all be used sparingly in an application. Often, the availability of
hundreds of colors and font styles along with the attractiveness of a three−dimensional interface compels many
application programmers to feel prompted, and even justified, in using all of the bells and whistles. Unfortunately,
overuse of these resources quickly fatigues the user and overloads his ability to recognize useful and important
information.

Ironically, the potential drawbacks to simplicity are those that are also found in complexity. By oversimplifying an
interface, you may introduce ambiguity. If you reduce the number of elements on your screen or make your iconic
representations too simple, you may be providing too little information to the user about what a particular interface
element is supposed to do. Underuse of visual cues may make an application look bland and uninteresting.

2 Introduction to Motif 2.4 Designing User Interfaces

19

One of Motif's strengths is the degree of configurability that you can pass on to the end user. Colors, fonts, and a wide
variety of other resources can be set specifically by the user. You should be aware, however, that once your
application ships, its default state is likely to be the interface most people use, no matter how customizable it may be.
While it is true that more sophisticated users may customize their environment, you are ultimately in control of how
flexible it is. Also, novice users quickly become experts in a well−designed system, so you must not restrict the user
from growth.

Simplicity may not always be the goal of a user interface. In some cases, an application may be intentionally complex.
Such applications are only supposed to be used by sophisticated users. For example, consider a 747 aircraft.
Obviously, these planes are intended to be flown by experts who have years of experience. In this case, aesthetics is
not the goal of the interior design of a cockpit; the goal is that of functionality.

In order to design an effective graphical user interface for an application, you must evaluate both the goals of your
particular application and your intended audience. Only with a complete understanding of these issues will you be
able to determine the best interface to use. And remember, your mom just might call you for help.

2 Introduction to Motif 2.4 Designing User Interfaces

20

3 The Motif Programming Model

This chapter teaches the fundamentals of Motif by example. It dissects a simple "Hello, World" program, showing the
program structure and style common to all Motif programs. Because much of this material is already covered in detail
in Volume Four, X Toolkit Intrinsics Programming Manual, Motif Edition, this chapter can be used as a refresher or a
light introduction for those who haven't read the earlier book. It makes reference to Volume One, Xlib Programming
Manual, and Volume Four to point out areas that the programmer needs to understand (windows, widgets, events,
callbacks, resources, translations) before progressing with Motif.

Though we expect most readers of this book to be familiar with the X Toolkit Intrinsics (Xt), this chapter briefly
reviews the foundations of Motif in Xt. This review serves a variety of purposes. First, for completeness, we define
our terms, so if you are unfamiliar with Xt, you will not be completely at sea if you forge ahead. Second, there are
many important aspects of the X Toolkit Intrinsics that we aren't going to cover in this book; this review gives us a
chance to direct you to other sources of information about these areas. Third, Motif diverges from Xt in some
important ways, and we point out these differences up front. Finally, we point out some of the particular choices you
can make when Xt or Motif provides more than one way to accomplish the same task.

If you are unfamiliar with any of the concepts introduced in this chapter, please read the first few chapters of
Volume Four, X Toolkit Intrinsics Programming Manual. Portions of Volume One, Xlib Programming Manual, and
Volume Three, X Window System User's Guide, Motif Edition, may also be appropriate.

3.1 Basic X Toolkit Terminology and Concepts

As discussed in Chapter 1, Introduction to Motif, the Motif user−interface specification is completely independent of
how it is implemented. In other words, you do not have to use the X Window System to implement a Motif−style
graphical user interface (GUI). However, to enhance portability and robustness, the Open Software Foundation (OSF)
chose to implement the Motif GUI using X as the window system and the X Toolkit Intrinsics as the platform for the
Application Programmer's Interface (API).

Xt provides an object−oriented framework for creating reusable, configurable user−interface components called
widgets. Motif provides widgets for such common user−interface elements as labels, buttons, menus, dialog boxes,
scrollbars, and text−entry or display areas. In addition, there are widgets called managers, whose only job is to control
the layout of other widgets, so the application doesn't have to worry about details of widget placement when the
application is moved or resized.

A widget operates independently of the application, except through prearranged interactions. For example, a button
widget knows how to draw itself, how to highlight itself when it is clicked on with the mouse, and how to respond to
that mouse click.

The general behavior of a widget, such as a PushButton, is defined as part of the Motif library. Xt defines certain base
classes of widgets, whose behavior can be inherited and augmented or modified by other widget classes (subclasses).
The base widget classes provide a common foundation for all Xt−based widget sets. A widget set, such as Motif's Xm
library, defines a complete set of widget classes, sufficient for most user−interface needs. Xt also supports
mechanisms for creating new widgets or for modifying existing ones.

Xt also supports lighter−weight objects called gadgets, which for the most part look and act just like widgets, but their
behavior is actually provided by the manager widget that contains them. For example, a pulldown menu pane can be
made up of button gadgets rather than button widgets, with the menu pane doing much of the work that would

21

normally be done by the button widgets.

Most widgets and gadgets inherit characteristics from objects above them in the class hierarchy. For example, the
Motif PushButton class inherits the ability to display a label from the Label widget class, which in turn inherits even
more basic widget behavior from its own superclasses. See Volume Four, X Toolkit Intrinsics Programming Manual,
for a complete discussion of Xt's classing mechanisms; see Chapter 3, Overview of the Motif Toolkit, for details about
the Motif widget class hierarchy.

The object−oriented approach of Xt completely insulates the application programmer from the code inside of widgets.
As a programmer, you only have access to functions that create, manage, and destroy widgets, plus certain public
widget variables known as resources. As a result, the internal implementation of a widget can change without
requiring changes to the API. A further benefit of the object−oriented approach is that it forces you to think about an
application in a more abstract and generalized fashion, which leads to fewer bugs in the short run and to a better
design in the long run.

Creating a widget is referred to as instantiating it. You ask the toolkit for an instance of a particular widget class,
which can be customized by setting its resources. All Motif PushButton widgets have the ability to display a label; an
instance of the PushButton widget class actually has a label that can be set with a resource.

Creating widgets is a lot like buying a car: first you choose the model (class) of car you want, then you choose the
options you want, and then you drive an actual car off the lot. There may exist many cars exactly like yours, others
that are similar, and still others that are completely different. You can create widgets, destroy them, and even change
their attributes just as you can buy, sell, or modify a car by painting it, adding a new stereo, and so on.

Widgets are designed so that many of their resources can be modified by the user at run−time. When an application is
run, Xt automatically loads data from a number of system and user−specific files. The data from these files is used to
build the resource database, which is used to configure the widgets in the application. If you want to keep the user
from modifying resources, you can set their values when you create the widget. This practice is commonly referred to
as hard−coding resources.

It is considered good practice to hard−code only those resource values that are essential to program operation and to
leave the rest of the resources configurable. Default values for configurable resources are typically specified in an
application defaults file, which is more colloquially referred to as the app−defaults file. By convention, this file is
stored in the directory /usr/lib/X11/app−defaults and it has the same name as the application with the first letter
capitalized. The app−defaults file is loaded into the resource database along with other files that may contain different
values set by the system administrator or the user. In the event of a conflict between different settings, a complex set
of precedence rules determines the value actually assigned to a resource. See Volume Four, X Toolkit Intrinsics
Programming Manual, for more information on how to set resources using the various resource files.

Motif widgets are prolific in their use of resources. For each widget class, there are many resources that neither the
application nor the user should ever need to change. Some of these resources provide fine control over the
three−dimensional appearance of Motif widgets; these resources should not be modified, since that would interfere
with the visual consistency of Motif applications. Other resources are used internally by Motif to make one large,
complex widget appear to the user in a variety of guises.

The callback resources for a widget are a particularly important class of resources that must be set in the application
code. A widget that expects to interact with an application provides a callback resource for each type of interaction it
supports. An application associates a function with the callback resources in which it is interested; the function is
invoked when the user performs certain actions in the widget. For example, a PushButton provides a callback for
when the user activates the button.

3 The Motif Programming Model 3 The Motif Programming Model

22

Note, however, that not every event that occurs in a widget results in a callback to an application function. Widgets
are designed to handle many events themselves, with no interaction from the application. All widgets know how to
draw themselves, for example. A widget may even provide application−like functionality. For example, a Text widget
typically provides a complete set of editing commands via internal widget functions called actions. Actions are
mapped to events in a translation table. This table can be augmented, selectively overridden, or completely replaced
by settings contained in the implementation of a widget class, in application code, or in a user's resource files.

In the basic Xt design, translations are intended to be configurable by the user. However, the purpose of Xt is to
provide mechanism, not impose user−interface policy. In Motif, translations are typically not modified by either the
user or the application programmer. While it is possible for an application to install event handlers or new translations
and actions for a widget, most Motif widgets expect application interaction to occur only through callbacks.

Since the Motif widgets are designed to allow application interaction through callbacks, we don't discuss translations
very often in this book. Some of the Motif widgets, particularly buttons when they are used in menus, have undefined
behavior when their translations are augmented or overiddden. An experienced Xt programmer may feel that Motif's
limitations on the configurability of translations violates Xt. But consider that Xt is a library for building toolkits, not
a toolkit itself. Motif has the further job of ensuring consistent user−interface behavior across applications.

Whether the goal of consistency is sufficient justification for OSF's implementation is a matter of judgement, but it
should at least be taken into account. At any rate, you should be aware of the limitations when configuring Motif
widgets. Motif widgets provide callback resources to support their expected behavior. If a widget does not have a
callback associated with an event to which you want your application to respond, you should be cautious about adding
actions to the widget or modifying its translations.

3.2 The Xm and Xt Libraries

A Motif user interface is created using both the Motif Xm library and the Intrinsics' Xt library. Xt provides functions
for creating and setting resources on widgets. Xm provides the widgets themselves, plus an array of utility routines
and convenience functions for creating groups of widgets that are used collectively as single user−interface
components. For example, the Motif MenuBar is not implemented as one particular widget, but as a collection of
smaller widgets put together by a convenience function.

An application may also need to make calls to the Xlib layer to render graphics or get events from the window system.
In the application itself, rather than in the user interface, you may also be expected to make lower−level system calls
into the operating system, filesystem, or hardware−specific drivers. Thus, the whole application may have calls to
various libraries within the system. the figure represents the model for interfacing to these libraries.

3 The Motif Programming Model 3.2 The Xm and Xt Libraries

23

User−interface library model

As illustrated above, the application itself may interact with all layers of the windowing system, the operating system,
and other libraries (math libraries, rpc, database) as needed. On the other hand, the user−interface portion of the
application should restrict itself to the Motif, Xt, and Xlib libraries whenever possible. This restriction aids in the
portability of the user−interface across multiple computers and operating systems. Since X is a distributed windowing
system, once the application runs on a particular computer, it can be displayed on any computer running X−−even
across a local or wide−area network.

In addition to restricting yourself to using the Motif, Xt, and Xlib libraries, you should try to use the higher−level
libraries whenever possible. Focus on using Motif−specific widgets and functions, rather than trying to implement
equivalent functionality using Xt or Xlib. An exception to this guideline is the use of Xt creation routines rather than
Motif convenience functions for creating simple widgets, as discussed later in the chapter. Higher−level libraries hide
a great number of details that you would otherwise have to handle yourself. By following these guidelines, you can
reduce code complexity and size, creating applications that are easier to maintain.

In situations where the Motif library does not provide the functionality you need, you may attempt to borrow widgets
from other toolkits or write your own. This technique is possible and made relatively simple because Motif is based on
Xt. While this book discusses certain methods for extending the Motif library, you should refer to Volume Four, X
Toolkit Intrinsics Programming Manual, for a general discussion of how to build your own widgets. For example, an
application might make good use of a general−purpose graphing widget.

Whatever libraries you use, be sure to keep your application modular. The first and most important step in the
development of an application is its design. You should always identify the parts of the application that are functional
and the parts that make up the user interface. Well−designed applications keep the user−interface code separate from
the functional code. You should be able to unplug the Motif code and replace it with another user−interface widget set
based on Xt merely by writing corresponding code that mirrors the Motif implementation.

3.3 Programming With Xt and Motif

The quickest way to understand the basic Motif programming model is to examine a simple application. the source
code is a version of the classic "hello world" program that uses the Motif toolkit. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only
available in Motif 1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* hello.c −− initialize the toolkit using an application context and a

3 The Motif Programming Model 3.3 Programming With Xt and Motif

24

 * toplevel shell widget, then create a pushbutton that says Hello using
 * the varargs interface.
 */
 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 XtAppContext app;
 void button_pushed();
 XmString label;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,
 &argc, argv, NULL, NULL);

 label = XmStringCreateLocalized ("Push here to say hello");
 button = XtVaCreateManagedWidget ("pushme",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);
 XtAddCallback (button, XmNactivateCallback, button_pushed, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 button_pushed(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 printf ("Hello Yourself!0);
 }

The output of the program is shown in the figure.

Output of hello.c

You can get the source code for hello.c and the rest of the examples in this book via anonymous ftp or other methods
that are described in the Preface. It is a good idea to compile and run each example as it is presented.

The example programs come with Imakefiles that should make building them easy if you have the imake program.

3 The Motif Programming Model 3.3 Programming With Xt and Motif

25

This program should already be in /usr/bin/X11 on UNIX−based systems that have X11 Release 4 or Release 5
installed. You also need the configuration files for imake; they are in /usr/lib/X11/config on most UNIX−based
systems. An Imakefile is a system−independent makefile that is used by imake to generate a Makefile. This process is
necessary because it is impossible to write a Makefile that works on all systems. You invoke imake using the xmkmf
program. Complete instructions for compiling the examples using imake are provided in the README file included
with the source code.

As explained in the Preface, there are versions of the example programs for both Motif 1.2 and Motif 1.1 available
electronically. However, all of the example code in this book is designed to work with Motif 1.2 (and X11R5); the
programs use functions that are not available in Motif 1.1 (and X11R4). Where we use Motif 1.2 functions, we try to
mention how to perform the same tasks using Motif 1.1, usually in a footnote. To use the example programs with
Motif 1.1, make the changes we describe. When the necessary changes are significant, we may explain both versions
of the program. For a description of the changes that we made to convert the example programs to Motif 1.2, see
Section #smotif12.

To compile any of the examples on a UNIX system without using imake, use the following command line:

 cc −O −o filename filename.c −lXm −lXt −lX11

If you want to do debugging, replace −O with −g in this command line. The order of the libraries is important. Xm
relies on Xt, and both Xm and Xt rely on Xlib (the −lX11 link flag specifies Xlib).

Now let's take a look at this program step by step, noting elements of the underlying Xt model and where Motif differs
from it.

3.3.1 Header Files

An application that uses the Motif toolkit must include a header file for each widget that it uses. For example, hello.c
uses a PushButton widget, so we include <Xm/PushB.h>. The appropriate header file for each Motif widget class is
included on the reference page for the widget in Volume Six B, Motif Reference Manual.

If you simply browse through /usr/include/Xm (or wherever you have installed your Motif distribution) trying to find
the appropriate header file, you will find that each widget class actually has two header files. The one with the name
ending in a "P" (e.g. PushBP.h) is the widget's private header file and should never be included directly by an
application. Private header files are used only by the code that implements a widget class and its subclasses.

Xt uses public and private header files to hide the details of widget implementation from applications. This technique
provides object−oriented encapsulation and data hiding in the C language, which is not designed to support
object−oriented programming. (See Volume Four, X Toolkit Intrinsics Programming Manual, for additional
information on the object−oriented design of widgets.)

For some types of objects, you may see another pair of header files, each containing a capital "G" at the end of their
names (for example, PushBG.h and PushBGP.h). These files are for the gadget version of the object. For the most
part, when we talk about widgets, we include gadgets. Later chapters make it clear when to use gadgets and when to
use widgets.

A quick examination of the #include directives in each of the Motif widget or gadget header files reveals that each
of them includes <Xm/Xm.h>, the general header file for the Motif library. <Xm/Xm.h> in turn includes the following
files:

 #include <X11/Intrinsic.h>

3 The Motif Programming Model 3.3.1 Header Files

26

 #include <X11/Shell.h>
 #include <X11/Xatom.h>
 #include <Xm/XmStrDefs.h>
 #include <Xm/VirtKeys.h>

Therefore, none of these files ever need to be included by your application, as long as you include <Xm/Xm.h>. Since
<Xm/Xm.h> is included by each widget header file, you do not need to include it directly either. If you look closely at
the code, you'll see that just about every necessary header file is included the moment you include your widget header
file. This method of using header files contrasts with the way other Xt−based toolkits, like the Athena toolkit or the
OPEN LOOK Intrinsics Toolkit (OLIT), use header files.

Release 1.2 of the Motif toolkit provides a new header file, <Xm/XmAll.h>, that simply includes all of the public
header files. The <Xm/ExtObject.h>, <Xm/Traversal.h>, <Xm/VaSimple.h>, and <Xm/VendorE.h> header files are
present in Motif 1.1, but they are obsolete in Motif 1.2.

We recommend that you not duplicate the inclusion of header files. One reason is that if you include only the header
files that you need, whoever has to maintain your code can see which widgets you are dealing with in your source
files. Another reason is that duplicating header files is generally bad practice, as you run the risk of redeclaring
macros, functions, and variables.

However, it isn't always easy to prevent multiple inclusions. For example, <Xm/Xm.h> is included by each widget
header file that you include. All of the Motif, Xt and X header files are protected from multiple inclusion using a
technique called ifdef−wrapping. We recommend that you use this method in your own header files as well. The
ifdef−wrapper for <X11/Intrinsic.h> is written as follows:

 #ifndef _XtIntrinsic_h
 #define _XtIntrinsic_h

 /* Include whatever is necessary for the file... */
 #endif /* _XtIntrinsic_h */

The wrapper defines _XtIntrinsic_h when a file is first included. If the file is ever included again during the
course of compiling the same source (.c) file, the #ifdef prevents anything from being redeclared or redefined.

Of course, the wrapper prevents multiple inclusion only within a single source file; the next source file that gets
compiled goes through the same test. If the same files are included, the same macros, data types, and functions are
declared again for the benefit of the new file. For this reason, you should never write functions in a header file, since it
would be equivalent to having the same function exist in every source file. Function declarations, however, are
acceptable and expected.

In addition to the widget header files, you will most likely need other include files specific to your application, such as
<stdio.h> or <ctype.h>.

The order of inclusion is generally not important unless certain types or declarations required by one file are declared
in another. In this case, you should include the files in the necessary order. Otherwise, application−specific header
files are usually included first, followed by UI−specific header files (with Xt header files, if any, preceding Motif
header files), followed by system−specific header files.

3.3.2 Setting the Language Procedure

For Release 5 of the X Window System, the X Toolkit was modified to better support internationalization. An
internationalized application retrieves the user's language (called a locale) from the environment or a resource file and

3 The Motif Programming Model3.3.2 Setting the Language Procedure

27

operates in that language without changes to the binary. An internationalized application must display all of its text in
the user's language and accept textual input in that same language. It must also display dates, times, and numbers in
the appropriate format for the language environment.

X internationalization is based on the ANSI−C internationalization model. This approach is based on the concept of
localization, whereby an application uses a library that reads a customizing database at startup time. This database
contains information about the characteristics of every locale that is supported by the system. When an application
establishes its locale by calling setlocale(), the library customizes the behavior of various routines based on the
locale. See the Third Edition of Volume One, Xlib Programming Manual, for a complete description of the concepts
and implementation of X internationalization.

Xt support of internationalization is trivial in most applications; the only additional code needed is a call to
XtSetLanguageProc() before the toolkit is initialized. XtSetLanguageProc() sets the language procedure
that is used to set the locale of an application. The first argument to the routine specifies an application context, the
second argument specifies the language procedure, and the third parameter specifies additional data that is passed to
the language procedure when it is called. Since the language procedure is responsible for setting the locale, an Xt
a p p l i c a t i o n d o e s n o t c a l l s e t l o c a l e () d i r e c t l y . T h e l a n g u a g e p r o c e d u r e i s c a l l e d b y
XtDisplayInitialize().

If the second argument to XtSetLanguageProc() is NULL, the routine registers a default language procedure.
Here's the call that we used in the source code to set the default language procedure:

 XtSetLanguageProc (NULL, NULL, NULL);

The default language procedure sets the locale according to the LANG environment variable, verifies that the current
locale is supported, and returns the value of the current locale. For more information about establishing the locale in
an Xt application, see Volume Four, X Toolkit Intrinsics Programming Manual.

Most of the support for internationalization in Motif 1.2 is provided by Xlib and Xt. Xlib provides support for
internationalized text output, interclient communication, and localization of the resource database, while Xt handles
establishing the locale. The Motif Text and TextField widgets have been modified to support internationalized text
input and output; see Section #stexti18n for more information. The Motif routines that work with compound strings
and font lists have also been updated in Motif 1.2. See Chapter 19, Compound Strings, for details on the new API for
XmString and XmFontList values.

3.3.3 Initializing the Toolkit

Before an application creates any widgets, it must initialize the toolkit. There are many ways to perform this task,
most of which also perform a number of related tasks, such as opening a connection to the X server and loading the
resource database. Here's a list of some of the things that are almost always done:

Open the application's connection to the X server.•
Parse the command line for the standard X Toolkit command−line options plus any custom command−line
options that have been defined for the application.

•

Create the resource database using the app−defaults file, if any, as well as any user, host, and locale−specific
resource files.

•

Create the application's top−level window, a Shell class widget that handles interaction with the window
manager and acts as the parent of all of the other widgets in the application.

•

There are several functions available to perform toolkit initialization. The one we use most often is
XtVaAppInitialize(), since it performs all of the functions listed above in one convenient call. Here's the call

3 The Motif Programming Model 3.3.3 Initializing the Toolkit

28

we used in the source code

 Widget toplevel;
 XtAppContext app;

 toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,
 &argc, argv, NULL, NULL);

The widget returned by XtVaAppInitialize() is a shell widget. The shell widget acts as the top−level window
of the application and handles the application's interaction with the window manager. All of the other widgets created
by the application are created as descendents of the shell, which we'll talk about more later in this chapter. The first
argument to XtVaAppInitialize() is the address of an application context, which is a structure that Xt uses to
manage some internal data associated with an application. Most applications do not manipulate the application context
directly. Most often, an application receives an opaque pointer to an application context in the toolkit initialization call
and merely passes that pointer to a few other toolkit functions that require it as an argument. The fact that the
application context is a public variable, rather than hidden in the toolkit internals, is a forward−looking feature of Xt,
designed to support multiple threads of control.

The simpler X11R3 initialization call, XtInitialize(), is still supported by later versions of the toolkit. Its use is
discouraged because the new initialization calls provide a greater degree of upward compatibility with future
Xt−based applications. The simpler function creates an application context that is stored internally by Xt. The second
argument to XtVaAppInitialize() is a string that defines the class name of the application. A class name is
used in resource files to specify resource values that apply to all instances of an application, a widget, or a resource.
(See Volume Three, X Window System User's Guide, Motif Edition, and Volume Four, X Toolkit Intrinsics
Programming Manual, for details.) For many applications, the application class is rarely used and the class name is
important only because it is also used as the name of the application's app−defaults file.

Whenever a widget is created in Xt, its resources must have certain initial (or default) values. You can either
hard−code the values, allow them to default to widget−defined values, or specify the default values in the
app−defaults file. These default values are used unless the user has provided his own default settings in another
resource file.

By convention, the class name is the same as the name of the application itself, except that the first letter is
capitalized. For example, a program named draw would have Some applications follow the convention that if the
application's name begins with an "X", the X is silent and so the second letter is capitalized as well. For example, the
c l a s s n a m e o f x t e r m i s X T e r m . a c l a s s n a m e o f D r a w a n d a n a p p − d e f a u l t s f i l e n a m e o f
/usr/lib/X11/app−defaults/Draw. Note, however, that there is no requirement that an app−defaults file with this name
actually be installed.

Exceptions can be made to this convention, as long as you document it. For example, all the example programs in this
book have the class name of Demos, which allows us to set certain common defaults in a single file. This technique
can be useful whenever you have a large collection of independent programs that are part of the same suite of
applications. The third and fourth arguments specify an array of objects that describe the command−line arguments for
your program, if any, and the number of arguments in the array. These arguments are unused in most of the examples
in this book and are specified as NULL and 0, respectively. The program xshowbitmap.c in the Appendix, Additional
Example Programs, provides an example of using command−line arguments. See Volume Four, X Toolkit Intrinsics
Programming Manual, for a more complete discussion of application−specific command−line arguments.

The fifth and sixth arguments contain the value (argv) and count (argc) of any actual command−line arguments.
The initialization call actually removes and acts on any arguments it recognizes, such as the standard X Toolkit
command−line options and any options that you have defined in the third argument. After this call, argv should
contain only the application name and any expected arguments such as filenames. You may want to check the

3 The Motif Programming Model 3.3.3 Initializing the Toolkit

29

argument count at this point and issue an error message if any spurious arguments are found. The seventh argument is
the start of a NULL−terminated list of fallback resources for the top−level shell widget created by the initialization
call. Fallback resources provide a kind of "belt and suspenders" protection against the possibility that an app−defaults
file is not installed. They are ignored if the app−defaults file or any other explicit resource settings are found. When
no fallback resources are specified, the seventh argument should be NULL.

It is generally a good idea to provide fallbacks for resources that are essential to the operation of your application. An
example of how fallback resources can be used by an application is shown in the following code fragment:

 String fallbacks[] = {
 "Demos*background: grey",
 "Demos*XmList.fontList: −*−courier−medium−r−*−−12−*",
 "Demos*XmText.fontList: −*−courier−medium−r−*−−12−*",
 /* list the rest of the app−defaults resources here ... */
 NULL
 };
 ...
 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, fallbacks, NULL);
 ...

Fallback resources protect your application against a missing app−defaults file, but they do not guard against one that
is modified incorrectly or otherwise corrupted, since they are not used if the app−defaults file is present in any form.
A better fallback mechanism would provide protection against these types of problems. Fortunately, X11 Release 5
introduces a new function, XrmCombineDatabases(), that allows you to provide real fallbacks in case the user or
the system administrator misconfigures the app−defaults file. The eighth parameter is the start of a NULL−terminated
list of resource/value pairs that are applied to the top−level widget returned by XtVaAppInitialize(). If there
are no resource settings, which is often the case for this function, you can pass NULL as the eighth parameter. If you
do pass any parameters, it should be done just as we describe for XtVaCreateWidget() later in this chapter. All
of the functions whose names begin with XtVa support the same type of varargs−style (variadic) argument lists.

The X11 Release 4 implementation of XtVaAppInitialize() and other varargs functions may not work entirely
as expected for some non−ANSI−C compilers due to a bug in the way that Xt declares variadic functions. This
problem only arises for some compilers that do not understand function prototypes. The problem is rare since it is
compiler−dependent and it only happens on older compilers. It is not a compiler error but an Xt error, since functions
are not supposed to mix fixed parameter declarations with variadic declarations. XtVaAppInitialize() mixes
these declarations; the first seven parameters are fixed while the eighth through nth arguments are variadic. ANSI−C
allows, and even requires, this type of specification.

If you experience problems such as segmentation faults or bus errors as a result of using XtVaAppInitialize(),
you can try passing an extra NULL parameter after the final NULL. Another option is to use XtAppInitialize(),
which is identical to XtVa-AppInitialize(), but does not contain a variable argument list of resource/values
pairs. Instead, it uses the old−style args and num_args method of specifying resource values, which we describe
later in this chapter.

3.3.4 Creating Widgets

There is a convenience function for creating every class of widget and gadget supported by the Motif toolkit. For
example, to create a PushButton widget, you can use the function XmCreatePushButton(). To create the
corresponding gadget, you can use XmCreatePushButtonGadget(). In addition, there are convenience
functions for creating compound objects. A compound object is a collection of widgets that is treated like a single
object. For example, a ScrolledList object is really a List widget inside a ScrolledWindow widget.

3 The Motif Programming Model 3.3.4 Creating Widgets

30

XmCreateScrolledList() creates the compound object consisting of both widgets.

The convenience functions for creating all of the different types of widgets are described in Volume Six B, Motif
Reference Manual . In the examples in th is book, however , we - typ ica l ly use the Xt funct ions
XtVaCreateWidget() and XtVaCreateManagedWidget() for creating simple widgets. These functions
allow you to decide whether to create a widget as managed or unmanaged, while the Motif convenience functions
always create unmanaged widgets. The Xt routines also allow you to set resources for a widget using the varargs
interface, which is more convenient than the args and num_args method used by the Motif creation routines.

X nests windows using a parent−child model. A display screen is defined as the root window; every application has a
top−level window that is a child of the root window. A top−level window in turn has subwindows, which overlay it
but cannot extend beyond its boundaries. If a window extends beyond the boundaries of its parent, it is clipped.

Because every widget has its own X window, widgets follow a similar parent−child model. Whenever a widget is
c rea ted , i t i s c rea ted as the ch i ld o f another w idget . The she l l w idget re tu rned by the ca l l to
XtVaAppInitialize() is the top−level widget of an application. It is usually overlaid with a special class of
widget called a manager widget, which implements rules for controlling the size and placement of widget children.
For example, the Motif RowColumn widget is a manager that allows widgets to be laid out in regular rows and
columns, while the Form widget is a manager that allows widgets to be placed at precise positions relative to one
another. A manager widget can contain other manager widgets as well as primitive widgets, which are used to
implement actual user−interface controls. Managers also support gadgets. A gadget is a lighter−weight object that is
identical to its corresponding widget in appearance, but does not have its own window.

In the source code the button was created as a child of the top−level shell window. This simple application contains
only one visible widget, so it does not use a manager. Actually, shells are extremely simple managers. A shell can
only have one child; the shell makes itself exactly the same size as the child so the shell remains invisible behind the
child. Here's the call we used to create the button:

 button = XtVaCreateManagedWidget ("pushme",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 NULL);

The first argument is a string that is used as the name of the widget in the resource database. If a user wants to specify
the color of the button label for the application, he can use the following specification in a resource file:

 hello.pushme.foreground: blue

The name is different from the variable name that is used to refer to the widget in application code. The following
resource specification is not correct:

 hello.button.foreground: blue

The resource name does not need to be identical to the variable name given to the widget inside the program, though
to minimize confusion, many programmers make the two names the same. If you want users to be able to configure
widget resources, be sure to include the names of the widgets in your documentation.

The second argument is the class of the widget to be created. This name is defined in the public header file for the
widget. The widget reference pages in Volume Six B list the widget class name for each Motif and Xt widget class.

The third argument is the parent of the widget, which must be a manager widget that has already been created. In this
example, the parent of the PushButton widget is toplevel, the shell widget returned by the call to

3 The Motif Programming Model 3.3.4 Creating Widgets

31

XtVaAppInitialize(). The remainder of the argument list is a variable−length list of resource settings. We'll
talk about the format of these resource settings in the next section.

3.3.5 Setting and Getting Widget Resources

A widget class defines resources of its own and it inherits resources from its superclasses. The names of the resources
provided by each widget class (new and inherited) are documented in the widget reference pages in Volume Six B,
Motif Reference Manual. The most useful resources are described in detail in the individual chapters on each of the
Motif widget classes.

When resources are set in a program, each resource name begins with the prefix XmN. These names are mnemonic
constants that correspond to actual C strings that have the same name without the XmN prefix. For example, the actual
resource name associated with XmNlabelString is labelString. The XmN identifies the resource as being
Motif−related. Motif also uses the XmC prefix to identify resource class symbols. Xt uses the prefix XtN for any
resources defined by its base widget classes. Motif also provides corresponding XmN names for most of these
resources. Some toolkits use the XtN prefix, even though its resource are not common to all Xt toolkits. The resource
naming convention has not been used long enough for all vendors to conform to it. If you need access to an Xt−based
resource that does not have a corresponding XmN constant, you need to include the file <X11/StringDefs.h>. When you
are specifying resources in a resource file or when you are using the −xrm option to specify resources on the
command line, omit the XmN prefix.

The main purpose of the constant definitions for resource names is to allow the C preprocessor to catch spelling
errors. If you use the string width rather than the constant XmNwidth, the program still works. However, if you type
widdth, the compiler happily compiles the application, but your program won't work and you'll have a difficult time
trying to figure out why. Because resource names are strings, there is no way for Xt or Motif to report an error when
an unknown resource name is encountered. On the other hand, if you use XmN-widdth, then the compiler complains
that the token is an undefined variable. The Motif convenience functions, as well as the Xt functions
XtCreateWidget() and XtCreateManagedWidget(), require you to declare resource settings in a static
array. You pass this array to the function, along with the number of items in the array. By contrast, the varargs−style
functions introduced in X11R4 allow you to specify resources directly in a creation call, as a NULL−terminated list of
resource/value pairs.

In the call to XtVaCreateManagedWidget() in hello.c, the only resource set was the string displayed as the
PushButton's label. Other resources could have been set in the same call, as shown in the following code:

 button = XtVaCreateManagedWidget ("pushme",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 XmNwidth, 200,
 XmNheight, 50,
 NULL);

These settings specify that the widget is 200 pixels wide by 50 pixels high, rather than its default size, which would be
just big enough to display its label.

When you set resources in the creation call for the widget, those resources can no longer be configured by the user.
Such resources are said to be hard−coded. For example, since we've set the width and height of the PushButton in the
call to XtVaCreateManagedWidget(), a user resource specification of the following form is ignored:

 *pushme.width: 250
 *pushme.height: 100

3 The Motif Programming Model3.3.5 Setting and Getting Widget Resources

32

It is recommended that you hard−code only those resource values that are absolutely required by your program. Most
widgets have reasonable default values for their resources. If you need to modify the default values, specify the
necessary resource values in an app−defaults file, instead of in the application code.

Every resource has a data type that is specified by the widget class defining the resource. When a resource is specified
in a resource file, Xt automatically converts the resource value from a string to the appropriate type. However, when
you set a resource in your program, you must specify the value as the appropriate type. For example, the Motif
PushButton widget expects its label to be a compound string (see Chapter 19, Compound Strings), so we create a
compound string, use it to specify the resource value, and free it when we were done.

Rather than specifying a value of the appropriate type, you can invoke Xt's resource converters in a varargs list using
the keyword XtVaTypedArg, followed by four additional parameters: the resource name, the type of value you are
providing, the value itself, and the size of the value in bytes. Xt figures out the type of value that is needed and
performs the necessary conversion. For example, to specify the background color of the button directly in our program
without calling an Xlib routine to allocate a colormap entry, we can use the following code:

 button = XtVaCreateManagedWidget ("pushme",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,

XtVaTypedArg, XmNbackground, XmRString, "red", strlen ("red") + 1, NULL);

The data type in this construct is specified using a special symbol called a representation type, rather than the C type.
An XmR prefix identifies the symbol as a representation type. See Volume Four, X Toolkit Intrinsics Programming
Manual, for more information on resource type conversion and the possible values for representation types. These
symbols are defined in the same way as the XmN symbols that are used for resource names. After a widget has been
created, you can set resources for it using XtVaSetValues(). The values set by this function override any values
that are set either in the widget creation call or in a resource file. The syntax for using XtVaSetValues() is:

 XtVaSetValues (widget_id,
resource−value−list,

 NULL);

The widget_id is the value returned from a widget creation call, and resource−value−list is a
NULL−terminated list of resource/value pairs.

Some Motif widget classes also provide convenience routines for setting certain resources. For example,
XmToggleButtonSetState() sets the XmNset resource of a ToggleButton to either True or False. The
available convenience functions are described in Volume Six B, Motif Reference Manual, and in the chapters on each
widget class in this book. A convenience function has direct access to the internal fields in a widget's data structures,
so it might have slightly better performance than XtVaSetValues(). Functionally, however, the two methods are
interchangeable. The routine used to get widget resource values is XtVaGetValues(). The syntax of this routine is
exactly the same as XtVaSetValues(), except that the value part of the resource/value pair is the address of a
variable that stores the resource value. For example, the following code gets the label string and the width for a Label
widget:

 extern Widget label;
 XmString str;
 Dimension width;
 ...
 XtVaGetValues (label,
 XmNlabelString, &str,
 XmNwidth, &width,

3 The Motif Programming Model3.3.5 Setting and Getting Widget Resources

33

 NULL);

Notice that the value for XmNlabelString is an XmString, which is a Motif compound string. Almost all of the
Motif widget resources that specify textual information use compound strings rather than regular character strings.
The XmNvalue and XmNvalueWcs resources for Text and TextField widgets are the only exceptions to this policy.
When you are retrieving a string resource from a widget, make sure that you pass the address of a compound string,
not a character string, as in the following incorrect example:

 extern Widget label;
 char *buf;
 Dimension width;
 ...
 XtVaGetValues (label,
 XmNlabelString, &buf, /* do not do this */
 XmNwidth, &width,
 NULL);

If you try to get a compound string resource value with a character string variable, the program still works, but the
value of the character string is meaningless. The correct way to handle a compound string resource is to retrieve it
with an XmString variable and then get the character string from the compound string using
XmStringGetLtoR(). See Chapter 19, Compound Strings, for more information.

There are some things to be careful about when you are getting resource values from a widget. First, always pass the
address of the variable that is being used to store the retrieved value. A value represented by a pointer is not copied
into the address space. Instead, the routine sets the value for the address of the pointer to the position of the internal
variable that contains the desired value. If you pass an array, rather than a pointer to the array, the routine cannot move
its address. If you pass the address of a pointer, XtVaGetValues() is able to reset the pointer to the correct
internal value. The Motif toolkit sometimes sets the given address to allocated data, which must be freed when it is no
longer needed. This situation occurs when a compound string resource is retrieved from a widget and when the text
value of a Text widget is retrieved. These cases are discussed in Chapter 14, Text Widgets, and Chapter 19,
Compound Strings. For values that are not represented by pointers, such as integers, the value is simply copied. For
example, the width value is an int, so the resource value is copied into the variable.

You should also be careful about changing the value of a variable returned by XtVaGetValues(). In the case of a
variable that is not a pointer, the value can be changed because the variable contains a copy of the value and does not
point to internal data for the widget. However, if the variable is a pointer to a string or a data structure, it does point to
internal data for the widget. If you dereference the pointer and change the resulting value, you are changing the
internal contents of the widget. This technique should not be used to change the value of a resource. To modify a
resource value, you should use XtVaSetValues() with a defined resource name, as this routine ensures that the
widget redraws and manages itself appropriately.

Motif also provides convenience routines for getting certain resource values from particular widget classes. Most of
these functions correspond to the convenience routines for setting resource values. Many of the functions allocate
memory for the value that is returned. For example, XmTextGetString() allocates space for and returns a pointer
to the text in a Text widget. When a convenience function for retrieving a resource value is available, we generally
recommend using it. While we use the variadic functions almost exclusively in this book, you should know how to use
the old−style argument lists needed by the Motif widget creation functions. The Motif convenience functions, and
some Xt functions like XtCreateWidget() and XtCreateManagedWidget(), require you to set resources
using a separately−declared array of objects of type Arg. You pass this array to the appropriate function along with
the number of items in the array.

For example, the following code fragment creates a PushButton widget like the one in hello.c, but it uses a Motif

3 The Motif Programming Model3.3.5 Setting and Getting Widget Resources

34

convenience routine:

 Arg args[5];
 int n = 0;

 XtSetArg (args[n], XmNlabelString, label); n++;
 button = XmCreatePushButton (toplevel, "pushme", args, n);
 XtManageChild (button);

For all of the Motif convenience routines, the first argument is the parent of the widget being created, the second
argument is the widget's name, and the third and fourth arguments are the array of resource specifications and the
number of resources in the array. Since the class of the widget being created is reflected in the name of the
convenience function, it does not need to be specified as an argument to the routine. For example,
XmCreateLabel() creates a Label widget, while XmCreatePushButton() creates a PushButton widget.

Xt also provides some generic widget creation functions that use the old−style argument lists for specifying widget
resources. The following code fragment shows the use of XtCreateWidget():

 Arg args[5];
 int n = 0;

 XtSetArg (args[n], XmNlabelString, label); n++;
 button = XtCreateWidget ("pushme",
 xmPushButtonWidgetClass, toplevel, args, n);
 XtManageChild (button);

With this routine, the name of the widget is the first parameter, the widget class is the second parameter, and the
parent is the third parameter. The fourth and fifth parameters specify the resources, as in the Motif convenience
routines.

The argument−list style of setting resources is quite clumsy and error−prone, since it requires you to declare an array
(either locally or statically) and to make sure that it has enough elements. It is a common programming mistake to
forget to increase the size of the array when new resource/value pairs are added; this error usually results in a
segmentation fault.

In spite of the disadvantages of this method of setting resources, there are still cases where the convenience routines
may be useful. One such case is when the routine creates several widgets and arranges them in a predefined way
consistent with the Motif Style Guide. The argument−list style functions also can be useful when you have different
resources that should be set depending on run−time constraints. For example, the following code fragment creates a
widget whose foreground color is set only if the application knows it is using a color display:

 extern Widget parent;
 Arg args[5];
 Pixel red;
 int n = 0;

 XtSetArg (args[n], XmNlabelString, label); n++;
 if (using_color) {
 XtSetArg (args[n], XmNforeground, red); n++;
 }
 ...
 widget = XtCreateManagedWidget ("name", xmLabelWidgetClass, parent,
 args, n);

3 The Motif Programming Model3.3.5 Setting and Getting Widget Resources

35

The old−style routines also allow you to pass the exact same set of resources to more than one widget. Since the
contents are unchanged, you can reuse the array for as long as it is still available. Be careful of scoping problems, such
as using a local variable outside of the function where it is declared. The following code fragment creates a number of
widgets that all have the same hard−coded resources:

 static char *labels[] = { "A Label", "Another Label", "Yet a third" };
 XmString label;
 Widget widget, rc;
 Arg args[3];
 int i, n = 0;

 /* Create an unmanaged RowColumn widget parent */
 rc = XtCreateWidget ("rc", xmRowColumnWidgetClass, parent, NULL, 0);

 /* Create RowColumn's children −− all 50x50 with different labels */
 XtSetArg (args[n], XmNwidth, 50); n++;
 XtSetArg (args[n], XmNheight, 50); n++;
 for (i = 0; i < XtNumber (labels); i++) {
 xm_label = XmStringCreateLocalized (labels[i]);
 XtSetArg (args[n], XmNlabelString, xm_label);
 widget = XtCreateManagedWidget ("label", xmLabelWidgetClass, rc,
 args, n + 1);
 XmStringFree (xm_label);
 }

 /* Now that all the children are created, manage RowColumn */
 XtManageChild (rc);

Each Label widget is created with the same width and height resource settings, while each XmNlabelString
resource is distinct. All other resource settings for the widgets can be set in a resource file.

To set resources in a resource file, you need to specify the names of the widgets, which in this case are all set to label.
It is perfectly legal to give the same name to more than one widget. As a result, a resource specification in a resource
file that uses a particular name affects all of the widgets with that name, provided that the widget tree matches the
resource specification. For example, you could set the foreground color of all of the Labels using the following
resource specification:

 *rc.label.foreground: red

Other widgets in the application that have the widget name label, but are not children of the widget named rc, are not
affected by this specification. Obviously, whether you really want to use the same name for a number of widgets is
dependent on your application. This technique makes it easier to maintain a consistent interface, but it also limits the
extent to which the application can be customized.

We could have used the elements of the labels array as widget names, but in this example, these strings contain
spaces, which are "illegal" widget names. If you want to allow the user to specify resources on a per−widget basis,
you cannot use spaces or other non−alphanumeric characters, except the hyphen (−) and the underscore (_), in widget
names. If per−widget resource specification is not a concern, you can use any widget name you like, including NULL
or the null string ("").

Even if a widget has an illegal name, the user can still specify resources for it using the widget class, as in the
following example:

 *rc.XmLabel.foreground: red

3 The Motif Programming Model3.3.5 Setting and Getting Widget Resources

36

This resource setting causes each Label widget to have a foreground color of red, regardless of the name of the widget
(and provided that the resource value is not hard−coded for the widget). See Volume Four, X Toolkit Intrinsics
Programming Manual, for a discussion of appropriate widget names and further details on resource specification
syntax.

3.3.6 Event Handling for Widgets

Once we have created and configured the widgets for an application, they must be hooked up to application functions
via callback resources. Before we can talk about callback resources and callback functions, we need to discuss events
and event handling. In one sense, the essence of X programming is the handling of asynchronous events. Events can
occur in any order, in any window, as the user moves the pointer, switches between the mouse and the keyboard,
moves and resizes windows, and invokes functions available through user interface components. X handles events by
dispatching them to the appropriate application and to the separate windows that make up each application.

Xlib provides many low−level functions for handling events. In special cases, which are described later in this book,
you may need to dip down to this level to handle events. However, Xt simplifies event handling by having widgets
handle many events for you, without any application interaction. For example, widgets know how to redraw
themselves, so they respond automatically to WExpose events, which are generated when one window is covered up
by another and then uncovered. These "widget survival skills" are handled by functions called methods deep in the
widget internals. Some typical methods redraw the widget, respond to changes in resource settings that result from
calls to XtVaSetValues(), and free any allocated storage when the widget is destroyed.

The functionality of a widget also encompasses its behavior in response to user events. This type of functionality is
typically handled by action routines. Each widget defines a table of events, called a translation table, to which it
responds. The translation table maps each event, or sequence of events, to one or more actions.

Consider the PushButton in hello.c. Run the program and note how the widget highlights its border as the pointer
moves into it, displays in reverse−video when you click on it, and switches back when you release the button. Watch
how the highlighting disappears when you move the pointer out of the widget. Also, notice how pressing the
SPACEBAR while the pointer is in the widget has the same effect as clicking on it. These behaviors are the kinds of
things that are captured in the widget's translation table:

 <Btn1Down>: Arm()
 <Btn1Down>,<Btn1Up>: Activate() Disarm()
 <Btn1Down>(2+): MultiArm()
 <Btn1Up>(2+): MultiActivate()
 <Btn1Up>: Activate() Disarm()
 <Btn2Down>: ProcessDrag()
 <Key>osfSelect: ArmAndActivate()
 <Key>osfActivate: PrimitiveParentActivate()
 <Key>osfCancel: PrimitiveParentCancel()
 <Key>osfHelp: Help()
 ~Shift ~Meta ~Alt <Key>Return: PrimitiveParentActivate()
 ~Shift ~Meta ~Alt <Key>space: ArmAndActivate()
 <EnterWindow>: Enter()
 <LeaveWindow>: Leave()

The translation table contains a list of event translations on the left side, with a set of action functions on the right
side. When an event specified on the left occurs, the action routine on the right is invoked. As we just described,
moving the pointer in and out of the PushButton causes some visual feedback. The EnterWindow and
LeaveWindow events generated by the pointer motion cause the Enter() and Leave() actions to be invoked.

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

37

As another example, when the first mouse button is pressed down inside the PushButton, the Arm() action routine is
called. This routine contains the code that displays the button as if it were "pushed in," as opposed to "pushed out."
When the mouse button is released, both the Activate() and Disarm() routines are invoked in that order. Here
is where your application actually steps in. If you have provided an appropriate callback function, the Activate()
action calls it. The Disarm() routine causes the button to be redrawn so that it appears "pushed out" again. In the Xt
syntax, events are specified using symbols that are tied fairly closely to pure X hardware events, such as
ButtonPress or EnterWindow. For example, <Btn1Down> specifies a button press for the first mouse button.
KeyPress events are indicated by symbols called keysyms, which are hardware−independent symbols that represent
individual -keystrokes. Different keyboards may produce different hardware keycodes for the same key; the X server
uses keysyms as a portable representation, based on the common labels found on the tops of keys.

Motif provides a further level of indirection in the form of virtual keysyms, which describe key events in a completely
device−independent manner. For example, osfActivate indicates that the user invoked an action that Motif
considers to be an activating action. An activating action typically corresponds to the RETURN key being pressed or
the left mouse button being clicked. Similarly, osfHelp corresponds to a user request for help, such as the HELP or
F1 key being pressed.

Virtual keysyms are supposed to be provided by the vendor of the user's hardware, based on the keys on the keyboard,
but some X vendors also provide keysym databases to support multiple keyboards. As of X11 Releaase 5, the X
Consortium provides a virtual keysym database in the file /usr/lib/X11/XKeysymDB. This file contains a number of
predefined key bindings that OSF has registered with the X Consortium to support actions in the Motif toolkit.

Virtual keysyms can be invoked by physical events, but the Motif toolkit goes one step further and defines them in the
form of virtual bindings. Here's the translation table for the PushButton widget expressed using virtual bindings:

 BSelect Press: Arm()
 BSelect Click: Activate() Disarm()
 BSelect Release: Activate() Disarm()
 BSelect Press 2+: MultiArm()
 BSelect Release 2+: MultiActivate() Disarm()
 BTranserPress: ProcessDrag()
 KSelect: ArmAndActivate()
 KHelp: Help()

Examples of virtual bindings are BSelect, which corresponds to the first mouse button, and KHelp, which is
usually the HELP key on the keyboard. The rule of thumb is that any virtual binding beginning with a "B"
corresponds to a mouse button event, while any binding beginning with a "K" corresponds to a keyboard event. More
than one event can be bound to a single virtual keysym. For example, the Motif Style Guide permits F1 to be a help
key, so that key is also virtually bound to KHelp.

Virtual bindings can be specified by a system administrator, a user, or an application. One common use of virtual
bindings is to reconfigure the operation of the BACKSPACE and DELETE keys. On some keyboards, the
BACKSPACE key is in a particularly difficult location for frequent access. Users of this type of keyboard may prefer
to use the DELETE key for backspacing. These people may find the default operation of the Motif Text widget
annoying, since it does not allow them to backspace using their "normal" backspace key.

Since Xt allows applications and users to override, augment, or replace translation tables, many people familiar with
Xt try to specify a new translation for the DELETE key to make it act like a backspace. The translation invokes the
action routine that backspaces in a Text widget. However, this approach is limited, in that it only works for a single
Text widget. The Text widget has the following translation:

 <Key>osfBackSpace: delete−previous−char()

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

38

The virtual keysym osfBackSpace is bound to delete−previous−char(), which is the backspace action.
Rather than changing the translation table to specify that <Key>Delete should invoke this action, a user can
redefine the virtual binding of the osfBackSpace keysym. A user can configure his own bindings by specifying the
new virtual keysym bindings in a .motifbind file in his home directory. The following virtual binding specifies that the
DELETE key is mapped to osfBackSpace:

 osfBackSpace : <Key>Delete

As a result of this specification, the DELETE key performs the backspace action in the Text widget, as well as any
other widgets in the Motif toolkit that use the osfBackSpace keysym. The advantage of using virtual bindings is
that the interface remains consistent and nothing in the toolkit or the application needs to change.

Virtual keysym bindings can also be set in a resource file, using the XmNdefaultVirtualBindings resource.
The resource can be specified for all applications or on a per−application basis. To map the DELETE key to
osfBackSpace, use the following specification:

 *defaultVirtualBindings: osfBackSpace : <Key>Delete 0 other bindings

The only difference between the syntax for the resource specification and for the .motifbind file is that the resource
specification must have a newline character (\n) between each entry. The complete syntax of Motif virtual bindings is
explained in Volume Six B, Motif Reference Manual.

Motif 1.2 includes a new client, xmbind, that configures the virtual key bindings for Motif applications. This action is
performed by the Motif Window Manager (mwm) or any application that uses the Motif toolkit at startup, so you
really only need to use xmbind if you want to reconfigure the bindings without restarting mwm or a Motif application.
Motif 1.2 also provides a new function, XmTranslateKey(), to translate a keycode into a virtual keysym. This
function allows applications that override the default XtKeyProc to handle Motif's virtual key bindings. Translations
and actions allow a widget class to define associations between events and widget functions. A complex widget, such
as the Motif Text widget, is almost an application in itself, since its actions provide a complete set of editing
functions. But beyond a certain point, a widget is helpless unless control is passed from the widget to the application.
A widget that expects to call application functions defines one or more callback resources, which are the hooks on
which an app l ica t ion can hang i ts func t ions . For example , the PushBut ton widget def ines the
XmNactivateCallback, XmNarmCallback, and XmN-disarmCallback callback resources.

It is no accident that the callback resource names bear a resemblance to the names of widget action routines. In
addition to highlighting the widget, the action routines call any application functions associated with the callbacks of
the same name. There is no reason why a callback has to be called by an action; a widget could install a low−level
event handler to perform the same task. However, this convention is followed by most widgets.

the figure illustrates the event−handling path that results in an application callback being invoked. The widget's
translation table registers the widget's interest in a particular type of event. When Xt receives an event that happened
in the widget's window, it tests the event against the translation table. If there is no match, the event is thrown away. If
there is a match, the event is passed to the widget and an action routine is invoked. The action routine may perform a
function internal to the widget, such as changing the widget's appearance by highlighting it. Depending on the design
of the widget, the action routine may then pass control to an application callback function. If the action is associated
with a callback resource, it checks to see if a callback function has been registered for that resource, and if so, it
dispatches the callback.

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

39

Event−handling using action routines and callbacks

There are several ways to connect an application function to a callback resource. The most common is to call
XtAddCallback(), as demonstrated in hello.c:

 void button_pushed();
 ...
 XtAddCallback(button, XmNactivateCallback, button_pushed, NULL);

The first argument specifies the widget for which the callback is installed. The second parameter is the name of the
callback resource, while the third is a pointer to the callback function. The fourth argument is referred to as client
data. If this parameter is specified, its value is passed to the callback function when it is called. Here, the client data is
NULL.

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

40

The client data can be a value of any type that has the same size as an XtPointer. An XtPointer is usually the
same as a char pointer; it is typically represented by a 32−bit value. You can pass pointers to variables, data
structures, and arrays as client data. You cannot pass actual data structures; the result of passing a data structure is
undefined. You can pass variables of type int or char, but understand that you are passing the data by value, not by
reference. If you want to pass a variable so that the callback routine can change its value, you must pass the address of
the variable. In this case, you need to make sure that the variable is global, rather than local, since a local variable
loses its scope outside of the routine that calls XtAddCallback().

The callback function itself is passed the widget, the client data, if any, and a third argument that is referred to as call
data. The signature of a callback function can be expressed in one of two ways: using an ANSI−compliant function
prototype or using the older style conventions of K&R C. The ANSI−style function declaration is as follows:

 button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

In the strictest sense, declaring the types of the parameters to the function is the proper way to handle function
declarations and signatures. While this convention is good style and recommended for upwards compatibility, most
compilers today still understand the older style conventions:

 button_pushed (widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;

Since this style is the least common denominator, your best bet is to use the second, more portable method. In the
course of the book, we make a habit of declaring client_data and call_data as XtPointers, even though
we usually know the actual types of the parameters being passed to the function. Before referencing these parameters,
we cast the values to the appropriate types.

The third parameter in a Motif−based callback function is always a structure that contains information specific to the
widget class that invoked the callback function, as well as information about the event that triggered the callback.
There is a generic callback structure, XmAnyCallbackStruct, as well as variations for specific widget classes and
callback resources. The XmAnyCallbackStruct is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 } XmAnyCallbackStruct;

The callback structure for the PushButton widget class, XmPushButtonCallbackStruct, is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 int click_count;
 } XmPushButtonCallbackStruct;

We discuss the callback structures for a widget class in this book (see the chapter corresponding to the specific widget
type). The callback structures are also documented in the widget reference pages in Volume Six B, Motif Reference
Manual.

All of the callback structures contain at least the two fields found in XmAnyCallbackStruct. The reason field
always contains a symbolic value that indicates why the callback was called. These values are defined in
/usr/include/Xm/Xm.h and are usually self−explanatory. For example, when a callback function associated with a

3 The Motif Programming Model 3.3.6 Event Handling for Widgets

41

PushButton's XmN-activateCallback resource is called, the reason is XmCR_ACTIVATE. The different
values for reason make it easier to write callback routines that are called by more than one type of widget. By
testing the reason field, you can determine the appropriate action to take in the callback. Because the widget is
always passed to the callback function, you can also find out what widget caused the function to be invoked.

The event field contains the actual event that triggered the callback, which can provide a great deal of useful
information. See Volume Four, X Toolkit Intrinsics Programming Manual, for information on how to interpret the
contents of an event. That subject is not discussed at length in this book, although our examples frequently use the
events in callback structures to control processing.

3.3.7 The Event Loop

Once all of the widgets for an application have been created and managed and all of the callbacks have been
registered, it's time to start the application running. The final two function calls in hello.c perform this task:

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);

Realizing a widget creates the actual window for the widget. When you call XtRealizeWidget() on the top−level
widget of an application (the one returned by the call to XtVaAppInitialize()), Xt recursively traverses the
hierarchy of widgets in the application and creates a window for each widget. Before this point, the widgets existed
only as data structures on the client side of the X connection. After the call, the widgets are fully instantiated, with
windows, fonts, and other X server data in place. The first Expose event is also generated, which causes the
application to be displayed.

The call to XtAppMainLoop() turns control of the application over to the X Toolkit Intrinsics. Xt handles the
dispatching of events to the appropriate widgets, which in turn pass them to the application via callbacks. The
application code is idle until summoned to life by user−generated events.

3.4 Summary

We've looked at the skeleton of a simple Motif program. Every application follows more or less the same plan:

Initialize the X Toolkit Intrinsics.•
Create and manage widgets.•
Configure widgets by setting their resources.•
Register callbacks to application functions.•
Realize the widgets and turn control over to Xt's event loop.•

How this skeleton is fleshed out in a real application is the subject of the next chapter. Chapter 3, Overview of the
Motif Toolkit, addresses the role of manager widgets in laying out a user interface, the use of dialog boxes and other
popups for transient interactions with the user, the many specialized types of widgets available in Motif, and other
essential concepts. Once you have read that chapter, you should have a sufficient foundation for reading the remaining
chapters in any order.

3 The Motif Programming Model 3.3.7 The Event Loop

42

4 Overview of the Motif Toolkit

This chapter helps the reader understand the components of a real Motif application. It discusses how to handle the
geometry management of primitive widgets within a manager widget, when to put components into the main window,
when to use dialog boxes and menus, and how to relate to the window manager. After reading this chapter, the
programmer should have a solid overview of Motif application programming, and she should be able to read the
remaining chapters in any order.

In Chapter 2, The Motif Programming Model, we talked about the basic structure of an Xt−based program. We
described how to initialize the toolkit, create and configure widgets, link them to the application, and turn control over
to Xt's main loop. In this chapter, we discuss the widgets in the Motif toolkit and how you can put them together to
create an effective user interface for an application.

If you already have a basic understanding of the Motif widgets, you can jump ahead to any of the later chapters in the
book that focus on individual widget classes. This chapter provides some insight into the design of the widgets and a
general overview of the Motif style and methodology, which you may find useful when developing your own
applications.

This chapter also describes all of the new features in Release 1.2 of Motif. If you are familiar with Motif 1.1 but need
to get up to speed with Motif 1.2, you should read Section #smotif12. In this section, we summarize the new features
and tell you where to find more information about them. We also describe all the changes made to the example
programs in this book to make them up−to−date with Motif 1.2. While Motif 1.2 is backwards−compatible with Motif
1.1, there are a number of functions and resources in Motif 1.2 that replace obsolete functions and resources in Motif
1.1.

4.1 The Motif Style

You don't build a house just by nailing together a bunch of boards; you have to design it from the ground up before
you really get started. Even with a prefabricated house, where many of the components have already been built, you
need a master plan for putting the pieces together. Similarly, when you are designing a graphical user interface for an
application, you have to think about the tasks your application is going to perform. You must envision the interface
and then learn to use your tools effectively in order to create what you've envisioned.

The Motif toolkit provides basic components that you can assemble into a graphical user interface. However, without
design schematics, the process of assembling the user−interface elements may become ad hoc or inconsistent. Here is
where the Motif Style Guide comes in. It presents a set of guidelines for how widgets should be assembled and
grouped, as well as how they should function and interact with the user.

All Motif programmers should be intimately familiar with the Style Guide. While we make recommendations for
Motif style from time to time, this book is not a replacement for the Style Guide. There are many aspects of Motif
style that are not covered in detail here, as they involve the content of an application rather than just the mechanics.
On the other hand, the Motif Style Guide is not an instructional manual for the Motif toolkit. In fact, many of the
objects described in the Style Guide are not even widgets, but higher−level, more complex objects that are composed
of many widgets.

For example, the Style Guide describes an object called a MenuBar, which spans the top of the main window of an
application. The MenuBar contains menu titles that, when clicked on, display PulldownMenus. The Motif toolkit does
not implement MenuBars or PulldownMenus as distinct widget classes, nor does the Style Guide make any

43

recommendations about how menu objects should be implemented. What the Style Guide does talk about (albeit
somewhat loosely) is the actions that can be taken by an item on a menu: it can invoke an application function, pop up
a dialog box containing yet more options and commands, or display a cascading menu (also known as a pullright
menu).

The Style Guide also makes recommendations about the menus that an application should provide. For example, most
applications should have a File menu that provides items such as an Exit button to exit the application and a Save
button to save file. It also specifies details of presentation, such as that you should provide an ellipsis (...) as part of
the label for a menu item that requires the user to provide more information before action is taken.

How the Motif toolkit goes about supporting, and in some cases enforcing, the guidelines of the Motif Style Guide
brings up some interesting points, particularly in relation to some of the underlying principles of the X Toolkit
Intrinsics. In Xt, a widget is envisioned as a self−contained object that is designed to serve a specific, clearly−defined
function. Many of the Motif widgets, such as Labels, PushButtons, ScrollBars, and other common interface objects,
are implemented as separate widgets.

In other cases, however, Motif steps outside of the Xt model by creating compound objects out of several widgets and
then expecting you to treat them as if they were a single object. For example, Motif provides the ScrolledText and
ScrolledList objects, which combine a Text or List widget with a ScrolledWindow widget, which in turn automatically
manages horizontal and vertical ScrollBars.

In another case, the Motif toolkit provides a complex, general−purpose widget that can be configured to appear in
several guises. There is no MenuBar widget class and no PulldownMenu widget class. Instead, the RowColumn
widget, which also serves as a general−purpose manager widget, has resources that allow it to be configured as either
a MenuBar or a PulldownMenu pane. Those familiar with Xt may find this widget design to be a breach of Xt's design
goals, though.

In order to allow the programmer to think of ScrolledText objects, MenuBars, and PulldownMenus as distinct objects,
the Motif toolkit provides convenience creation functions. These routines make it appear as though you are creating
d i s c r e t e o b j e c t s w h e n , i n f a c t , y o u a r e n o t . F o r e x a m p l e , X m C r e a t e M e n u B a r () a n d
XmCreateSimplePulldownMenu() automatically create and configure a RowColumn widget as a MenuBar and
a PulldownMenu, respectively. There are also convenience routines for creating various types of predefined dialog
boxes, which are actually composed of widgets from four or five separate widget classes.

Convenience routines emphasize the functional side of user−interface objects while hiding their implementation.
However, since Motif is a truly object−oriented system, it behooves you to understand what you're really dealing with.
For example, if you want to use resource classes to configure all MenuBars to be one color and all PulldownMenus
another, you cannot do so because they are not actually distinct widget classes. The class name for both objects is
XmRowColumn.

In the remainder of this chapter, we look at Motif user−interface objects from the perspective of both the functional
object illusion and the actual widget implementation. In the body of the book, we use the Motif convenience routines
for creating most compound objects, but stick to the underlying Xt routines for creating simple widgets or gadgets.
With the compound objects, we show you how to pierce the veil of Motif's convenience functions and work directly
with the underlying widgets when necessary. the figure shows the entire class hierarchy of the Motif widget set.

4 Overview of the Motif Toolkit 4 Overview of the Motif Toolkit

44

The class hierarchy of the Motif widget set

We begin by taking a closer look at the Motif user−interface components with which the user typically interacts. Then
we examine how the manager widget classes are used to arrange the more visible application controls. And finally, we
explore the use of all of these objects to create functional windows and dialogs that make up a real application.

4.2 Application Controls

In many ways, application controls are the heart of a graphical user interface. Rather than controlling an application by
typing commands, the user is presented with choices using graphical elements. The user no longer needs to remember
the syntax of commands, since her choices are presented to her as she goes along. As we've discussed, some of Motif's
application controls (such as menus) are compound objects assembled by convenience routines. Others are simple,

4 Overview of the Motif Toolkit 4.2 Application Controls

45

single−purpose widgets that you can create directly.

The widgets in this latter group are collectively referred to as primitive widgets −− not because they are simple, but
because they are designed to work alone. The contrast is not between primitive and sophisticated widgets, but between
primitive and manager widgets. Some of the primitive Motif widget classes have corresponding gadget classes. The
following sections describe the different types of primitive application controls available in the Motif toolkit.

The compound objects in the Motif toolkit are composed of primitive widgets and gadgets. Because an understanding
of these objects relies on an understanding of the primitive widgets, as well as the Motif manager and shell widgets,
we are going to postpone discussing compound objects until later in the chapter.

4.2.1 The Primitive Widget Class

The Primitive widget class is a superclass for all of the Motif primitive widgets. This widget class is a metaclass; it
serves only to define certain common behavior used by all its sub-classes, so one never instantiates a widget directly
from the Primitive class. This statement is somewhat like saying that hammer is a class of object, but that you never
really have a -generic hammer. You can only have a specific type of hammer, like a claw hammer, a ball peen
hammer, or a sledge hammer. A claw hammer has the prongs in the back behind the hammer−head that allow you to
pull nails out of a wall; a ball peen hammer has a round corner where the claw would be otherwise be; a sledge
hammer is the large, heavyweight hammer used to drive thick nails through concrete or to destroy things.

Just as all hammers have particular characteristics that qualify them as hammers, the Primitive widget class provides
its subclasses with common resources such as window border -attributes, highlighting, and help with keyboard
traversal (so the user can avoid the mouse and navigate through the controls in a window using the keyboard). The
actual widget classes that you use are subclassed from the Primitive class, as shown in the figure.

The Primitive widget class hierarchy

The Primitive class itself inherits even more basic widget behavior from the Xt−defined Core widget class, which
establishes the basic nature of "widgetness." The Core class provides widgets with the capability to have windows and
background colors, as well as translations, actions, and so on. You could actually use a simple Core widget as an
instance and define your own translations and action routines, although this technique is not used frequently.
Complete details are provided in Volume Four, X Toolkit Intrinsics Programming Manual. The Label widget
provides a visual label either as text or as an image in the form of a Pixmap. The text of a Label is an XmString, or
compound string, not a character string (char*). A compound string can be oriented from left−to−right or

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

46

right−to−left and it can also contain multiple lines and multiple fonts. Chapter 19, Compound Strings, discusses
functions that manipulate compound strings, as well as functions that convert between character strings and compound
strings.

The Label widget does not provide any callback routines, since it does not have any specified behavior. Using Xt, you
could install event translations and action routines to make a Label respond to user input, but the Label widget is not
intended to be used this way. It is only meant to be used to display labels or other visual aids. In Motif 1.2, instances
of Label and all of its subclasses are automatically registered as drag sources for drag and drop operations by the
toolkit.

Label widgets are described in detail in Chapter 11, Labels and Buttons. the figure displays a single Label widget
with multiple lines and multiple fonts.

A Label with multiple lines and fonts

The PushButton widget supports the same visual display capabilities as a Label, since it is subclassed from Label. In
addition, the PushButton provides resources for the programmer to install callback routines that are called when the
user arms, activates, or disarms the button. The PushButton also displays a shadow border that changes in appearance
to indicate when the pointer is in the widget and when it has been activated.

When a PushButton is not selected, it appears to project out towards the user. When the pointer moves into the button,
its border is highlighted. When the user actually selects the button by pressing the first mouse button on it, the button
appears to be pushed in and is said to be armed. The user activates a PushButton by releasing the mouse button while
the button is armed. PushButton widgets are also covered in detail in Chapter 11, Labels and Buttons. the figure
shows some examples of PushButtons.

PushButton widgets

The DrawnButton widget is similar to a PushButton in its functionality and its three−dimensional appearance.
However, the DrawnButton is used when an application wants to draw the text or image directly into the widget's
window, rather than have the widget handle the drawing. If the image is dynamic and changes frequently during the
course of an application, you may want to handle the drawing yourself. The DrawnButton provides additional callback
resources that are called when the button is resized or exposed and additional ways to draw an outlined border. The
DrawnButton widget is discussed in Chapter 11, Labels and Buttons. the figure shows some DrawnButtons.

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

47

DrawnButtons widgets

The ToggleButton widget displays text or graphics like a Label widget, but it has an additional indicator graphic (a
square or diamond shape) to the left of the label. The indicator shows the state of the ToggleButton: on or off. When
the ToggleButton is on, the indicator is colored and appears to be pushed in. When the button is off, the indicator
appears to project outward. The ToggleButton provides a additional resource for specifying a callback routine that is
called when the user changes the state of the ToggleButton.

One common use of ToggleButtons is to set the application state. In this case, the callback routines typically set
simple Boolean variables internal to the application. ToggleButtons can also be arranged in two different kinds of
groups. In one configuration, known as a RadioBox, only one button in the group of buttons can be chosen at a time.
The other configuration, a CheckBox, allows the user to select any number of buttons. When ToggleButtons are
grouped as a RadioBox, the indicators are diamond−shaped; otherwise, they are square−shaped. ToggleButton
widgets are described in detail in Chapter 11. the figure shows the two different ways that ToggleButtons can be
grouped.

ToggleButtons in a CheckBox and a RadioBox

The CascadeButton widget is a special kind of button that is used to pop up menus. A CascadeButton can only be used
as a child of a RowColumn widget, such as: in a MenuBar as the title of a PulldownMenu, in a PulldownMenu pane as
an item that has a cascading menu associated with it, or as the button in an OptionMenu. The menu that is posted by a
CascadeButton is not a part of the widget itself; the menu is associated with the button through a resource. A
CascadeButton merely provides the label and other visual aids that support the appearance that a menu can pop up
from the object. Even though the CascadeButton widget class is subclassed from Label and could inherit all of its
functionality, Motif imposes restrictions on the labels that a CascadeButton can display. CascadeButton labels cannot

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

48

contain multiple lines or multiple fonts. Because CascadeButtons are typically used in menus, they do not display
border shadows like other buttons. They do have similar highlighting behavior when selected, however.
CascadeButton widgets are explained in both Chapter 4, The Main Window, and Chapter 15, Menus. Despite the
similarity in its name, the ArrowButton widget is not subclassed from Label like the other button widgets. Like the
remaining widgets described in this section, it is subclassed directly from the Primitive widget class. The
ArrowButton widget contains an image of an arrow pointing in one of four directions: up, down, left, or right. When
the user selects this widget, the ArrowButton provides visual feedback giving the illusion that the button is pressed in
and invokes a callback routine that an application can use to perform application−specific positioning.

In most respects, an ArrowButton can be considered identical to a PushButton, as it is easy enough to provide an
arrow pixmap for a PushButton. Since directional arrows are a common user−interface element, the ArrowButton is
provided as a separate widget class for -simplicity. ArrowButton widgets are covered in detail in Chapter 11, Labels
and Buttons. the figure shows the four variations of the ArrowButton widget.

ArrowButton widgets

The List widget provides a mechanism for the programmer to make a list of text items available to the user for
selection. The user selects items from a List using the mouse or the keyboard. The List widget allows you to specify
whether the user can select a single item or multiple items. While List is a Primitive widget, it is typically created as
part of a ScrolledList compound object using a Motif convenience function. The advantage of the ScrolledList object
is that it provides a ScrollBar when the List grows bigger than the size of its visible area. In Motif 1.2, instances of the
List widget are automatically registered as drag sources for drag and drop operations by the toolkit. We explore the
List widget in detail in Chapter 12, The List Widget. the figure shows a List widget in context with other interface
-elements.

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

49

A List widget in an application

The ScrollBar widget is one of the more intuitive user−interface elements in the Motif toolkit. ScrollBars are almost
always used as children of a ScrolledWindow widget. When the contents of a window are larger than the viewing
area, a ScrollBar allows the user to scroll the window to view the entire contents.

ScrollBars can be oriented vertically or horizontally. The ScrollBar also provides a number of callback resources that
allow you to control its operation. ScrollBar widgets are discussed in Chapter 9, ScrolledWindows and ScrollBars.
the figure shows both vertical and horizontal ScrollBars.

Horizontal and vertical ScrollBar widgets in a ScrolledWindow

The Separator widget is used as a visual aid to separate adjacent items in a display. A Separator appears as a line
between the objects it is separating; it can be oriented vertically or horizontally. Separators can be used in menus to
separate menu items, in dialog boxes to -separate discrete areas of control, and at various points in an interface for
purely aesthetic -reasons. The Text widget is a complete text editor contained in a widget. The Text widget provides

4 Overview of the Motif Toolkit 4.2.1 The Primitive Widget Class

50

resources to configure the editing style of the widget, as well as callback resources that allow text verification. The
widget can be configured as a multiline text entry area or as a single−line data entry field. The TextField widget class
is available as a somewhat lighter−weight text entry area. The TextField widget is limited to a single−line, but in all
other respects there is little difference between the two classes. In Motif 1.2, instances of the Text and TextField
widgets are automatically registered as drag sources and drop sites for drag and drop operations by the toolkit.

The Text and TextField widgets can be used in many different ways to support the text entry requirements of an
application. The two widgets are described in detail in Chapter 14, Text Widgets. the figure shows an application that
uses various forms of the Text widget.

Text and TextField widgets

4.2.2 Gadgets

Another set of application controls is provided in the form of gadgets. There are gadgets that are equivalent to many of
the primitive widgets: LabelGadgets, SeparatorGadgets, PushButtonGadgets, CascadeButtonGadgets,
ToggleButtonGadgets, and ArrowButtonGadgets. The appearance and behavior of the gadgets is mostly identical to
that of the corresponding widgets. A further understanding of how gadgets work depends on an understanding of the
manager widgets that support them, so we are going to return to this topic later in the chapter.

4 Overview of the Motif Toolkit 4.2.2 Gadgets

51

The Gadget class hierarchy

The Gadget class is a superclass for all of the Motif gadgets. Like Primitive, this class is a metaclass that is never
instantiated. However, gadgets are not widgets. The Gadget class is subclassed from the RectObj class, not from the
Core widget class. the figure shows the class hierarchy for gadgets.

4.3 Application Layout

While the controls are the most obvious part of a graphical user interface, these elements alone do not make an
effective interface. A random arrangement of buttons or a collection of nested menus can make an application as
obscure and as difficult to use as one with a command−line interface. The arrangement of the controls in an
application makes all the difference.

To help you lay out your application, Motif provides you with a set of manager widgets. You can think of manager
widgets as boxes in which you can put things. These boxes, however, can grow or shrink as necessary to provide the
best fit possible for the items that they contain. You can place boxes inside of other boxes, whether or not they contain
other items. By using different size boxes, you can organize things in many different ways.

Manager widgets are so named because they manage the size and position of other widgets. The relationship between
a manager widget and the widgets that it manages is commonly referred to as the parent−child model. The manager
acts as the parent, and the other widgets are its children.

Unlike primitive widgets, such as PushButtons, ScrollBars, and Labels, whose usefulness depends on their visual
appearance and interaction with the user, manager widgets provide no visual feedback and have few callback routines
that react to user input. Manager widgets have two basic purposes: they manage the sizes and positions of their
children, and they provide support for gadgets. Like other widgets, manager widgets have windows, they can receive
events, and they can be manipulated directly with Motif and Xt functions. You can draw directly into the window of a
manager widget, look for events in the widget, and specify resources for it.

There are many manager widget classes, each of which is tuned for a particular kind of widget layout. A manager
widget can manage other manager widgets, as well as primitive widgets like Labels and PushButtons. In fact, the
layout of an application is typically a kind of tree structure. As discussed in Chapter 2, The Motif Programming
Model, the top of the tree is always a shell widget like that returned by XtVaAppInitialize(). Shell widgets are
composite widgets that can only have a single managed child. This child is usually a -general−purpose manager
widget. This manager contains other managers and the primitive widgets that compose the user interface for a window
in an application.

4 Overview of the Motif Toolkit 4.3 Application Layout

52

the figure shows the all of the different manager and primitive widgets that make up the displayed dialog box. The
parent−child relationships between the widgets in this dialog box are illustrated in the tree structure shown in the
figure. Although the dialog box is composed of many different components, it appears to the user as a single,
conceptually focused user−interface object.

4 Overview of the Motif Toolkit 4.3 Application Layout

53

The layout of a dialog box

The widget hierarchy of a dialog box

4.3.1 The Manager Widget Class

As with the Primitive widget class and the Gadget class, the Manager widget class is a superclass for all of the Motif
manager widgets. The Manager class is another metaclass. You never create an instance of a Manager widget; you
create an instance of one of its subclasses. The actual widget classes that you use are shown in the figure.

Manager is subclassed from the Xt Constraint class, which in turn is subclassed from the Xt Composite class. The
Composite widget class defines the basic characteristics of widgets that are able to manage the size and position of
other widgets. Xt uses the general term -composite widget for any widget with this capability. The Constraint class
adds the capability to provide additional resources for the widgets that are being managed. These resources constrain
the position of the widgets. They can be thought of as hints about how the widgets should be laid out.

4 Overview of the Motif Toolkit 4.3.1 The Manager Widget Class

54

The Manager widget class hierarchy

Motif provides a number of general−purpose manager widgets that allow the programmer to manage the size and
arrangement of an arbitrary number of children. In some ways, the art of Motif programming is the design of effective
widget layouts, using these particular manager widgets. Motif also provides some narrowly−focused manager widgets,
such as certain dialog classes, that can almost be treated as if they were single user−interface components. These
widgets create and manage their children with minimal help from an application. We sometimes refer to these widgets
as compound objects, since they include both a manager widget and one or more children. This section describes the
different manager widgets briefly; a more detailed description of the widgets is given in Chapter 8, Manager Widgets.

The DrawingArea Class

The DrawingArea widget provides an area in which an application can display graphics. Callback routines can
be used to notify the application when expose and resize events take place and when there is input from the
keyboard or mouse. The DrawingArea can also be used to manage the geometry layout for child widgets, but
its functionality in this area is quite limited.

The ScrolledWindow Class

The ScrolledWindow widget provides a viewport for data such as text or graphics. If the data that is being
viewed is larger than the ScrolledWindow, ScrollBars allow the user to view the entire contents of the window
interactively.

The MainWindow Class

The MainWindow widget acts as the standard layout manager for the main window of an application. It is
specifically tuned to pay attention to the existence of a MenuBar, a command area, a message area, a work
region, and ScrollBars, although all of these areas are optional.

The RowColumn Class

The RowColumn widget is perhaps the most widely used and robust of all of the manager widgets. As its
name suggests, the widget lays out its children in rows and columns. The RowColumn widget is used by
many different parts of the toolkit to implement compound objects like MenuBars, PulldownMenus,
CheckBoxes, and RadioBoxes.

The Frame Class

The Frame widget provides a three−dimensional border for a widget that does not normally have a border. It
can also be used to enhance the style of the border for a widget that already has a border. In Motif 1.2, a

4 Overview of the Motif Toolkit 4.3.1 The Manager Widget Class

55

Frame widget can have two children: a work area and a title. In Motif 1.1, Frame can only have a work area
child. In either case, the work area child can be a manager widget that contains many other children.

The PanedWindow Class

The PanedWindow widget manages its children in a vertically tiled format. Its width always matches the
widest widget in its list of managed children; the widget forces all of its children to stretch to the same width
as that widget. Each pane in a PanedWindow contains a child widget; every pane has an associated sash (or
grip) that allows the user to change the height of the pane interactively. Resizing a pane with the grip can
cause the widgets in other panes to change size.

The BulletinBoard Class

The BulletinBoard widget does not impose much of a layout policy for the widgets that it manages. The
widget acts like a real bulletin board, in that an application pins a widget on the bulletin board, and it sticks
where it is placed. The BulletinBoard does impose margins and has a resource that controls whether or not its
children can overlap. However, when a BulletinBoard is resized, it does not move or resize its children based
on its new size. The BulletinBoard is useful mostly for the layout of dialog boxes and other windows that are
rarely resized. The predefined Motif dialog widget classes use BulletinBoard widgets for this reason.

The Form Class

The Form widget provides a great deal of control over the placement and sizing of the widgets it manages. A
Form can lay out its children in a grid−like manner or it can allow its children to link themselves to one
another in a chain−like fashion. Form uses constraint resources to specify how children are resized and
positioned relative to each other and the Form as a whole.

The Scale Class

The Scale widget is a slider object that is somewhat similar in appearance and functionality to a ScrollBar. A
Scale is typically used to provide feedback to the user about the value of a state variable in an application.
This widget class is not intended to be used as a general manager. The Scale creates and manages its own
widgets, which are needed to construct the Scale object. The only children that you can add to a Scale widget
are Label widgets that represent tick marks.

4.3.2 Geometry Management

The process by which a manager widget controls the layout of its children is known as geometry management. A child
widget is always placed within the boundaries of its parent. A child cannot move or resize itself without requesting
permission from its parent, which can deny the request. The manager, acting as the parent, can even force the child
into an arbitrary size or position. However, like any good parent, a manager widget should be fair at all times and not
deny reasonable requests made by its children. As you might expect, geometry management can be quite complex in
an application with several levels of managers.

As an example, consider adding a new item to a List widget. In order to display the new item, the List widget must
grow vertically, so it requests a new size from its manager parent. If that parent can accomodate the larger size, or it
has another mechanism for satisfying the request, such as ScrollBars, it can approve the request. However, if the
manager itself must grow to honor the List widget's request, it has to negotiate with its own parent. This chain reaction
may go all the way up to the shell widget, in which case the shell must communicate with the window manager about
the new size. If the window manager and the shell agree to the new size, the acknowledgement filters back down
through the widget tree to the List widget, which can now grow to its requested size. If any of the composite widgets
in the hierarchy refuse to resize, the List widget's request is either denied or only partially fulfilled.

Most of the time, this type of interaction completes successfully, as there are rarely disputes among children about
resizing negotiations or positional boundaries. Children usually go where their managers put them and make very few

4 Overview of the Motif Toolkit 4.3.2 Geometry Management

56

requests of their own. One exception is a RowColumn widget that is acting as a MenuBar, since it must be situated at
the top of the window, and it must span the window horizontally. ScrollBars are another possible exception, since they
are typically positioned at the edges of ScrolledWindow widgets.

So, how do children request geometry changes from their parents? The answer to this question is rather complicated,
since the X Toolkit Intrinsics supports a large selection of functions that enable two−way communication about
geometry management. For example, a child can use XtMakeGeometryRequest() to request permission to be
made a specific size or to be placed in a particular location. A parent can use a function like XtQueryGeometry()
to give a child the opportunity to announce its preferred geometry.

Some of these functions and methods are described in Chapter 8, Manager Widgets, but a detailed treatment of
custom geometry management techniques is beyond the scope of this book. These functions are mostly used by the
internals of composite and constraint widgets. See Volume Four, X Toolkit Intrinsics Programming Manual, for a
more detailed discussion of geometry management techniques.

In the Motif toolkit, geometry management cannot work without cooperation. The easiest way for a child to cooperate
with its parents and siblings is simply to comply with whatever layout policy is supported by its manager widget
parent. A child should not try to force itself into a size or a position that is not supported by its parent. Each of the
manager widget classes described above is designed to support a specific layout style. For example, the RowColumn
widget lays out its children in rows and columns, the Form widget allows its children to specify positions relative to
other widgets within the Form, and the PanedWindow widget lets its children specify their desired maximum and
minimum heights.

Manager widgets use constraint resources to support their layout policies. Constraint resources are defined by Xt's
Constraint widget class, which is a superclass for the Manager widget class and thus all of the Motif manager widgets.
Unlike other resources, constraint resources apply to the children of a manager widget, not to the manager itself.
Examples of constraint resources include maximum and minimum heights, relative sizes and positions, specific
positional constraints, and even absolute x,y coordinates. While these examples deal exclusively with size and
position, constraint resources can be used for any arbitrary information that needs to be kept on a per−child basis.

Here's how constraint resources work. When a manager needs to size or position its children, it deals only with the
children that are managed; unmanaged children are ignored in geometry management negotiations. For each managed
child, the manager examines the child's constraint resources. Depending on the constraints that are specified, the
manager either enforces the geometry changes or negotiates with its own parent to see if it can comply with the
changes. This process uses an extra internal data structure for each child. The data structure stores the constraints that
are used by the widget's parent to aid it in geometry management.

4.3.3 Gadget Management

In addition to handling geometry management, manager widgets are responsible for their gadget children. In order to
understand how managers support gadgets, we need to define more clearly what a gadget is. Every widget has its own
X window, which simplifies many aspects of programming, since each widget can take responsibility for repainting
itself, selecting its own events, and in general being as self−sufficient as possible. Historically, however, windows
have been perceived as heavyweight objects. The concern is that system performance will be degraded if an
application uses too many windows. Since an application with a graphical user interface frequently uses hundreds of
widgets, or perhaps even thousands for a very large program, the performance issue is an important one.

Gadgets, or windowless widgets, were originally developed as a part of Motif. They were added to Xt as of X11
Release 4. Motif provides gadget versions of many common primitive widgets, such as PushButtons and Labels. Like
widgets, gadgets can be created using either Motif convenience functions or XtCreateManagedWidget(). While
the widget and gadget versions of an object are functionally very similar, there are some small but important

4 Overview of the Motif Toolkit 4.3.3 Gadget Management

57

differences.

Because a gadget does not have its own window, it is entirely dependent on its parent, a manager widget, for its basic
functionality. For example, the manager must handle redrawing the gadget on exposure, highlighting it as a result of
keyboard traversal, and notifying it of event activity. Without a window, a gadget has no control over the colors that it
uses or any other window−based attributes normally associated with a widget. For this reason, gadgets can only be
used in managers that support them. How closely a gadget emulates its widget counterpart is largely dependent on the
capabilities of the manager widget parent.

The Motif Manager class limits the colors that can be used by gadgets. A gadget uses the same background,
foreground, and shadow colors as its manager widget parent. These restrictions are not inherent in the Xt Composite
widget class or in Xt−based gadgets; they are specific to the Motif Manager and Gadget classes. Hypothetically, you
could write a Composite widget that allows its gadget children to specify their own background colors. Such a widget
would have to paint the area of its window occupied by the gadget with the specified color to give the user the
impression that the gadget is indeed a separately−colored widget.

You can use the color restrictions of the Motif managers and gadgets to provide a consistent interface for your
application. For example, by using PushButton gadgets instead of PushButton widgets, you can ensure that all of the
buttons in particular window are the same color. In this situation, the user can specify color resources for the manager
widget, but not the PushButtons themselves.

Although gadgets were originally developed to improve performance, it is no longer necessary to automatically use
them if you are looking for performance improvements in an -application with many widgets. In both X11 Release 4
and Release 5, windows have become substantially lighter−weight objects than they were when gadgets were first
developed. If anything, gadgets are worse than widgets at this point from a performance perspective because the Motif
managers take a very simplistic approach to the way they handle events for gadgets. A manager tracks all events, even
MotionNotify, whether or not its gadgets have expressed interest in the events. As a result, gadgets typically
generate a great deal of network traffic. X terminal users are especially likely to notice a network performance drop.
There are some other complications that surround the use of gadgets, which we discuss when they come up in the
course of this book.

4.3.4 Keyboard Traversal

Keyboard traversal is a mechanism that allows a user to navigate through the components in a user interface using
only the keyboard. The Motif Style Guide specifies that all applications must support keyboard traversal for all
application functionality. Support of keyboard traversal is important because not every display provides a mouse or
other pointing device. For some applications, such as data entry, using keyboard traversal is more convenient than
using a pointing device. All of the Motif widgets support keyboard−based navigation.

Keyboard traversal is based on the concept of a tab group. A tab group is a group of widgets that are related for the
purpose of keyboard traversal. For example, all the items in a menu are considered a tab group, since they are grouped
together and perform related functions.

At any given time, only one component on a display can be "listening" to the keyboard for keyboard events. The
widget that is listening to the keyboard is said to have the keyboard focus, or input focus. The widget that has the
input focus identifies itself by displaying a location cursor. The location cursor is often a highlighted border that
surrounds the widget. A user can move the input focus to another widget using the mouse or the keyboard.

The user can move the keyboard focus between items in the same tab group using the arrow keys. When the user finds
the item that she wants, she can activate it with the RETURN key or the SPACEBAR. If the user wants to move from
one tab group to another, she uses the TAB key. (In a multiline Text widget, CTRL−TAB is used because otherwise

4 Overview of the Motif Toolkit 4.3.4 Keyboard Traversal

58

there would be no way to insert a tab character.) To traverse the tab groups in reverse, the SHIFT key is used with the
TAB key. Keyboard traversal wraps from the last item to the first item, both within a tab group and between tab
groups.

Although keyboard traversal is not completely controlled by manager widgets, they do play a pivotal role in
implementing it. A manager widget is typically initialized as a tab group; its primitive widget children are members of
the tab group. The Text and List widgets are exceptions to this rule. These widgets are set up as their own tab groups,
so that keyboard traversal can be used to move among the text in a Text widget or the items in a List widget. Within a
tab group, there is no sense of a manager−within−manager structure. The widget hierarchy is flattened out so that it
appears to the user that all of the controls in a window are at the same level.

Keyboard traversal only works if each widget in an interface cooperates. If a PushButton has the keyboard focus and
the user presses the TAB key, the internals of the PushButton widget are responsible for directing the focus to the next
tab group. Manager widgets play a key role in keyboard traversal because they are responsible for the keyboard events
that take place within gadgets. If an event occurs within a PushButton gadget, its manager parent is responsible for
directing the input focus to the next tab group.

Although the whole process of keyboard traversal may seem complex and difficult, it is automated by the Motif
toolkit and does not require application intervention. However, the toolkit does provide mechanisms that allow you to
control keyboard navigation. There are resources that allow you to specify widgets that are tab groups, widgets that
are in tab groups, and widgets that do not participate in keyboard navigation. There are also functions that allow you
to specify explicitly the direction of keyboard traversal. Fortunately, such fine−tuning is rarely necessary.

4.4 Putting Together a Complete Application

Managers and primitive widgets provide the basic tools with which you can build a graphical user interface from the
ground up. Motif also provides several components that address the large−scale organization of an application. The
specialized MainWindow manager widget is intended to be used as the organizing frame for an application. Motif also
provides different types of menus and dialog boxes that can be used to organize application functionality.

Since an application is always used in conjuction with a window manager, we need to discuss the role played by the
window manager. In the course of this discussion, we also need to take a closer look at shell widgets, since they
provide the communication link between an application and the window manager.

Both pixmaps and colors play an important role in a graphical user interface. Motif provides routines that cache
pixmaps so that they can be reused throughout an application. The three−dimensional appearance of Motif
components is implemented using a variety of color resources. It is important to understand these resources so that the
3D shadows are an effective part of the user interface.

4.4.1 The Main Window

Every application is different. A word processor, paint program, or spreadsheet typically has a single main work area,
with controls taking on a peripheral role, perhaps in PulldownMenus. More sophisticated programs, on the other hand,
may have several main work areas. For example, an electronic mail program may have a work area in which the user
reviews and selects from a list of incoming messages, another where she reads and responds to messages, and yet
another where she issues commands to organize, delete, or otherwise affect groups of messages. Still other
applications, such as data−entry programs, don't really have a separate work area. The work area is really just a
collection of controls, such as CheckBoxes and text entry areas, that are filled in by the user.

4 Overview of the Motif Toolkit4.4 Putting Together a Complete Application

59

It is quite conceivable that an application could provide multiple windows for performing different tasks. For
example, an order entry program might use one window for looking up a customer record, another for checking stock
on hand, and yet another for entering the current order. Motif allows for the creation of multiple top−level application
windows, as well as transient dialog boxes that ask for additional information or confirmation before carrying out a
command.

Nonetheless, every application has at least one main window. The main window is the most visible window in an
application. It is the first window the user sees and also the place where the user interacts with most application
functionality. No matter how small or large an application may be, there needs to be a focal point that ties it all
together. As a program grows more complex, the main window may grow more abstract and perform fewer functions,
but it always exists. In a sophisticated application, the main window is transformed into a hub where the user starts,
finishes, and returns again and again as she goes from one function to the next.

The Motif Style Guide suggests a particular layout for the main window. Applications should use this layout unless
they have a compelling reason not to. The recommended layout is shown in the figure.

Recommended layout for a main window

A main window should have a menu bar across the top, with the work area immediately below it. The work area
usually contains the main interface object of the application. For example, a paint or draw application might provide a
DrawingArea widget as a canvas, an electronic mail application might provide a ScrolledList of message summaries
from which the user can make selections, and a Text editor might place a Text widget in the work area. An application
work area might require a custom widget or a non−widget−based X window instead.

The work area can have both horizontal and vertical scrollbars allowing the user to view its entire contents if they are
too large to be displayed all at once. The main window can also contain an optional command area below the work
area, where the user can enter typed commands. This area is most helpful for porting character−based applications to a
Motif GUI, but it can be useful for other applications as well. At the bottom of the main window is an optional
message area. This area should be used for status and informational messages only, not for error messages or any
other type of message that requires a response from the user.

4 Overview of the Motif Toolkit4.4 Putting Together a Complete Application

60

While it is possible to construct your own main window, the Motif toolkit provides the -special−purpose
MainWindow widget, which supports the recommended style. All of the elements in the MainWindow are optional, so
an application can use it to display just the areas that it requires. The MainWindow widget is described in detail in
Chapter 4, The Main Window.

4.4.2 Menus

Motif supports three different styles of menus. PulldownMenus that are displayed from the MenuBar in a
MainWindow are the most common type of menu. A PulldownMenu is displayed when the user selects a
CascadeButton in the MenuBar. The menu pane is displayed below the CascadeButton. the figure shows a typical
MenuBar and PulldownMenu.

A MenuBar and an associated PulldownMenu

An item in a PulldownMenu can have a cascading menu associated with it. The cascading menu is displayed to the
right of the menu item as shown in the figure, so these menus are sometimes referred to as pullright menus.

4 Overview of the Motif Toolkit 4.4.2 Menus

61

A cascading menu

MenuBars, PulldownMenus, and cascading menus are all created in a similar way. Motif provides convenience
functions that create specially configured RowColumn widgets for these menu objects. The RowColumn widget is
then populated with PushButtons, CascadeButtons, ToggleButtons, and Separators, or their gadget equivalents. In the
case of a MenuBar, all of the children must be CascadeButtons, since each button brings up a separate menu. In a
PulldownMenu pane, most of the items are PushButtons or ToggleButtons, although -Separators can be used for
clarity. If an item posts a cascading menu, it must be a CascadeButton. The additional menu is created separately,
populated with its own buttons, and -attached to the CascadeButton.

Motif also supports a construct called an OptionMenu. An OptionMenu is another specially−configured RowColumn
widget, but in this case the behavior is quite different. An OptionMenu is typically used to prompt the user to choose a
value. The RowColumn widget displays a Label and a CascadeButton that shows the current value. When the user
clicks on the button, a menu that contains the rest of the choices is popped up directly on top of the CascadeButton.
Choosing an item from the menu modifies the label of the CascadeButton so that it shows the currently−selected item.
the figure shows an OptionMenu, both before and after it is popped up.

Additionally, Motif provides PopupMenus. Unlike the other types of menus, a PopupMenu is not attached to a visible
interface element. A PopupMenu can be popped up at any arbitrary location in an application, usually as a result of the
user pressing the third mouse button. PopupMenus are meant to provide shortcuts to application functionality, so an
application can use different PopupMenus in different contexts and for different components in an interface.

An OptionMenu

In Motif 1.2, a menu can be torn off from the component that posted it. A menu is normally only displayed for as long
as it takes the user to make a selection. Once the selection is made, the menu is closed. When a menu is torn off, it
remains posted in its own window. Now the user can make as many selections from the menu as she would like
without having to repost the menu each time. For more information on tear−off menu functionality, as well as the
different types of Motif menus, see Chapter 15, Menus.

4.4.3 The Window Manager

To the user, the MainWindow looks like the top−level window of an application. In window−system talk, a top−level
window resides at the top of the window hierarchy for an application. Its parent is the root window, which is what the

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

62

user perceives as the background behind all the windows on the desktop. In the Xt−world, however, things are a little
different. Behind every visible top−level application window is a special kind of widget known as a shell widget.

Every window that can be placed independently on the screen, including top−level windows and dialog boxes, has a
shell widget as its parent. The user does not see the shell because it is obscured by all of the other widgets in the
window. A shell widget can only contain one managed child widget; the shell does not perform any geometry
management except to shrink−wrap itself around this child. The child is typically a manager widget, such as a
MainWindow, that is responsible for managing the layout of the primitive components, such as Labels, Text widgets,
ScrollBars, and PushButtons. The items that the user actually sees and interacts with are descendants of the shell
widget because they are contained within its boundaries.

Aside from managing its single child, the main job of the shell is to communicate with the window manager on behalf
of the application. Without the shell, the application has no idea what else is happening on the desktop. It is very
important for you to understand that the window manager is a separate application from your own. The visual and
physical interaction between an application and the window manager is usually so close that most users cannot tell the
difference between the two, but the distinction is important from a programming perspective.

To get an idea of the relationship between the window manager and an application, let's compare it with the way a bed
is built and how it fits into a room. A bed is made up of a frame, a mattress, and as many accessories as you want to
pile on top of it. The main window is the mattress; the sheets, pillows, blankets, and stuffed animals you throw on it
represent the user−interface controls inside the main window. The whole lot sits on top of the bed frame, which is the
shell widget. When you push a bed around the room, you're really pushing the bed's frame. The rest just happens to go
along with it. The same is true for windows on the screen. The user never moves an application window, she moves
the shell widget using the window manager frame. The application just happens to move with it.

You may have to stretch your imagination a little to visualize a bed resizing itself with its frame, but this is precisely
what happens when the user resizes an application. It is the window manager that the user interacts with during a
resizing operation. The window manager only informs the application about the new size when the user is done
resizing. The window manager tells the shell, the shell communicates the new size to its child, and the change -filters
down to the rest of the widgets in the application.

The window manager frame is composed of window decorations that the window manager places on all top−level
windows. These controls allow the user to interactively move a window, resize it, cause it to redraw itself, or even to
close it. the figure shows the standard Motif window manager (mwm) decorations. For information on how to use
mwm, see Volume Three, X Window System User's Guide, Motif Edition.

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

63

Motif window manager decorations

The window menu displays a list of window manager functions that allow the user to move, resize, and exit the
application. An application does not have access to the menu itself or the items within it; similarly, it cannot get
handles to the minimize and maximize buttons. These objects belong to the window manager and act independently
from an application.

Motif provides window manager protocols that allow menu items like these to affect an application. An application
can also interact with the window manager using many of the same types of protocols. You can specify which of the
items in the window menu you want to appear, whether or not there are resize handles on the window frame, and
whether or not you want to allow the user to iconify the window. However, the user is expecting all of the applications
on her desktop to interact consistently with the window manager. This expectation is magnified by the fact that the
user has probably set quite a few resources for the window manager. Since unexpected interference from an
application rarely makes users happy, you should leave the window manager alone. A technical discussion of the
window manager can be found in Chapter 16, Interacting With the Window Manager.

As we pointed out earlier, it is possible for an application to have more than one independent window. In addition to
the main window, there may be one or more dialog boxes, as well as popup windows, and even independent
application windows that co−exist with the main window. Each of these cases requires different handling by the
window manager, and as a result, there are several different classes of shell widgets. the figure shows the class
hierarchy of the different types of shell widgets available in the Motif toolkit. The Shell widget class is another
metaclass that specifies resources and behaviors inherited by all of its subclasses.

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

64

The Shell widget class hierarchy

In some cases, an application needs to put up a temporary window that is completely free of window manager
interaction. Menus are one such a case. When a user pops up a menu, she typically wants to make a choice
immediately, and she wants that choice to take precedence over any other window system activity. The window
manager does not need to be involved either to decorate or to position the menu, as it is entirely up to the application.

As its name suggests, the OverrideShell widget class is provided for windows that bypass the window manager.
OverrideShells are like futons; you can place them on the floor without using a bed−frame (and without being
tasteless). It doesn't make much sense to use an OverrideShell as the main window for an application, except possibly
for a screen−locking application. The purpose of this type of application is to prevent other applications from
appearing on the screen while the computer is left unattended. Because the window manager is unaware of the
OverrideShell, it does not provide window manager controls, and it does not interpret window manager accelerators
and other methods for bypassing the lock.

The OverrideShell is a generic Xt−based widget class, so the Motif toolkit provides the MenuShell to service the
special interface needs required by the Motif Style Guide. The MenuShell's translation table is set to support keyboard
traversal, its XmNfocusPolicy is set to XmPOINTER, and its XmNallowShellResize resource is set to True.
The MenuShell also makes sure that its child is a RowColumn widget. There is little more to be said about
MenuShells, but for an in−depth discussion on the various types of menus you can use in Motif, see Chapter 15,
Menus. Shell widgets must communicate with the window manager to negotiate screen real estate and a wide variety
of other properties. The information that is exchanged is defined by the X Consortium's Inter−Client Communications
Conventions Manual (ICCCM). The WMShell widget class implements ICCCM−compliant behavior as a standard
part of the X Toolkit Intrinsics, so that it is available to all vendors providing Xt−based widget sets and window
managers. This shell widget is what allows Motif applications to work correctly with virtually any ICCCM−compliant
window manager. In our analogy, a WMShell is a simple, wire bed−frame that doesn't have any special attributes, like
wheels or rollers.

The VendorShell widget class is subclassed from the WMShell class; it allows vendors, such as OSF, to define
attributes that are specific to their own window managers. In our analogy, this widget class is like having a bed frame
that has attached cabinets, shelves above the headboard, or nice wheels that glide on the carpet. The Motif
VendorShell is aware of special features of mwm. The widget does not actually add any functionality to the window
manager, but it is designed for applications that wish to interact with it. For example, all the attributes of window
manager decorations can be modified or controlled through resources specific to the VendorShell.

WMShells and VendorShells are never instantiated directly by an application, but the features they provide are
available to an application. For example, the Motif VendorShell allows an application to specify the items in the

4 Overview of the Motif Toolkit 4.4.3 The Window Manager

65

window menu and to control what happens when the user closes the window from the window menu. Chapter 16,
Interacting With the Window Manager, discusses window manager interactions in more detail. You can think of
dialog boxes as an application's secondary windows. Since dialogs are not meant to remain on the screen for very
long, they do not need all of the decorations that are typically provided by the window manager. However, dialogs are
not completely independent like menus, so they do need to be controlled by the window manager. For example, if an
application is iconified, its dialog boxes are typically iconified as well. Dialog boxes are usually implemented in Xt
using TransientShells.

The DialogShell is a Motif−defined widget class subclassed from the TransientShell and VendorShell classes. Motif
functions for creating dialog boxes tend to hide the shell widget side of the dialog. When you make a call like
XmCreateMessageDialog(), you are actually creating a MessageBox widget as a child of a DialogShell widget.
See Chapter 5, Introduction to Dialogs, for details on Motif dialogs. When you initialize the X Toolkit with a call
such as XtAppInitialize(), you are automatically returned an ApplicationShell widget to use as the top−level
widget in your application. If an application uses additional top−level windows, they are typically TopLevelShells.
The differences between these two classes are subtle and deal mostly with how resources are specified in a resource
file. In Chapter 7, Custom Dialogs, we explore some ways in which TopLevelShells can be used as primary windows
apart from the main window.

4.4.4 Dialogs

Some applications can get all their work done in one main window. Others may require multiple windows, so Motif
allows an application to have multiple top−level windows. However, even applications without this level of
complexity need to display transient windows called dialog boxes. Motif provides two main types of dialog boxes:
message dialogs and selection dialogs. Message dialogs are designed to allow an application to communicate with the
user, while selection dialogs prompt the user to enter different types of information. It is also possible to create custom
dialogs for specialized application functionality. Message dialogs simply communicate some kind of message to the
user and include buttons that allow the user to respond to the message. For example, a menu item to delete a file might
issue a dialog with the message, "Are you sure?" with PushButtons labeled Yes, No, and Cancel.

The Motif MessageBox widget that is used to create message dialogs actually comes in seven different guises. The
different styles are meant to be used for different types of messages; some of the styles also display a symbol defined
by the Motif Style Guide. Motif provides convenience routines for creating all of the different styles, so they are often
referred to as if they are distinct widget classes.

ErrorDialog

The ErrorDialog shows a "do not enter" symbol along with a message that the user has made an error. For
example, she may have pressed a PushButton at the wrong time, made an invalid selection in a List widget, or
entered an unknown filename for a Text widget.

InformationDialog

The InformationDialog displays an "i" along with an informational message. These dialogs are usually
displayed in response to a request for help.

MessageDialog

The MessageDialog does not display a symbol by default, although a symbol can be specified using the
XmNsymbolPixmap resource. These dialogs can be used to display any kind of message.

QuestionDialog

The QuestionDialog shows a question mark symbol with a question that the user needs to answer. Questions
are typically of the yes/no form, so the possible answers typically include Yes and No. A QuestionDialog

4 Overview of the Motif Toolkit 4.4.4 Dialogs

66

should not be used for a question that requires an answer in the form of text or a selection from a list of some
kind.

TemplateDialog

Motif 1.2 provides a TemplateDialog to allow an application to create a custom dialog. By default, the
TemplateDialog does not display a symbol or a message, but these items can be added to the dialog.

WarningDialog

The WarningDialog displays an exclamation mark along with a message that warns the user about a particular
situation. These dialogs are commonly used to make sure that the user wants to do something destructive, like
delete a file or exit an application without saving data.

WorkingDialog

The WorkingDialog displays an hourglass with a message indicating that the application is busy processing a
lengthy computation or anything else that requires the user to wait.
the figure shows a typical QuestionDialog in an application. For more information on message dialogs, see
Chapter 5, Introduction to Dialogs.

A QuestionDialog

Selection dialogs are meant to provide the user with a list of choices of some sort. Motif -provides different
styles of selection dialogs for different purposes. For example, a SelectionDialog presents a ScrolledList
containing an arbitrary list of choices that can be selected with the mouse. The dialog also contains a
TextField widget that can be used to type in a choice which may or may not also be on the list. the figure
shows a SelectionDialog.

The PromptDialog, as shown in the figure, is useful for prompting the user to enter some information.

4 Overview of the Motif Toolkit 4.4.4 Dialogs

67

A SelectionDialog

A PromptDialog

The FileSelectionDialog is a more complex cousin to the SelectionDialog. It is used to select a file in the
directory structure. A FileSelectionDialog is shown in the figure.

4 Overview of the Motif Toolkit 4.4.4 Dialogs

68

A FileSelectionDialog

The CommandDialog is an extension of the PromptDialog in that items input to the text entry field are stored
in a ScrolledList. The intent is for the user to provide the application with commands; the list region contains
a history of the commands that have already been typed. The user can select an item in the history list to
reissue a previous command. the figure shows an example of a CommandDialog.

A CommandDialog

For detailed information about all of the different Motif selection dialogs, see Chapter 6, Selection Dialogs.
There are many types of functionality that are not covered by the standard Motif dialog types. Fortunately, it

4 Overview of the Motif Toolkit 4.4.4 Dialogs

69

is fairly easy to create your own dialogs. If you need to create a custom dialog, there are some guidelines in
the Motif Style Guide that you should follow. At the highest level, all dialogs are broken down into two major
components: the control area (or work area) and the action area. These areas are conceptual regions that may
be represented by multiple widgets.

In a message dialog, the control area is used only to display messages, but as you can see from the selection
dialogs, this area can be used to provide a variety of control elements. For example, the SelectionDialog uses
a List widget and a TextField widget. It is also common for a custom dialog to display an array of
PushButtons or ToggleButtons. A communications program might have a setup dialog that allows the user to
set parameters such as baud rate, parity, start and stop bits, and so on, using an array of ToggleButtons. The
controls in the control area provide information that is used by the application once an action area button is
pressed.

the figure shows a custom dialog with a control area that contains many items. Chapter 7, Custom Dialogs,
discusses how to build customized dialogs, which may require the direct creation of widgets in the control
area. Motif dialogs, on the other hand, do not require you to create any of the objects in the control area. The
widgets displayed in that part of the dialog are always predefined and automatically created. One important
concept to be aware of when it comes to dialogs is modality. In general, GUI−based programs are expected to
be modeless. What this ultimately means is that the user, not the application, should be in control. The user
should be able to choose from an array of application functions at any time, rather than stepping through them
in a prearranged sequence, under the application's control.

Of course, there are limits to modelessness. Sometimes one thing has to happen before another. Often,
sequencing can be taken care of simply by nesting graphical user interface elements. For example, faced with
the main window, the user may have only a choice of menu titles; once she pulls down the file menu, she may
have a choice of opening, closing, saving, renaming, or printing the contents of a file. At some point, though,
she goes far enough down a particular path that her choices need to be constrained.

With respect to dialogs, modality allows a dialog box to require and before the user can go back to working
with the application. For example, if the user asks to load a file, she may need to specify a filename in a dialog
before she can edit the file. A modal dialog requires an answer immediately, by disallowing input to any other
part of the application until it is either satisfied or cancelled. There may be other cases, though, where dialogs
are modeless. They can be left up on the screen without an immediate response, while the user interacts with
the main application window or another dialog.

4 Overview of the Motif Toolkit 4.4.4 Dialogs

70

A custom dialog

4.4.5 Pixmaps

In this section, we are going to take a closer look at how Motif supports graphic images. The Motif Label widget and
all of its subclasses can display pixmaps as their labels. The MessageBox provides the XmNsymbolPixmap resource
for specifying the image that is displayed in a dialog.

The Motif toolkit provides a number of routines for manipulating pixmaps. XmGetPixmapByDepth() and
XmGetPixmap() both create a pixmap and cache i t , so that i t can be reused by an appl icat ion.
XmGetPixmapByDepth() is new in Motif 1.2; it provides a way to specify the depth of the pixmap that is created.
XmGetPixmap() always creates a pixmap that has the same depth as the screen on which image is created. The
caching mechanism provided by these routines is on a per−client basis; different processes cannot share pixmaps.

Whenever a new pixmap is created using one of these functions, the toolkit retains a handle to the pixmap in case
another call is made requesting the same image. If this occurs, the function returns the exact same pixmap that was
returned to the original requestor and increments an internal reference counter. In order to keep a clean house,
whenever you retrieve a pixmap using either XmGetPixmap() or XmGetPixmapByDepth(), you should call
XmDestroyPixmap() when you no longer need the image. This function decrements the reference count for the

4 Overview of the Motif Toolkit 4.4.5 Pixmaps

71

pixmap. If the reference count reaches zero, XmDestroyPixmap() actually calls XDestroyPixmap() to discard
the pixmap.

XmGetPixmapByDepth() takes the following form:

 Pixmap
 XmGetPixmapByDepth(screen, image_name, foreground,

background, depth)
 Screen *screen;
 char *image_name;
 Pixel foreground;
 Pixel background;
 int depth;

The image_name can either be a filename or the name of an image registered using XmInstallImage(), which
we are going to describe shortly. The background and foreground colors and the depth of the pixmap are specified by
the corresponding parameters.

XmGetPixmap() takes the same form as XmGetPixmapByDepth(), minus the depth parameter.
XmGetPixmap() creates a pixmap that has the same depth as the given screen, so you cannot rely on
XmGetPixmap() to create a single−plane pixmap. The terms single−bit and single−plane are interchangeable; they
imply a pixmap with only two colors: 0 and 1. While the term bitmap usually refers to a single−plane pixmap, this is
not necessarily true outside of the X social culture. In Motif 1.2, you can use XmGetPixmapByDepth() to create a
bitmap; with Motif 1.1 you have to use an Xlib routine, XCreateBitmapFromData().

Whenever XmGetPixmapByDepth() or XmGetPixmap() is cal led, i t looks in the cache for a
previously−created pixmap that matches the given name, colors, and depth. If the routine finds a match, it returns the
cached pixmap and increments the reference count for the image. Since the pixmaps are cached, two separate parts of
an application could have a handle to the same pixmap.

The image_name parameter is the key to where the routines get the data for the pixmap. As we just mentioned, this
parameter can either be a filename or a symbolic name previously registered using XmInstallImage(). Both
XmGetPixmap() and XmGetPixmapByDepth() use the following algorithm to determine what pixmap to return
or create:

Look in the pixmap cache for an image that has the same screen, image_name, foreground,
background, and depth as the specified image. If there is a match, return the pixmap.

•

If there is no match in the pixmap cache, look in the image cache for an image that matches the specified
image_name. If there is a match, use the image to create the pixmap that is returned.

•

Otherwise, interpret the image_name as a filename, read the pixmap data directly out of that file, and create
the pixmap.

•

The first step is fairly straightforward. The second step checks the image cache that is used internally by the Motif
toolkit. Motif defines a number of images that you can use in an application. lists the image names predefined by the
toolkit. tab(@), linesize(2); l | l lfCWp9 | l.
Image Name@Description _
background@Solid background tile 25_foreground@A 25% foreground, 75% background tile 50_foreground@A
50% foreground, 50% background tile 75_foreground@A 75% foreground, 25% background tile
horizontal@Horizontal lines tile vertical@Vertical lines tile slant_left@Left slanting lines tile slant_right@Right
slanting lines tile
_ Motif also installs a number of images at run−time to support dialog images and other random pixmaps. None of
these image names are publicly available. You can install your own images by predefining them and loading them into

4 Overview of the Motif Toolkit 4.4.5 Pixmaps

72

the image cache using XmInstallImage(), which takes the following form:

 Boolean
 XmInstallImage(image, image_name)
 XImage *image;
 char *image_name;

The image parameter is a pointer to an XImage data structure that has been previously created or, more commonly,
statically initialized by the application. It is possible to create an image dynamically from an existing window or
pixmap using XGetImage(), but this is not the way the function is typically used.

If you attempt to install an image using an image_name that matches one already in the cache, the function returns
False and the image is not installed. Otherwise, the function returns True. You can uninstall an image by calling
XmUninstallImage(). Once the image is uninstalled, it cannot be referenced by name anymore and a new image
may be installed with the same name. The XImage structure is not copied by XmInstallImage(), so if the image
pointer you pass has been allocated using XCreateImage() or XGetImage(), you must not free the data until
after you call XmUninstallImage().

If XmGetPixmap() or XmGetPixmapByDepth() finds a match in the image cache, it creates the pixmap based
on the image data, not on the image itself. As a result, the pixmap that is created is not affected by the image being
uninstalled by XmUninstallImage().

If the pixmap retrieval routines do not find a match in the image cache, the pixmap is loaded from a file. If
image_name starts with a slash character (/), it is taken as a full pathname. Otherwise, the routines look for the file
using a search path. On POSIX systems, the environment variable XBMLANGPATH can be set to specify a desired
directory in which to search for bitmap files. If this variable is not set, the pathname used is based on the values of the
XAPPLRESDIR, HOME, and LANG environment variables. See the reference page in Volume Six B, Motif
Reference Manual, for complete details on the search path that is used.

When XmGetPixmap() or XmGetPixmapByDepth() looks in the pixmap cache for a image name, the pathname
must match completely for the routine to return a cached image. The file xlogo64 will not match a previously−loaded
pixmap that has the name /usr/include/X11/bitmaps/xlogo64. If you do not need to worry about using different
pixmaps for different environments, we recommended that you always specify a full pathname to these routines to be
assured that you get the desired file.

4.4.6 Color

Color plays an important role in a graphical user interface. It appeals to the senses, so it can provide an aesthetic
quality, while at the same time it can be used to convey information to the user. However, for all the power of color, it
is frequently abused by applications. A color combination that appeals to some people may offend others. The safest
bet with color is to avoid hard−coding any use of color in your application and provide enough flexibility so that the
user can configure colors in a resource file or interactively using the application. Of course, many applications are
based on the use of color, so this sweeping generalization only applies to those parts of an application that are not
dependent on color.

The Motif widget set provides a number of widget resources that specify colors. All of the Motif widgets use the
XmNforeground and XmNbackground resources. However, Motif gadgets do not use these resources because
they are rendered using the foreground and background colors of their parent. Although every widget class makes
different use of the XmN-background and foreground resources, text is typically rendered in the foreground
color and everything else is shown using the background color. Some widgets provide additional color resources for
particular aspects of their appearance. For example, ToggleButtons use the XmNselectColor resource for the

4 Overview of the Motif Toolkit 4.4.6 Color

73

square/diamond selection indicator, PushButtons use XmNarmColor as their background when they are armed, and
ScrollBars use XmNtroughColor to set the color of the area behind the slider and directional arrows.

The XmNborderColor resource is another resource that can be specified for any widget, as it is defined by the Core
widget class. Since Motif widgets typically have a border width of 0, this resource is rarely used. The
XmNhighlightColor resource specifies the color of the highlighting rectangle that is displayed around the
interface component that has the keyboard focus. This resource is defined by the Gadget, Manager, and Primitive
metaclasses, so it can be specified for any Motif component.

P e r h a p s t h e m o s t t r o u b l e s o m e o f a l l t h e c o l o r r e s o u r c e s a r e X m N t o p S h a d o w C o l o r a n d
XmNbottomShadowColor. These are the colors that give Motif widgets their 3D appearance on a color display. If
set inappropriately, these colors can ruin the aesthetics of a interface. These resources are set automatically by the
toolkit based on the background color of the object, so the colors are not normally a problem. If the background color
of a PushButton is blue when it is created, the toolkit automatically calculates the XmNtopShadowColor to be a
slightly lighter shade of blue and the XmNbottomShadowColor to be a slightly darker shade.

The problems arise if you want to change the background color of a widget dynamically because the toolkit does not
automatically change the shadow colors for you. So if you change the XmNbackground of the PushButton to red,
the top and bottom shadow colors remain the different shades of blue. It is important to note that the shadow resources
are only used by widgets, not gadgets. If you dynamically change the background color of a manager widget, it
automatically recalculates the top and bottom shadow colors and redisplays its gadgets correctly. Many consider the
fact that this process is not automated for widgets to be a design flaw in the Motif toolkit.

If you need to change the background color of a widget dynamically, you can recalculate the shadow colors and set
the resources yourself. If you are using Motif 1.2, you can use the new XmChangeColor() routine, which takes the
following form:

 void
 XmChangeColor(widget, background)
 Widget widget;
 Pixel background;

This routine changes all the foreground color, shadow colors, and select color for the specified widget based on the
background color. The select color only applies to ToggleButtons (XmNselectColor) and PushButtons
(XmNarmColor).

If you are using Motif 1.1, you have to do a bit more work to change the colors for a widget. In this case, you need to
use XmGetColors(), which takes the following form:

 void
 XmGetColors(screen, colormap, bg, fg, top_shadow,

bottom_shadow, select)
 Screen *screen;
 Colormap colormap;
 Pixel bg;
 Pixel *fg;
 Pixel *top_shadow;
 Pixel *bottom_shadow;
 Pixel *select;

This routine takes a colormap and a background color and calculates and returns an appropriate foreground color, top
and bottom shadow colors, and select color. Once you have the colors, you need to specify the appropriate resources
for the widget. The following code fragment demonstrates how to set the background of a PushButton to red:

4 Overview of the Motif Toolkit 4.4.6 Color

74

 Pixel bg, top_shadow, bottom_shadow, fg, select_color;
 Colormap cmap;
 Widget pb;

 /* First, set the background color to red... */
 XtVaSetValues (pb,
 XtVaTypedArg, XmNbackground, XmRString, "red", 4,/* strlen("red")+1 */
 NULL);

 /* Once set, get it again, so we know what pixel value it got.
 * Also get the widget's colormap, since we'll be setting its new
 * colors based on the same colormap.
 */
 XtVaGetValues (pb,
 XmNbackground, &bg,
 XmNcolormap, &cmap,
 NULL);

 /* Let Motif calculate the new colors based on that one color */
 XmGetColors (XtScreen (pb), cmap, bg, &fg,
 &top_shadow, &bottom_shadow, &select_color);

 /* Set the colors accordingly. */
 XtVaSetValues (pb,
 XmNtopShadowColor, top_shadow,
 XmNbottomShadowColor, bottom_shadow,
 XmNarmColor, select_color,
 XmNborderColor, fg,
 NULL);

A basic problem behind setting and getting colors for widgets is that what you get for a given pixel value depends on
the colormap. A pixel is simply an index value into an array of color definitions (a colormap). The problem with
colormaps is that you never know what colormap is associated with any particular widget.

By calling XtVaSetValues() using the type−converting resource, XtVaTypedArg, we defer the problem to the
toolkit and its string−to−color type converter. The toolkit allocates the color out of the colormap already owned by the
toolkit and sets the background color accordingly. Then we can get the actual pixel value and the colormap using
XtVaGetValues(). We pass the colormap and the background pixel value to XmGetColors() to calculate the
rest of the colors. Once we have obtained all of the colors, we can set them using XtVaSetValues().

The Label widget and its subclasses cannot display text using more than one color. However, you can create a
multi−plane pixmap and render various strings directly into it using XDrawString(). You can use multiple colors
by changing the foreground color in the GC using XSetForeground() or XChangeGC(). Once you have the
pixmap, you can use it to set the XmNlabelPixmap resource for the widget.

The text of the entries in a List widget is rendered using the widget's XmN-foreground color. You cannot change
the color of individual items in a List widget. The XmN-background of the List affects all areas of the widget not
associated with the entries themselves. The text in a Text widget or a TextField widget is also displayed using the
XmN-foreground color; there is no way to display text using different colors in these widgets. When a List widget
or Text widget is the direct child of a ScrolledWindow, the ScrollBars automatically match the background color of
the List or Text widget.

4.5 Changes in Motif 1.2

4 Overview of the Motif Toolkit 4.5 Changes in Motif 1.2

75

Release 1.2 of the Motif toolkit introduces a number of new features, as well as many enhancements to existing
functionality. This section summarizes all of the changes in Motif 1.2 and refers you to other sections in the book for
more detailed information on specific changes. We also describe the changes that we made to the example programs
in the book to make them accurate with respect to Motif 1.2.

4.5.1 General Toolkit Changes

Many of the changes in Motif 1.2 affect the functionality of the toolkit as whole, rather than individual widget classes.
This release demonstrates performance improvements, as the code has been reorganized to improve locality and
dynamic memory usage has been reduced. The toolkit also benefits from the improved performance of the X11R5
translation manager. Motif 1.2 provides a new header file, <Xm/XmAll.h>, that includes all of the public header files
for the toolkit. The <Xm/ExtObject.h>, <Xm/Traversal.h>, <Xm/VaSimple.h>, and <Xm/VendorE.h> header files that
are present in Motif 1.1 are obsolete in Motif 1.2. The addition of internationalization capabilities is one of the major
enhancements provided by Motif 1.2. An internationalized application can run in different language environments
without any modification. Most of the support for developing internationalized applications in Motif is based on
features provided by X11R5. Xlib provides support for internationalized text output, interclient communication, and
localization of the resource database, while Xt handles establishing the locale. See Section #slangproc in Chapter 2,
The Motif Programming Model, for more information on establishing the language environment in an Xt−based
application; refer to Volume One, Xlib Programming Manual, for a description of the internationalization features in
X11R5.

The Text and TextField widgets have been modified to support internationalized text input and output; see Section
#stexti18n in Chapter 14, Text Widgets, for more information. The Motif routines that manipulate compound strings
and font lists have also been updated for Motif 1.2. See Chapter 19, Compound Strings, for details on the new API for
XmString and XmFontList values. The ability to transfer data using the drag and drop metaphor is another major
new feature in Motif 1.2. Drag and drop allows the user to select a data source, drag the data around on the display,
and drop the data on a new location. The drag and drop mechanism handles data transfer both within and between
applications. The Label widget and its subclasses, the List widget, and the Text and TextField widgets all provide
built−in drag and drop capabilities. The toolkit also provides some new objects and routines that can be used to
implement custom drag and drop functionality. In Chapter 18, Drag and Drop, we describe the Motif drag and drop
model and the objects that implement it, and we present some examples of providing custom drag and drop
functionality in an application. Motif provides a new feature in menus that allows them to be torn off and displayed in
separate windows. Tear−off menus make it easy for the user to make repeated selections from a menu. Normally,
when a menu is posted, it is only displayed until a selection is made, and then it is removed. If the menu has been torn
off, it is placed in its own window and remains available for the user to make multiple selections. The tear−off
functionality is activated by a special tear−off button in the menu. The button displays a dashed line to indicate that
the menu can be torn off, much as a coupon is torn out of a newspaper. Tear−off functionality is provided for all of the
Motif menu types; it is controlled by the XmNtearOffModel resource of the RowColumn widget. See Section
#stearoff in Chapter 15, Menus, for a more complete description of tear−off menus. The new Display and Screen
objects store per−display and per−screen resources and data. These objects essentially provide a way for the toolkit to
keep track of information about the display and the screen that it needs to access frequently. When Motif creates the
first shell on a particular display or screen, it creates a Display or Screen object automatically. An application can
retrieve the Display and Screen objects using XmGetXmDisplay() and XmGetXmScreen(), respectively. Values
for the resources defined by the Display and Screen objects can be set in a resource file or in a program using
XtVaSetValues(), and they can be retrieved using XtVaGetValues().

The Display object defines resources that an application can set to control the behavior of the application on the
display. The XmNdragInitiatorProtocolStyle and XmNdragReceiverProtocolStyle resources
specify the protocol used during a drag and drop transfer, as described in Section #sdragprot, while
XmNdefaultVirtualBindings sets the default virtual bindings for the display. For a complete description of
the Display object, see the reference page in Volume Six B, Motif Reference Manual.

4 Overview of the Motif Toolkit 4.5.1 General Toolkit Changes

76

The Screen object defines a number of resources that control the default drag icons used during drag and drop; see
S e c t i o n # s m o d i c o n f o r a d i s c u s s i o n o f t h e s e r e s o u r c e s . T h e X m N - d a r k T h r e s h o l d ,
XmNforegroundThreshold, and XmNlightThreshold resources specify values that affect the default color
calculation algorithm, as we describe shortly.

The XmNfont, XmNhorizontalFontUnit, and XmNverticalFontUnit resources specify the font units that
are used to convert geometry values when the Xm100TH_FONT_UNITS value is being used for units. These
resources make the XmSetFontUnit() and XmSetFontUnits() routines in Motif 1.1 obsolete.

The XmNmenuCursor resource controls the pointer shape that is used when a menu is posted; the resource
supercedes the XmGetMenuCursor() and XmSetMenuCursor() funct ions in Mot i f 1.1. The
XmNunpostBehavior resource indicates the behavior of a menu when the mouse button is pressed outside of the
menu. The value XmUNPOST_AND_REPLAY unposts the menu hierarchy and replays the event, while XmUNPOST
just unposts the menu. For more information on the various Screen resources, see the reference page in Volume Six
B, Motif Reference Manual. Motif provides a number of new functions that support better control of keyboard
traversal. The XmGetFocusWidget() routine returns the widget that has the input focus, while
XmGetTabGroup() returns the widget that is the tab group for the specified widget. An application can also call
XmIsTraversable() to determine whether or not a particular widget is eligible to receive the input focus. See
Section #skeybtrav in Chapter 8, Manager Widgets, for more information about keyboard traversal.

The Manager widget class defines the XmNinitialFocus resource to allow an application to specify the widget
that has the initial keyboard focus in a dialog. This resource can be used for both MessageDialogs and
SelectionDialogs, although it is normally only used for SelectionDialogs. The resource specifies the widget that has
the keyboard focus the first time that the dialog is popped up, as described in Section #sinitfocus in Chapter 5,
Introduction to Dialogs.

The XmTrackingEvent() routine in Motif 1.2 replaces the existing XmTrackingLocate() routine for
implementing context−sensitive help. XmTrackingEvent() works for both keyboard and mouse events, and it
returns the widget selected by the user, regardless of whether or not the widget is sensitive to input. The routine also
returns the actual event performed by the user, as explained in Section #sconthelp in Chapter 21, Advanced Dialog
Programming. Motif 1.2 provides a representation type manager to handle many of the tasks related to enumerated
values, such as installing resource converters that convert string values to their numerical representations. The toolkit
provides following functions for managing representation types:

 XmRepTypeAddReverse()
 XmRepTypeGetId()
 XmRepTypeGetNameList()
 XmRepTypeGetRecord()
 XmRepTypeGetRegistered()
 XmRepTypeRegister()
 XmRepTypeValidValue()

For more information about these routines, see the appropriate reference pages in Volume Six B, Motif Reference
Manual.

Motif also provides a name−to−widget converter in this release so that widgets can be specified in resource files. This
converter is most useful for speci fy ing Form at tachments in a resource f i le . The converter uses
XtNameToWidget() from the parent of the widget specified on the left−hand side of the resource specification.
Motif includes the new xmbind client that configures the virtual key bindings for Motif applications. This action is
performed at startup by the Motif Window Manager (mwm) or any application that uses the Motif toolkit, so an
application only needs to use xmbind if it wants to reconfigure the bindings without restarting mwm or a Motif
application. The toolkit also provides a new function, XmTranslateKey(), to translate a keycode into a virtual

4 Overview of the Motif Toolkit 4.5.1 General Toolkit Changes

77

keysym. This function allows an application that overrides the default XtKeyProc to handle Motif's virtual key
bindings. See Section #seventspec in Chapter 2, The Motif Programming Model, for more information on virtual
bindings. The new XmChangeColor() routine changes the foreground color, shadow colors, and select color for a
widget based on a background color. The XmNdarkThreshold, XmN-foregroundThreshold, and
XmNlightThreshold resources of the Screen object allow the application or the user to set values that affect the
default color calculation algorithm. The values for these resources indicate the levels of perceived brightness (between
0 and 100) that distinguish between a light color and a dark color. The XmNforegroundThreshold value is used
in calculating the default foreground and highlight colors, while the other two resources are used in calculating the
default shadow and select colors. See Section #scolor for a discussion of color resources in Motif. An application can
use the new XmWidgetGetBaselines() routine to get the position of the text baseline in a widget, while
XmWidgetGetDisplayRect() can be used to get the size and position of the bounding box for the widget. These
routines provide information that is useful in laying out and aligning components in an interface.

4.5.2 Specific Widget Changes

Motif 1.2 also introduces a number of new features, including resources and callback routines, for individual widget
classes. In Motif 1.2, the Frame widget can have two children: a work area and a title. The Frame draws a border
around its work area child and adds space for a title if one is specified. The XmNchildType constraint resource
speci f ies whether a ch i ld is the work area or the t i t le . Th is resource can have e i ther the va lue
XmFRAME_WORKAREA_CHILD or XmFRAME_TITLE_CHILD. The XmNchildHorizontalAlignment,
XmNchildHorizontalSpacing, and XmNchildVerticalAlignment constraint resources control the
positioning of the title child. For more information on these resources, see Section #sframe in Chapter 8, Manager
Widgets. The Label widget functions as a drag source for drag and drop, as described in Chapter 18, Drag and Drop.
The ProcessDrag() action routine, which is bound to the second mouse button, handles this functionality. The
List widget provides the following new functions for managing list items:

 XmListAddItemUnselected()
 XmListDeletePositions()
 XmListGetKbdItemPos()
 XmListPosSelected()
 XmListPosToBounds()
 XmListReplaceItemsPosUnselected()
 XmListReplaceItemsUnselected()
 XmListReplacePositions()
 XmListSetKbdItemPos()
 XmListUpdateSelectedList()
 XmListYToPos()

For more information on these routines, see Chapter 12, The List Widget, and the appropriate reference pages in
Volume Six B, Motif Reference Manual.

When a List widget is set insensitive, it provides visual indication by greying out all of its items. The default value of
the XmNvisibleItemCount resource is now set dynamically, based on the item count and the height of the List.

The List widget functions as a drag source for drag and drop, as described in Chapter 18, Drag and Drop. The
ListProcessDrag() action routine, which is bound to the second mouse button, handles this functionality. The
List also has a ListCopyToClipboard() action routine for copying the selected items to the clipboard, as well as
a ListScrollCursorVertically() routine for scrolling the cursor vertically based on a y−position. The
MessageBox widget supports the addition of a MenuBar child, a work area child, and multiple PushButton children.
The XmNdialogType resource can also be set to the value XmDIALOG_TEMPLATE to create a MessageBox that
can be used as a template for creating a custom dialog. Section #smoddialog in Chapter 7, Custom Dialogs, describes
the template dialog in more detail. The PanedWindow defines a new constraint resource, XmNpositionIndex, for

4 Overview of the Motif Toolkit 4.5.2 Specific Widget Changes

78

specifying the position of a child widget in the PanedWindow's list of children. The children are positioned vertically
in the PanedWindow according to this list. The list of children does not include the Sashes. A value of 0 indicates the
beginning of the list, while XmLAST_POSITION places the child at the end of the list. The RowColumn widget
provides a new resource for controlling the alignment of its children. The XmNentryVerticalAlignment
resource controls the vertical positioning of children that are subclasses of Label, LabelGadget, and Text, as described
in Section #srowcolumn in Chapter 8, Manager Widgets.

The RowColumn widget also defines the XmNpositionIndex constraint resource for specifying the position of a
child widget in the RowColumn's list of children. The children are positioned in the RowColumn according to this list.
A value of 0 indicates the beginning of the list, while XmLAST_POSITION places the child at the end of the list.

The XmNtearOffModel resource of the RowColumn widget controls tear−off functionality in Motif menus. The
w i d g e t a l s o d e f i n e s t h e X m N t e a r O f f M e n u A c t i v a t e C a l l b a c k a n d
XmNtearOffMenuDeactivateCallback callback routines for performing any special processing that is
necessary for handling tear−off menus. Tear−off functionality is described in detail in Section #stearoff in
Chapter 15, Menus. When a ScrollBar is set insensitive, it provides a visual indication of this state by dimming itself.
The ScrollBar also has new action routine, CancelDrag(), that cancels the current slider drag. When the user
presses the ESCAPE key while the slider is being dragged, the action is invoked. In Motif 1.2, the ScrolledWindow
has a new callback that supports keyboard traversal. The XmNtraverseObscuredCallback is invoked when the
user attempts to traverse to a widget that is not visible in a ScrolledWindow. An application can use this callback to
make a widget v is ib le in a Scrol ledWindow so that the widget can receive the input focus. The
XmScro l lV is ib le () rou t ine makes an obscured ch i ld o f a Scro l ledWindow v is ib le , wh i le
XmGetVisibility() determines whether or not a widget is visible. See Section #sswtrav in Chapter 9,
ScrolledWindows and ScrollBars, for more information on keyboard traversal in ScrolledWindows.
The SelectionBox and FileSelectionBox widgets now support the addition of a MenuBar child and multiple
PushButton chi ldren in addit ion to the work area chi ld that was supported in Moti f 1.1. The new
XmNchildPlacement resource controls the location of the work area child, as described in Section #smodseldlg in
Chapter 7, Custom Dialogs.
The Text and TextField widgets have a number of new resources and callback routines that support wide−character
strings. These changes have been made for internationalization purposes and are described in Section #stexti18n in
Chapter 14, Text Widgets. The widgets function as drag sources and drop sites for drag and drop, as described in
Chapter 18, Drag and Drop.

The insertion position in the Text and TextField widgets is marked by an I−beam cursor. The destination cursor now
follows the insertion cursor, so it is no longer drawn independently as a caret (^). When a Text or TextField widget is
set insensitive, it provides a visual indication of this state by greying out its text and its insertion cursor. Both the Text
and TextField widgets provide the toggle−overstrike() action routine for switching between insert and
overstrike modes. The Text widget also provides the scroll−cursor−vertically() action to scroll the cursor
based on a y position. When the user moves the pointer outside of a Text widget while selecting text, the widget
continues selecting text by scrolling automatically after a time delay.

The new XmTextDisableRedisplay() and XmTextEnableRedisplay() routines provide a way to control
visual updating in a Text widget. The XmTextFindString() , XmTextGetSubstring() , and
XmTextFieldGetSubstring() functions make string manipulation easier. For more information on these
routines, see the appropriate reference pages in Volume Six B, Motif Reference Manual. The TextField widget also
has an XmNfocusCallback in Motif 1.2. The performance of scrolling in the ScrolledText object has been
improved in Motif 1.2. One unfortunate side−effect of this improvement is that it introduces a new data structure,
which means that subclasses of the Motif 1.1 Text widget may break under Motif 1.2.
If XmNfillOnSelect is explicitly set to True when XmNindicatorOn is False, the background of the
ToggleButton is set to the XmNselectColor when the button is on.
The VendorShell provides the XmNaudibleWarning resource to specify whether or not an audible cue

4 Overview of the Motif Toolkit 4.5.2 Specific Widget Changes

79

accompanies a warning message. The default value is XmBELL, but the resource can also be set to XmNONE. The
value of the XmNverifyBell resource of the Text and TextField widgets is based on the new VendorShell resource.

The VendorShell defines the XmNbuttonFontList, XmNlabelFontList, and XmN-textFontList
resources to replace the existing XmNdefaultFontList resource. The new resources specify the font lists for the
specific types of children of the VendorShell.

The VendorShell also defines the XmNinputMethod and XmNpreeditType resources for controlling
internationalized text input. XmNinputMethod specifies the input method for the application, while
XmNpreeditType indicates the input method styles that are available. The syntax and possible values of both of
these resources are vendor−specific, as discussed in Section #stexti18n in Chapter 14, Text Widgets.

4.5.3 Changes to the Example Programs

All of the example programs in this book have been updated to Motif 1.2 and X11R5. Some of the changes are quite
repetitive and are described in the following list:

A call to XtSetLanguageProc() has been added to the beginning of each example program, as described
in Section #slangproc.

•

Any calls to XmStringCreateSimple() have been replaced with calls to
XmStringCreateLocalized(), as explained in Section #sstringloc.

•

Any references to XmSTRING_DEFAULT_CHARSET have been replaced with references to
XmFONTLIST_DEFAULT_TAG, as discussed in Section #sfonttag.

•

Any calls to XmFontListAdd() and XmFontListCreate() have been replaced with calls to
XmFontListAppendEntry(), as described in Section #sfontlist.

•

The rest of the changes involve using new Motif 1.2 functions and resources. These changes are described in detail
when each example is presented.

4.6 Summary

The Motif widget set gives you a great deal of flexibility in designing an application. But with this flexibility can
come indecision, or even confusion, about the most effective way to use these objects. If you want to give a user a set
of exclusive choices, should you use a PulldownMenu, a dialog box that contains ToggleButtons arranged in a
CheckBox, or a List widget? There is no right answer−−or perhaps it is better to say that the right answer depends on
the nature of the choices and the flow of control in your application.

Designing an effective user−interface is an art. Only experience and experimentation can teach you the most effective
way to organize an application. What we can do in this book is teach you how to use each widget class and give you a
sense of the tradeoffs involved in using different widgets. In this chapter, we've given you a broad overview of the
Motif toolkit. Subsequent chapters delve into each widget class in detail. You should be able to read the chapters in
any order, as the needs of your application dictate.

4 Overview of the Motif Toolkit4.5.3 Changes to the Example Programs

80

5 The Main Window

This chapter describes the Motif MainWindow widget, which can be used to frame many types of applications. The
MainWindow is a manager widget that provides a menu bar, a scrollable work area, and various other optional display
and control areas.

As discussed in Chapter 3, Overview of the Motif Toolkit, the main window of an application is the most visible and
the most used of all the windows in an application. It is the focal point of the user's interactions with the program, and
it is typically the place where the application provides most of its visual feedback. To encourage consistency across
the desktop, the Motif Style Guide suggests a generic main window layout, which can vary from application to
application, but is generally followed by most Motif applications. Such a layout is shown in the figure. As described
in Section #smainwindow, a main window can provide a menu bar, a work area, horizontal and vertical scrollbars, a
command area, and a message area.

The main window of a Motif program

In an effort to facilitate the task of building a main window, the Motif toolkit provides the MainWindow widget. This
widget supports the different areas of the generic main window layout. However, the MainWindow widget is not the
only way to handle the layout of the main window of your application. You are not required to use the MainWindow
widget and you should not feel that you need to follow the Motif specifications to the letter. While the Style Guide

81

strongly recommends using the main window layout, many applications simply do not fit the standard GUI design
model. For example, a clock application, a terminal emulator, a calculator, and a host of other desktop applications do
not follow the Motif specifications in this regard, but they can still have Motif elements within them and can still be
regarded as Motif−compliant. If you already have an application in mind, chances are you already know whether or
not the main window layout is suited to the application; if you are in doubt, your best bet is to comply with the Motif
Style Guide.

Before we start discussing the MainWindow widget, you should realize that this widget class does not create any of
the widgets it manages. It merely facilitates managing the widgets in a way that is consistent with the Style Guide. In
order to discuss the MainWindow widget, we are going to have to discuss a number of other widget classes and use
them in examples. As a beginning chapter in a large book on Motif programming, this may seem like a bit much to
handle, especially if you are completely unfamiliar with the Motif toolkit. We encourage you to branch off into other
chapters whenever you find it necessary to do so. However, it is not our intention to explain these other widgets ahead
of time, nor is it our assumption that you already understand them. The lack of an understanding of the other widgets
should not interfere with our goal of describing the MainWindow widget and how it fits into the design of an
application.

5.1 Creating a MainWindow

The MainWindow widget class is defined in <Xm/MainW.h>, which must be included whenever you create a
MainWindow widget. As mentioned in Chapter 2, The Motif Programming Model, you should probably use an
ApplicationShell or TopLevelShell widget as the parent of a MainWindow. If the MainWindow is being used as the
main application window, the ApplicationShell returned by XtVaAppInitialize() (or another similar toolkit
initialization function) is typically used as the parent. The function XtVaCreateManagedWidget() can be used
to create an instance of a MainWindow widget, as shown in the following code fragment:

 #include <Xm/MainW.h>
 ...
 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);
 toplevel = XtAppInitialize (&app, "App−Class",
 NULL, 0, &argc, argv, NULL, NULL);
 main_w = XtVaCreateManagedWidget ("mw",
 xmMainWindowWidgetClass, toplevel,

resource−value−list,
 NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
 }

The MainWindow class is subclassed from the ScrolledWindow class, which means that it inherits all the attributes of
a ScrolledWindow, including its resources. A ScrolledWindow allows the user to view an arbitrary widget of any size
by attaching horizontal and vertical ScrollBars to it. You can think of a MainWindow as a ScrolledWindow with the
additional ability to have an optional menu bar, command area, and message area. Because the MainWindow is
subclassed from the ScrolledWindow widget, we will be referring to some ScrolledWindow resources and disclosing
some facts about the ScrolledWindow. For more information about the ScrolledWindow, see Chapter 9,
ScrolledWindows and ScrollBars. You may eventually need to learn more about the ScrolledWindow widget to best

5 The Main Window 5.1 Creating a MainWindow

82

make use of the MainWindow, but this chapter tries to present the fundamentals of the MainWindow widget, rather
than focus on the ScrolledWindow.

While a MainWindow does control the sizes and positions of its widget children like any manager widget, the
geometry management it performs is not the classic management style of other manager widgets. The MainWindow is
a special−case object that handles only certain types of children and performs only simple widget positioning. It is
designed to support the generic main window layout specified by the Motif Style Guide.

Let's take a look at how the MainWindow can be used in an actual application. the source code demonstrates how the
MainWindow widget fits into a typical application design. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4.

 /* show_pix.c −− A minimal example of a MainWindow. Use a Label as the
 * workWindow to display a bitmap specified on the command line.
 */
 #include <Xm/MainW.h>
 #include <Xm/Label.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w, label;
 XtAppContext app;
 Pixmap pixmap;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 if (!argv[1]) {
 printf ("usage: %s bitmap−file0, *argv);
 exit (1);
 }

 main_w = XtVaCreateManagedWidget ("main_window",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollBarDisplayPolicy, XmAS_NEEDED,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 /* Load bitmap given in argv[1] */
 pixmap = XmGetPixmap (XtScreen (toplevel), argv[1],
 BlackPixelOfScreen (XtScreen (toplevel)),
 WhitePixelOfScreen (XtScreen (toplevel)));

 if (pixmap == XmUNSPECIFIED_PIXMAP) {
 printf ("can't create pixmap from %s0, argv[1]);
 exit (1);
 }

 /* Now create label using pixmap */
 label = XtVaCreateManagedWidget ("label", xmLabelWidgetClass, main_w,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 NULL);

 /* set the label as the "work area" of the main window */

5 The Main Window 5.1 Creating a MainWindow

83

 XtVaSetValues (main_w,
 XmNworkWindow, label,
 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

In this example, the MainWindow widget is not used to its full potential. It only contains one other widget, a Label
widget, that is used to display a bitmap from the file specified as the first argument on the command line (argv[1]).
XtVaAppInitialize() parses the command−line arguments that are used when the program is run. The
command−line options that are specific to Xlib or Xt are evaluated and removed from the argument list. What is not
parsed is left in argv; our program reads argv[1] as the name of a bitmap to display in the MainWindow. The
Label widget is used as the work area window for the MainWindow. We did this intentionally to focus your attention
on the scrolled−window aspect of the MainWindow widget. The following command line:

 % show_pix /usr/include/X11/bitmaps/xlogo64

produces the output shown in the figure.

The file specified on the command line should contain X11 bitmap data, so that the application can create a pixmap.
The pixmap is displayed in a Label widget, which has been specified as the XmNworkWindow of the MainWindow.
As shown in the figure, the bitmap is simply displayed in the window. However, if a larger bitmap is specified, only a
portion of the bitmap can be displayed, so ScrollBars are provided to allow the user to view the entire bitmap. The
output of the command:

 % show_pix /usr/include/X11/bitmaps/escherknot

is shown in the figure.

Output of show_pix xlogo64

5 The Main Window 5.1 Creating a MainWindow

84

Output of show_pix escherknot

The bitmap is obviously too large to be displayed in the MainWindow without either clipping the image or enlarging
the window. Rather than resize its own window to an unreasonable size, the MainWindow can display ScrollBars.
This behavior is enabled by setting the MainWindow resources XmNscrollBarDisplayPolicy to
XmAS_NEEDED and XmN-scrollingPolicy to XmAUTOMATIC. These values automate the process whereby
ScrollBars are managed when they are needed. If there is enough room for the entire bitmap to be displayed, the
ScrollBars are not provided. Try resizing the show_pix window and see how the ScrollBars appear and disappear as
needed. This behavior occurs as a result of setting XmNscrollBarDisplayPolicy to XmAS_NEEDED.

Since we do not specify a size for the MainWindow, the toolkit sets both the width and height to be 100 pixels. These
default values are not a documented feature. Both the MainWindow and the ScrolledWindow suffer from the same
problem: if you do not specifically set the -XmNwidth and XmNheight resources, the default size of the widget is
not very useful.

The XmNscrollBarDisplayPolicy and XmNscrollingPolicy resources are inherited from the
ScrolledWindow widget class. Because XmNscrollingPolicy is set to XmAUTOMATIC, the toolkit creates and
manages the ScrollBars automatically. Another possible value for the resource is XmAPPLICATION_DEFINED,
which implies that the application is going to create and manage the ScrollBars for the MainWindow and control all of
the aspects of their functionality. Application−defined scrolling is the default style for the MainWindow widget, but it
is unlikely that you will want to leave it that way, since automatic scrolling is far easier to manage at this stage of the
game. For complete details on the different scrolling styles, see Chapter 9, ScrolledWindows and ScrollBars.

Using the application−defined scrolling policy does not necessarily require you to provide your own scrolling
mechanisms. It simply relieves the MainWindow widget of the responsibility of handling the scrolling mechanisms. If
you use a Scrol ledList or Scrol ledText widget as the work area, you should def in i te ly leave the
XmNscrollingPolicy as XmAPPLICATION_DEFINED, since these widgets manage their own ScrollBars. They
will handle the scrolling behavior instead of the MainWindow. the source code shows an example of a program that
uses a ScrolledList for the work area in a MainWindow widget. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4.

 /* main_list.c −− Use the ScrolledList window as the feature
 * component of a MainWindow widget.
 */
 #include <Xm/MainW.h>
 #include <Xm/List.h>

 main(argc, argv)
 char *argv[];
 {
 Widget toplevel, main_w, list_w;

5 The Main Window 5.1 Creating a MainWindow

85

 XtAppContext app;
 Pixmap pixmap;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 main_w = XtVaCreateManagedWidget ("main_window",
 xmMainWindowWidgetClass, toplevel,
 NULL);

 list_w = XmCreateScrolledList (main_w, "main_list", NULL, 0);
 XtVaSetValues (list_w,
 XtVaTypedArg, XmNitems, XmRString,
 "Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
 XmNitemCount, 8,
 XmNvisibleItemCount, 5,
 NULL);
 XtManageChild (list_w);

 /* set the list_w as the "work area" of the main window */
 XtVaSetValues (main_w, XmNworkWindow, XtParent (list_w), NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

In order to simplify the application, we specified the items in the ScrolledList as a single string:

 XtVaSetValues(list_w,
 XtVaTypedArg, XmNitems, XmRString,
 "Red, Green, Blue, Orange, Maroon, Grey, Black, White", 53,
 XmNitemCount, 8,
 XmNvisibleItemCount, 5,
 NULL);

This technique provides the easiest way to specify a list for a List widget. The items in a List widget must be specified
as an array of compound strings. If we took the time to create each list item separately, we would have to create each
compound string, assemble the array of XmString objects and specify it as the XmNitems resource, and then free
each string separately after the widget was created. By using XtVaTypedArg, the whole list can be created in one
line using the List widget's type converter to convert the string into a list of compound strings. We use this form of
resource specification frequently in the book to simplify examples. See Volume Four, X Toolkit Intrinsics
Programming Manual, for a complete discussion on how this kind of type conversion is done. See Chapter 12, The
List Widget, for details on the List widget; see Chapter 19, Compound Strings, for details on compound strings.

It is important to note that while XmCreateScrolledList() creates both a ScrolledWindow widget and a List
widget, it returns the List widget. As a result, we must use XtParent() to get access to the ScrolledWindow
widget, so that it can be specified as the work area of the MainWindow. A common programming error with a
ScrolledText or a ScrolledList widget is using the actual Text or List widget rather than its ScrolledWindow parent.
Again, we refer you to Chapter 9, ScrolledWindows and ScrollBars, for a complete discussion of the use of
ScrolledText and ScrolledList compound objects.

5 The Main Window 5.1 Creating a MainWindow

86

5.2 The MenuBar

Creating a MenuBar is a fairly complex operation, and one that is completely independent of the MainWindow itself.
However, one of the principal reasons for using the MainWindow widget is that it manages the layout of a MenuBar.
In this section, we demonstrate the simplest means of creating a MenuBar. Once a MenuBar has been created, you
simply tell the MainWindow to include it in the window layout by specifying the MenuBar as the value of the
XmNmenuBar resource for the MainWindow.

In the Motif toolkit, a MenuBar is not implemented as a separate widget, but as a set of CascadeButtons arranged
horizontally in a RowColumn widget. Each CascadeButton is associated with a PulldownMenu that can contain
PushButtons, ToggleButtons, Labels, and Separators. The managing RowColumn widget has a resource setting
indicating that it is being used as a MenuBar. You do not need to know any specific details about any of these widgets
in order to create a functional MenuBar, since Motif provides convenience routines that allow you to create
self−sufficient menu systems. While the specifics on creating PopupMenus, PulldownMenus, and MenuBars are
covered in more detail in Chapter 15, Menus, the basic case that we present in this section is quite simple.

There are a variety of methods that you can use to create and manage a MenuBar, but the easiest method is to use the
convenience menu creation routine provided by the Motif toolkit: XmVaCreateSimpleMenuBar(). There is also
a non−varargs version of this function. It requires you to create each of the buttons in the MenuBar individually and
associate it with a PulldownMenu via resources. The varargs function is much easier to use. This function is
demonstrated in the following code fragment:

 XmString file, edit, help;
 Widget menubar, main_w;
 ...
 /* Create a simple MenuBar that contains three menus */
 file = XmStringCreateLocalized ("File");
 edit = XmStringCreateLocalized ("Edit");
 help = XmStringCreateLocalized ("Help");
 menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
 XmVaCASCADEBUTTON, file, 'F',
 XmVaCASCADEBUTTON, edit, 'E',
 XmVaCASCADEBUTTON, help, 'H',
 NULL);
 XmStringFree (file);
 XmStringFree (edit);
 XmStringFree (help);
 ...

The output generated by this code is shown in the figure.

Like XtVaSetValues() and XtVaCreateWidget(), XmVaCreateSimpleMenuBar() takes a
variable−length argument list of configuration parameters. In addition to resource/value pairs, it also takes special
arguments that specify the items in the MenuBar. You can specify RowColumn−specific resource/value pairs just as
you would for any varargs routine. Once all the items in a MenuBar have been created, it must be managed using
XtManageChild().

5 The Main Window 5.2 The MenuBar

87

A simple MenuBar

If you are specifying an item in the MenuBar, the first parameter is a symbolic constant that identifies the type of the
item. Since CascadeButtons are the only elements that can display PulldownMenus, the first parameter should always
be set to XmVaCASCADEBUTTON. The label of the CascadeButton is given by the second parameter, which must be a
compound string. In the above example, the variable file contains a compound string that contains the text File.
The third parameter specifies an optional mnemonic character for the CascadeButton that can be used to post the
menu from the keyboard. The mnemonic for the File menu is F. By convention, the first letter of a menu or menu item
label is used as the mnemonic.

We use the compound string creation function, XmStringCreateLocalized(), to create the compound strings
for the menu labels. This function creates a compound string with the text encoded in the current locale.
XmStringCreateLocalized() is a new routine in Motif 1.2; it replaces XmStringCreateSimple(),
which creates a compound string using the default character set associated with the widget in which the string is
rendered. For a complete discussion of compound strings, see Chapter 19, Compound Strings.

Since you are not creating each CascadeButton using the normal creation routines, you are not returned a handle to
each button. You might think that the label string that you assign to each button is used as the widget's name, but this
is not the case. The buttons are created sequentially, so the MenuBar assigns the name button_n to each button. The
value n is the position of the button in the MenuBar, where positions are numbered starting with 0 (zero). We will
discuss how you can specify resources for items on the MenuBar later in the chapter.

Do not attempt to install callback routines on the CascadeButtons themselves. If you need to know when a particular
menu is popped up, you should use the XmNpopupCallback on the MenuShell that contains the PulldownMenu
associated with the CascadeButton. The popup and popdown callback lists are described briefly in Chapter 7, Custom
Dialogs; for more information, see Volume Four, X Toolkit Intrinsics Programming Manual.

5.2.1 Creating a PulldownMenu

Every CascadeButton in a MenuBar must have a PulldownMenu associated with it. You can create the items in a
PulldownMenu using a method that is similar to the one for creating a MenuBar. A PulldownMenu can be created
using the function XmVaCreateSimplePulldownMenu(). This routine is slightly more involved than
XmVaCreateSimpleMenuBar(). The routine takes the following form:

 Widget
 XmVaCreateSimplePulldownMenu (parent, name, post_from_button,

callback, ...)
 Widget parent;
 String name;
 int post_from_button;
 XtCallbackProc callback;
 ...

The post_from_button parameter specifies the CascadeButton that posts the PulldownMenu. This parameter is
an index (starting at zero) into the array of CascadeButtons in the parent widget, which should be a MenuBar. The
name parameter specifies the widget name for the RowColumn widget that is the PulldownMenu. This name is not
the title of the CascadeButton associated with the menu. The MenuShell that contains the PulldownMenu uses the
same name with _popup appended to it. The callback parameter specifies a function that is invoked whenever the
user activates any of the items in the menu. The rest of the arguments to XmVaCreateSimplePulldownMenu()
are either RowColumn resource/value pairs or special arguments that specify the items in the PulldownMenu.

5 The Main Window 5.2.1 Creating a PulldownMenu

88

You should not manage a PulldownMenu after you create it because you do not want it to appear until it is posted by
the user. The CascadeButton that posts the menu handles -managing the menu when it needs to be displayed. The
following code fragment shows the use of XmVaCreateSimplePulldownMenu() to create a PulldownMenu:

 XmString open, save, quit, quit_acc;
 Widget menubar, menu;
 ...
 /* First menu is the File menu −− callback is file_cb() */
 open = XmStringCreateLocalized ("Open...");
 save = XmStringCreateLocalized ("Save...");
 quit = XmStringCreateLocalized ("Quit");
 quit_acc = XmStringCreateLocalized ("Ctrl−C");
 menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, open, 'O', NULL, NULL,
 XmVaPUSHBUTTON, save, 'S', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, quit, 'Q', "Ctrl<Key>c", quit_acc,
 NULL);
 XmStringFree (open);
 XmStringFree (save);
 XmStringFree (quit);
 XmStringFree (quit_acc);
 ...

Unlike a MenuBar, which can only contain CascadeButtons, a PulldownMenu can contain a number of different types
of elements. As with XmVaCreateSimpleMenuBar(), these elements are specified by a symbolic constant that
identifies the type of the item. The symbolic constant is followed by a variable number of additional parameters that
depend on the type of the menu item. You can use the following values to specify the items in a PulldownMenu:

XmVaPUSHBUTTON

The item is a PushButton. It takes four additional parameters: a compound string label, a mnemonic, an
accelerator, and a compound string that contains a text representation of the accelerator. When the PushButton
is selected, the callback routine is called. It is passed an integer value as client_data that indicates the
item on the PulldownMenu that was activated. The value is an index into the menu that ranges from 0 to n−1;
if client_data is two, then the third item in the menu was selected.

XmVaTOGGLEBUTTON

The item is a ToggleButton. It takes the same four additional parameters as described for
XmVaPUSHBUTTON. When the ToggleButton is selected, the value of the button is toggled and the
callback routine is called. The client_data that is passed to the callback routine is handled the same
as for PushButtons.

XmVaCHECKBUTTON

This value is identical to XmVaTOGGLEBUTTON.
XmVaRADIOBUTTON

The item is a ToggleButton with RadioBox characteristics, which means that only one item in the menu can
be set at a time. The PulldownMenu does not enforce this behavior, so you must either handle it yourself or
specify other RowColumn resources to make the menu function like a RadioBox. We demonstrate creating a
menu with RadioBox behavior later in the chapter. This value takes the same additional parameters and deals
with the callback routine in the same way as ToggleButtons.

XmVaCASCADEBUTTON

5 The Main Window 5.2.1 Creating a PulldownMenu

89

The item is a CascadeButton, which is usually associated with a pullright menu. The value takes two
additional parameters: a compound string label and a mnemonic. Pullright menus are, ironically, easier to
implement and manage using the not−so−simple menu creation routines described in Chapter 15, Menus.

XmVaSEPARATOR

The item is a Separator and it does not take any additional parameters. Since separators cannot be selected, the
callback routine is not called for this item. Adding a separator does not affect the item count with respect to
the client_data values that are passed to the callback routine for other menu items.

XmVaSINGLE_SEPARATOR

This value is identical to XmVaSEPARATOR.
XmVaDOUBLE_SEPARATOR

This value is identical to XmVaSEPARATOR, except that the separator widget displays a double line instead of
a single line.

XmVaTITLE

The item is a Label that is used to create a title in a menu. It takes one additional parameter: a compound
string label. The item is not selectable, so it does not have a mnemonic associated with it and it does not call
the callback routine. Adding a title does not affect the item count with respect to the client_data values
that are passed to the callback routine for other menu items.
Just as with the CascadeButtons in a MenuBar, the labels associated with each menu item are not the names of
the widgets themselves. The names of the buttons are button_n, where n is the position of the button in the
menu (starting with zero). Similarly, the names of the separators and the titles are separator_n and
label_n, respectively. We will discuss how you can use resources to specify labels, mnemonics, and
accelerators for menus and menu items later in the chapter.

Menus are not intended to be changed dynamically. You should not add, delete, or modify the menus on the
MenuBar or the menu items in PulldownMenus once an application is running. Rather than delete an item on
a menu when it is not appropriate, you should change the sensitivity of the item using XmNsensitive. The
menus in an application should be static in the user's eyes; changing the menus would be like changing the
functionality of the program while the user is running it. The one exception to this guideline involves menu
items that correspond to dynamic objects. For example, if you have a menu that contains an item for each
application that is running on a display, it is acceptable for the items on the menu to change to reflect the
current state of the display.

5.2.2 SimpleMenu Callback Routines

The callback routine associated with the File menu shown earlier is invoked whenever the user selects any of the
buttons in the menu. Just like any callback, the routine takes the form of an XtCallbackProc:

 void
 file_cb (widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;

The widget parameter is a handle to the widget that was selected in the menu. The -client_data parameter is the
index of the menu item in the menu. The call_data parameter is a pointer to a callback structure that contains data
about callback. Both the -client_data and call_data parameters should be cast to their appropriate types

5 The Main Window 5.2.2 SimpleMenu Callback Routines

90

before the data that they contain is accessed.

Every Motif callback routine has a callback structure associated with it. The simplest such structure is of type
XmAnyCallbackStruct, which has the following form:

 typedef struct {
 int reason;
 XEvent *event;
 } XmAnyCallbackStruct;

All of the Motif callback structures have these two fields, but they also contain more detailed information about why
the callback function was invoked. The callback routine for the File menu would be passed an
XmPushButtonCallbackStruct, since all of the menu items are PushButtons. This structure has the following
form:

 typedef struct {
 int reason;
 XEvent *event;
 int click_count;
 } XmPushButtonCallbackStruct;

The click_count field is not normally used when a PushButton is in a menu. If one of the items in the menu were
a ToggleButton, the call_data parameter would be of type XmToggleButtonCallbackStruct, which has
the following form:

 typedef struct {
 int reason;
 XEvent *event;
 int set;
 } XmToggleButtonCallbackStruct;

The set field indicates whether the item was selected (turned on) or deselected (turned off).

When a menu contains both PushButtons and ToggleButtons, you can determine which of the two callback structures
the call_data parameter points to by examining the reason field. Since all callback structures have this field, it
is always safe to query it. As its name implies, this field indicates why the callback routine was invoked. The value of
this field may also indicate the type of the widget that invoked the callback. While we can always determine the type
of the widget parameter by using the macro XtIsSubClass(), using the reason field is more straightforward.
The PushButton widget uses the value XmCR_ACTIVATE to indicate that it has been activated, while the
ToggleButton uses XmCR_VALUE_CHANGED to indicate that its value has been changed. In our example, the
reason will always be XmCR_ACTIVATE, since there are only PushButtons in the menu. If there were also
ToggleButtons in the menu, we would know that the callback was invoked by a ToggleButton if the value were
XmCR_VALUE_CHANGED.

The event field in all of the callback structures is a pointer to an XEvent structure. The XEvent identifies the
actual event that caused the callback routine to be invoked. In this example, the event is not of particular interest.

In the callback function, you can choose to do whatever is appropriate for the item that was selected. The callback
structure is probably not going to be of that much help in most cases. However, the client_data passed to the
function can be used to identify which of the menu items was selected. The following code fragment demonstrates the
use of -client_data:

 /* a menu item from the "File" pulldown menu was selected */

5 The Main Window 5.2.2 SimpleMenu Callback Routines

91

 void
 file_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 extern void OpenNewFile(), SaveFile();
 int item_no = (int) client_data;

 if (item_no == 0) /* the "new" button */
 OpenNewFile ();
 else if (item_no == 1) /* the "save" button */
 SaveFile();
 else /* the "Quit" button */
 exit (0);
 }

The callback routines for menu items should be as simple as possible from a structural point of view. A well−designed
application should have application−specific entry points such as OpenNewFile() and SaveFile(), as shown in
the previous example. These routines should be defined in separate files that are not necessarily associated with the
user−interface portion of the program. The use of modular programming techniques helps considerably when an
application is being maintained by a large group of people or when it needs to be ported to other user−interface
platforms.

5.2.3 A Sample Application

Let's examine an example program that integrates what we have discussed so far. Example 4−3 modifies the behavior
of our first example, which displayed an arbitrary pixmap, by allowing the user to change the bitmap dynamically
using a Motif FileSelectionDialog. The program also allows the user to dynamically change the color of the bitmap
using a PulldownMenu. As you can see by the size of the program, adding these two simple features is not trivial.
Many functions and widgets are required in order to make the program functional. As you read the example, don't
worry about unknown widgets or details that we haven't addressed just yet; we will discuss them afterwards. For now,
just try to identify the familiar parts and see how everything works together. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only
available in Motif 1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.
XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* dynapix.c −− Display a bitmap in a MainWindow, but allow the user
 * to change the bitmap and its color dynamically. The design of the
 * program is structured on the pulldown menus of the menubar and the
 * callback routines associated with them. To allow the user to choose
 * a new bitmap, the "Open" button pops up a FileSelectionDialog where
 * a new bitmap file can be chosen.
 */
 #include <Xm/MainW.h>
 #include <Xm/Label.h>
 #include <Xm/MessageB.h>
 #include <Xm/FileSB.h>

 /* Globals: the toplevel window/widget and the label for the bitmap.
 * "colors" defines the colors we use, "cur_color" is the current
 * color being used, and "cur_bitmap" references the current bitmap file.
 */
 Widget toplevel, label;
 String colors[] = { "Black", "Red", "Green", "Blue" };
 Pixel cur_color;
 char cur_bitmap[1024] = "xlogo64"; /* make large enough for full pathnames */

5 The Main Window 5.2.3 A Sample Application

92

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget main_w, menubar, menu, widget;
 XtAppContext app;
 Pixmap pixmap;
 XmString file, edit, help, open, quit, red, green, blue, black;
 void file_cb(), change_color(), help_cb();

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit and parse command line options. */
 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 /* main window contains a MenuBar and a Label displaying a pixmap */
 main_w = XtVaCreateManagedWidget ("main_window",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollBarDisplayPolicy, XmAS_NEEDED,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 /* Create a simple MenuBar that contains three menus */
 file = XmStringCreateLocalized ("File");
 edit = XmStringCreateLocalized ("Edit");
 help = XmStringCreateLocalized ("Help");
 menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
 XmVaCASCADEBUTTON, file, 'F',
 XmVaCASCADEBUTTON, edit, 'E',
 XmVaCASCADEBUTTON, help, 'H',
 NULL);
 XmStringFree (file);
 XmStringFree (edit);
 /* don't free "help" compound string yet −− reuse it later */

 /* Tell the menubar which button is the help menu */
 if (widget = XtNameToWidget (menubar, "button_2"))
 XtVaSetValues (menubar, XmNmenuHelpWidget, widget, NULL);

 /* First menu is the File menu −− callback is file_cb() */
 open = XmStringCreateLocalized ("Open...");
 quit = XmStringCreateLocalized ("Quit");
 XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, open, 'N', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
 NULL);
 XmStringFree (open);
 XmStringFree (quit);

 /* Second menu is the Edit menu −− callback is change_color() */
 black = XmStringCreateLocalized (colors[0]);
 red = XmStringCreateLocalized (colors[1]);
 green = XmStringCreateLocalized (colors[2]);
 blue = XmStringCreateLocalized (colors[3]);
 menu = XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, change_color,
 XmVaRADIOBUTTON, black, 'k', NULL, NULL,
 XmVaRADIOBUTTON, red, 'R', NULL, NULL,
 XmVaRADIOBUTTON, green, 'G', NULL, NULL,

5 The Main Window 5.2.3 A Sample Application

93

 XmVaRADIOBUTTON, blue, 'B', NULL, NULL,
 XmNradioBehavior, True, /* RowColumn resources to enforce */
 XmNradioAlwaysOne, True, /* radio behavior in Menu */
 NULL);
 XmStringFree (black);
 XmStringFree (red);
 XmStringFree (green);
 XmStringFree (blue);

 /* Initialize menu so that "black" is selected. */
 if (widget = XtNameToWidget (menu, "button_0"))
 XtVaSetValues (widget, XmNset, True, NULL);

 /* Third menu is the help menu −− callback is help_cb() */
 XmVaCreateSimplePulldownMenu (menubar, "help_menu", 2, help_cb,
 XmVaPUSHBUTTON, help, 'H', NULL, NULL,
 NULL);
 XmStringFree (help); /* we're done with it; now we can free it */

 XtManageChild (menubar);

 /* user can still specify the initial bitmap */
 if (argv[1])
 strcpy (cur_bitmap, argv[1]);
 /* initialize color */
 cur_color = BlackPixelOfScreen (XtScreen (toplevel)),

 /* create initial bitmap */
 pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap,
 cur_color, WhitePixelOfScreen (XtScreen (toplevel)));

 if (pixmap == XmUNSPECIFIED_PIXMAP) {
 puts ("can't create initial pixmap");
 exit (1);
 }

 /* Now create label using pixmap */
 label = XtVaCreateManagedWidget ("label", xmLabelWidgetClass, main_w,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 NULL);

 /* set the label as the "work area" of the main window */
 XtVaSetValues (main_w,
 XmNmenuBar, menubar,
 XmNworkWindow, label,
 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Any item the user selects from the File menu calls this function.
 * It will either be "Open" (item_no == 0) or "Quit" (item_no == 1).
 */
 void
 file_cb(widget, client_data, call_data)
 Widget widget; /* menu item that was selected */
 XtPointer client_data; /* the index into the menu */
 XtPointer call_data; /* unused */
 {

5 The Main Window 5.2.3 A Sample Application

94

 static Widget dialog; /* make it static for reuse */
 extern void load_pixmap();
 int item_no = (int) client_data;

 if (item_no == 1) /* the "quit" item */
 exit (0);

 /* "Open" was selected. Create a Motif FileSelectionDialog w/callback */
 if (!dialog) {
 dialog = XmCreateFileSelectionDialog (toplevel, "file_sel", NULL, 0);
 XtAddCallback (dialog, XmNokCallback, load_pixmap, NULL);
 XtAddCallback (dialog, XmNcancelCallback, XtUnmanageChild, NULL);
 }
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* The OK button was selected from the FileSelectionDialog (or, the user
 * double−clicked on a file selection). Try to read the file as a bitmap.
 * If the user changed colors, we call this function directly from change_color()
 * to reload the pixmap. In this case, we pass NULL as the callback struct
 * so we can identify this special case.
 */
 void
 load_pixmap(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 Pixmap pixmap;
 char *file = NULL;
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) call_data;

 if (cbs) {
 if (!XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &file))
 return; /* internal error */
 (void) strcpy (cur_bitmap, file);
 XtFree (file); /* free allocated data from XmStringGetLtoR() */
 }

 pixmap = XmGetPixmap (XtScreen (toplevel), cur_bitmap,
 cur_color, WhitePixelOfScreen (XtScreen (toplevel)));

 if (pixmap == XmUNSPECIFIED_PIXMAP)
 printf ("Can't create pixmap from %s0, cur_bitmap);
 else {
 Pixmap old;
 XtVaGetValues (label, XmNlabelPixmap, &old, NULL);
 XmDestroyPixmap (XtScreen (toplevel), old);
 XtVaSetValues (label,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 NULL);
 }
 }

 /* called from any of the "Edit" menu items. Change the color of the
 * current bitmap being displayed. Do this by calling load_pixmap().
 */
 void

5 The Main Window 5.2.3 A Sample Application

95

 change_color(widget, client_data, call_data)
 Widget widget; /* menu item that was selected */
 XtPointer client_data; /* the index into the menu */
 XtPointer call_data; /* unused */
 {
 XColor xcolor, unused;
 Display *dpy = XtDisplay (label);
 Colormap cmap = DefaultColormapOfScreen (XtScreen (label));
 int item_no = (int) client_data;

 if (XAllocNamedColor (dpy, cmap, colors[item_no], &xcolor, &unused) == 0 ||
 cur_color == xcolor.pixel)
 return;

 cur_color = xcolor.pixel;
 load_pixmap (widget, NULL, NULL);
 }

 #define MSG "Use the FileSelection dialog to find bitmap files to0isplay in the scrolling area in the main window. Use0he edit menu to display the bitmap in different colors."

 /* The help button in the help menu from the menubar was selected.
 * Display help information defined above for how to use the program.
 * This is done by creating a Motif information dialog box. Again,
 * make the dialog static so we can reuse it.
 */
 void
 help_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget dialog;

 if (!dialog) {
 Arg args[5];
 int n = 0;
 XmString msg = XmStringCreateLtoR (MSG, XmFONTLIST_DEFAULT_TAG);
 XtSetArg (args[n], XmNmessageString, msg); n++;
 dialog = XmCreateInformationDialog (toplevel, "help_dialog", args, n);
 }
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

The output of the program is shown in the figure.

5 The Main Window 5.2.3 A Sample Application

96

Output of dynapix.c

The beginning of the program is pretty much as expected. After the toolkit is initialized, the MainWindow and the
MenuBar are created the same way as in the previous examples. Just after the MenuBar is created, however, we make
the following calls:

 if (widget = XtNameToWidget (menubar, "button_2"))
 XtVaSetValues(menubar, XmNmenuHelpWidget, widget, NULL);

The purpose of these statements is to inform the MenuBar which of its CascadeButtons contains the Help menu.
Setting the MenuBar's XmNmenuHelpWidget resource to the CascadeButton returned by XtNameToWidget()
causes the MenuBar to position the menu specially. The Help menu is placed at the far right on the MenuBar; this
position is necessary for the application to conform to Motif sytle guidelines. For details on how to support a help
system, see Chapter 7, Custom Dialogs, and Chapter 21, Advanced Dialog Programming.

PulldownMenus are created next in the expected manner. The only variation is for the Edit menu, where each item in
the menu represents a color. Since only one color can be used at a time, the color that is currently being used is
marked with a diamond−shape indicator. In order to get this radio−box behavior, each menu item in the
PulldownMenu is a XmVaRADIOBUTTON and the menu is told to treat the items as a RadioBox. The analogy is that
of an old car radio, where selecting a new station causes the other selectors to pop out. Just as you can only have the
radio tuned to one station at a time, you may only have one color set at a time. The RadioBox functionality is
managed automatically by the RowColumn widget that is used to implement the PulldownMenu. Setting the
XmNradioBehavior and XmN-radioAlwaysOne RowColumn resources to True provides the RadioBox
behavior. See Chapter 11, Labels and Buttons, for a complete description and further examples of this type of
behavior. the figure shows the RadioBox−style Edit menu.

5 The Main Window 5.2.3 A Sample Application

97

The Edit menu for dynapix.c

Although the RowColumn manages the RadioBox automatically, we need to turn the radio on by setting the initial
color. After the PulldownMenu is created, the menu (RadioBox) is initialized so that its first item is selected, since we
know that we are using black as the initial color. XtNameToWidget() is used again to get the appropriate button
from the menu. Since the menu items were created using XmVaRADIOBUTTON, the widget that is returned is a
ToggleButton. The XmNset resource is used to turn the button on. Once the menu has been initialized, the Motif
toolkit handles everything automatically.

Note that when we create the Help menu, there is only one item in the menu. You might think that it is redundant to
have a single Help item in the Help menu, but this design is an element of Motif style. The Motif Style Guide states
that items on the MenuBar should always post PulldownMenu, not perform application actions directly.

It is important to note that XmVaCreateSimplePulldownMenu() returns the RowColumn widget that contains
the items in the menu, even though the routine creates both the RowColumn widget and its MenuShell parent. The
routine does not return the MenuShell widget that is actually popped up and down when the menu posted. To get a
handle to that widget, you need to use XtParent() on the RowColumn widget. This design makes sense, since you
need access to the RowColumn widget much more often than you need access to the MenuShell.

Once all of the items have been installed, the MenuBar is managed using XtManageChild(). The approach to
creating MenuBars, PulldownMenus, menu items, and their associated callback routines that we have described here
is meant to be simple and straightforward. In some cases, you may find that these techniques are too limiting. For
example, you cannot specify different callback routines for different items in the same menu, you cannot pass
different client data for different items, and you cannot name the widgets individually. The most inconvenient aspect
of this method, however, is that it requires so much redundant code in order to build a realistically sized MenuBar.
Our intent here is to introduce the basic concepts of menus and to demonstrate the recommended design approach for
applications. We describe how the menu creation process can be generalized for large menu systems in Chapter 15,
Menus.

The rest of the source code is composed of callback routines that are used by the PulldownMenu items. For example,
when the user selects either of the items in the File menu, the function file_cb() is called. If the Quit item is
selected, the -client_data parameter is 1 and the program exits. If the Open item is selected, client_data is
0 and a FileSelectionDialog is popped up to allow the user to select a new bitmap file. The dialog is created using the
convenience routine XmCreateFileSelectionDialog(), which produces the results shown in the figure. Two
callback routines are installed for the dialog: load_pixmap(), which is called when the user presses the OK

5 The Main Window 5.2.3 A Sample Application

98

button, and -XtUnmanageChild(), which is called when the user selects the Cancel button. For more detailed
information on the FileSelectionDialog, see Chapter 6, Selection Dialogs.

The load_pixmap() function loads a new bitmap from a file and displays it in the Label widget. This function uses
the same method for loading a pixmap as was used earlier in main(). Since the function is invoked as a callback by
the FileSelectionDialog, we need to get the value of the file selection. The value is taken from the value field of the
FileSelectionDialog's callback structure, XmFileSelectionBoxCallbackStruct. Since the filename is
represented as a compound string, it must be converted to a character string. The conversion is done using
XmStringGetLtoR(), which creates a regular C string for use by XmGetPixmap(). The load_pixmap()
routine is also called directly from change_color(), so we need to check the call_data parameter. This
parameter is NULL if the routine is not invoked as a callback.

If XmGetPixmap() succeeds, we get the old pixmap and destroy it using XmDestroyPixmap() before we install
the new pixmap. XmGetPixmap() loads and caches a pixmap. If the function is called more than once for a given
image, it returns the cached image, which saves space because a new version of the pixmap is not allocated for each
call. XmDestroyPixmap() decrements the reference count for the image; if the reference count reaches to zero, the
pixmap is actually destroyed. Otherwise, another reference to it may exist, so nothing is done. It is important to use
these two functions in conjunction with each other. However, if you use other pixmap−loading functions to create
pixmaps, you cannot use XmDestroyPixmap() to free them.

The FileSelectionDialog for dynapix.c

The function change_color() is used as the callback routine for items in the Edit menu. The names of the colors
are stored in the colors array. The index of a color in this array is the same as the index of the corresponding menu
item in the menu. The color name is parsed and loaded using XAllocNamedColor(), provided that the string
exists in the RGB database (usually /usr/lib/X11/rgb.txt). If the routine is successful, it returns a non−zero status and
the XColor structure is filled with the RGB data and pixel value. In this case, load_pixmap() is called to reload
the pixmap with the new color. If XAllocNamedColor() returns zero, or if the returned pixel value is the same as

5 The Main Window 5.2.3 A Sample Application

99

the current one, change_color() returns, as there is no point in reloading an identical pixmap. For additional
information about loading and using colors, see Volume One, Xlib Programming Manual, and Volume Two, Xlib
Reference Manual.

The help_cb() function is the callback routine for the Help menu item on the Help menu. It simply displays an
InformationDialog that contains a message describing how to use the program. See Chapter 5, Introduction to
Dialogs, and Chapter 21, Advanced Dialog Programming, for a complete description of these dialogs and
suggestions on implementing a functional help system.

5.3 The Command and Message Areas

We have already covered most of what you need to know about the MainWindow of an application in this chapter and
Chapter 3, Overview of the Motif Toolkit. The material in the rest of the chapter is considered somewhat advanced, so
you could skip the remaining sections and be relatively secure in moving on to the next chapter. The remaining
material provides details about the MainWindow widget that need to be discussed in order to make this chapter
complete.

The greatest difficulty with the command and message areas of the MainWindow is that these objects are better
defined in the Motif specification than in the Motif toolkit. The command area is intended to support a tty−style
command−line interface to an application. The command area is not supposed to act like xterm or any sort of terminal
emulator; it is just a single−line text area for entering individually typed commands for an application. The message
area is just an output−only area that is used for error and status messages as needed by an application. While both of
these areas are optional MainWindow elements, the message area is usually more common than the command area.
Nevertheless, let's begin by discussing the command area.

A command area is especially convenient for applications that are being converted from a tty−style interface to a
graphical user interface. Properly converted, such applications can do rather well as GUI−based programs, although
the conversion can be more difficult than you might expect. For example, a PostScript interpreter could be
implemented using a command area in the MainWindow. However, since PostScript is a verbose language, it does not
work well with single−line text entry fields.

the source code shows how the command area can be used to allow the user to input standard UNIX commands. The
output of the commands is displayed in the ScrolledText object, which is the work area of the MainWindow. For
simplicity, we've kept the MenuBar small so as to dedicate most of the program to the use of the command area.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in
Motif 1.2.

 /* cmd_area.c −− use a ScrolledText object to view the
 * output of commands input by the user in a Command window.
 */
 #include <Xm/Text.h>
 #include <Xm/MainW.h>
 #include <Xm/Command.h>
 #include <stdio.h> /* For popen() */

 /* main() −− initialize toolkit, create a main window, menubar,
 * a Command Area and a ScrolledText to view the output of commands.
 */
 main(argc, argv)
 int argc;
 char *argv[];

5 The Main Window 5.3 The Command and Message Areas

100

 {
 Widget top, main_w, menubar, menu, command_w, text_w;
 XtAppContext app;
 XmString file, quit;
 extern void exec_cmd(), exit();
 Arg args[5];
 int n = 0;

 XtSetLanguageProc (NULL, NULL, NULL);

 /* initialize toolkit and create toplevel shell */
 top = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 (void) close (0); /* don't let commands read from stdin */

 /* MainWindow for the application −− contains menubar, ScrolledText
 * and CommandArea (which prompts for filename).
 */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, top,
 XmNcommandWindowLocation, XmCOMMAND_BELOW_WORKSPACE,
 NULL);

 /* Create a simple MenuBar that contains one menu */
 file = XmStringCreateLocalized ("File");
 menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
 XmVaCASCADEBUTTON, file, 'F',
 NULL);
 XmStringFree (file);

 /* "File" menu has only one item (Quit), so make callback exit() */
 quit = XmStringCreateLocalized ("Quit");
 menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, exit,
 XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
 NULL);
 XmStringFree (quit);

 /* Menubar is done −− manage it */
 XtManageChild (menubar);

 /* Create ScrolledText −− this is work area for the MainWindow */
 XtSetArg (args[n], XmNrows, 24); n++;
 XtSetArg (args[n], XmNcolumns, 80); n++;
 XtSetArg (args[n], XmNeditable, False); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 text_w = XmCreateScrolledText (main_w, "text_w", args, n);
 XtManageChild (text_w);

 /* store text_w as user data in "File" menu for file_cb() callback */
 XtVaSetValues (menu, XmNuserData, text_w, NULL);

 /* Create the command area −− this must be a Command class widget */
 file = XmStringCreateLocalized ("Command:");
 command_w = XtVaCreateWidget ("command_w", xmCommandWidgetClass, main_w,
 XmNpromptString, file,
 NULL);
 XmStringFree (file);
 XtAddCallback (command_w, XmNcommandEnteredCallback, exec_cmd, text_w);
 XtManageChild (command_w);

5 The Main Window 5.3 The Command and Message Areas

101

 XmMainWindowSetAreas (main_w, menubar, command_w,
 NULL, NULL, XtParent (text_w));
 XtRealizeWidget (top);
 XtAppMainLoop (app);
 }

 /* execute the command and redirect output to the ScrolledText window */
 void
 exec_cmd (cmd_widget, client_data, call_data)
 Widget cmd_widget; /* the command widget itself, not its Text widget */
 XtPointer client_data; /* passed the text_w as client_data */
 XtPointer call_data;
 {
 char *cmd, buf[BUFSIZ];
 XmTextPosition pos;
 FILE *pp, *popen();
 Widget text_w = (Widget) client_data;
 XmCommandCallbackStruct *cbs =
 (XmCommandCallbackStruct *) call_data;

 XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &cmd);

 if (!cmd || !*cmd) { /* nothing typed? */
 if (cmd)
 XtFree (cmd);
 return;
 }

 /* make sure the file is a regular text file and open it */
 if (!(pp = popen (cmd, "r")))
 perror (cmd);
 XtFree (cmd);
 if (!pp)
 return;

 /* put the output of the command in the Text widget by reading
 * until EOF (meaning that the command has terminated).
 */
 for (pos = 0; fgets (buf, sizeof buf, pp); pos += strlen (buf))
 XmTextReplace (text_w, pos, pos, buf);

 pclose (pp);
 }

This example uses a Command widget for the command area. The output of the program is shown in the figure. The
Command widget provides a command entry area and a command history area. However, you do not necessarily have
to use a Command widget for the command area. A TextField widget can be used instead to provide a simple
command area.

When we c rea ted the Ma inWindow, we se t the XmNcommandWindowLocat ion resource to
XmCOMMAND_BELOW_WORKSPACE, which caused the command area to be placed below the work window.
Although the default value of the resource is XmCOMMAND_ ABOVE_WORKSPACE, the Style Guide recommends that
the command area be positioned beneath the work window, rather than above it. You need to explicitly set the value
of XmN-commandWindowLocation to ensure that the command area is positioned appropriately.

Note that we use the ScrolledWindow that is created by XmCreateScrolledText() for the work window, rather
than the scrolling area provided by the MainWindow. Since XmCreateScrolledText() returns a Text widget,
we are careful to use the parent of the Text widget for the XmNworkWindow resource of the MainWindow. We set

5 The Main Window 5.3 The Command and Message Areas

102

the areas of the MainWindow using XmMainWindowSetAreas(), which is a convenience function that tells the
MainWindow which of its child widgets should be used for its different predefined areas. The routine takes the
following form:

 void
 XmMainWindowSetAreas (main_w, menubar, cmd_w, h_scroll,

v_scroll, work_w)
 Widget main_w;
 Widget menubar;
 Widget cmd_w;
 Widget h_scroll;
 Widget v_scroll;
 Widget work_w;

Output of cmd_area.c

The function is really a front end for XmScrolledWindowSetAreas(). Basically, both of these functions
manage the appropriate widgets so that they appear in the correct locations in the MainWindow, while making sure
there is enough space for all of them to be visible. Neither function is entirely necessary, though. When you create a
widget as a child of a MainWindow widget, the MainWindow checks the type of the widget you are adding. If the new
widget is a RowColumn that is being used as a MenuBar (XmNrowColumnType is XmMENU_BAR), the
MainWindow automatically uses it for the menu bar. This same check is performed for a Command widget, which is
automatically used as the command area. The MainWindow also provides resources for its different areas that you can
set using XtVaSetValues(). The resources you can use are:

 XmNmenuBar
 XmNcommandWindow

5 The Main Window 5.3 The Command and Message Areas

103

 XmNverticalScrollBar
 XmNhorizonalScrollBar
 XmNworkWindow
 XmNmessageWindow

Once one of these values is set, it cannot be reset to NULL, although it can be reset to another widget. However,
XmMainWindowSetAreas() can be used to set the different areas to NULL. You should only use this routine
when you are doing the initial layout of your application; changing the major elements of the MainWindow while an
application is running would be quite disruptive.

You might notice that XmMainWindowSetAreas() does not have a parameter to specify the widget that is used as
the message area. There is, however, a resource to support the message area. The message area is important in most
applications, since it is typically the place where brief status and informational messages are displayed. The message
area can be implemented using different widgets, such as a read−only Text widget, a read−only ScrolledText object,
or a Label widget. Using a Label widget as the message area is quite simple and really doesn't require any explanation.
Chapter 14, Text Widgets, describes how to use a read−only text area for the message area in a MainWindow in
Section #soutputtext.

If you specify the XmNmessageWindow resource, the message area is positioned across the bottom of the
MainWindow. If you are not satisfied with how the MainWindow handles the layout of the message area, you can
make the message area widget a child of the work area manager widget and handle the layout yourself.

5.4 Using Resources

Resources specific to the MainWindow and its sub−elements can be useful when configuring the default appearance
of your application. If you set these resources in an app−defaults file, the specifications can also provide a framework
for users to follow when they want to set their own configuration parameters. Even users who are sophisticated
enough to figure out how X resource files work still copy existing files and modify them to their own tastes. To assist
users, the app−defaults file for an application should be informative and complete, even though it might be lengthy.

Of course, the first step in specifying resources in an app−defaults file is to determine exactly which aspects of the
program you want to be configurable. Remember, consistency is the only way to keep from completely confusing a
user. Once you have decided which portions of the application are going to be configurable, you can set resource
values by specifying complete widget hierarchies. As an example, let's specify some resources for the menu system
from dynapix.c. The application creates the File menu in the following way:

 XmVaCreateSimplePulldownMenu(menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, open, 'O', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, quit, 'Q', NULL, NULL,
 NULL);

We can add accelerators to both the Open and Quit menu items using the following resource specifications:

 dynapix.main_window.menubar*button_0.accelerator: Ctrl<Key>O
 dynapix.main_window.menubar*button_0.acceleratorText: Ctrl+O
 dynapix.main_window.menubar*button_1.accelerator: Ctrl<Key>C
 dynapix.main_window.menubar*button_1.acceleratorText: Ctrl+C

The result is shown in the figure.

5 The Main Window 5.4 Using Resources

104

The File menu for dynapix.c with accelerators

These resource settings work because XmNaccelerator and XmNacceleratorText were not hard−coded by
the application. By the same token, the labels of the MenuBar titles and the menu items in the PulldownMenus are
hard−coded values that cannot be modified through resources. To relax this restriction, you could try setting the
label and mnemonic parameters to NULL in calls to XmVaCreateSimplePulldownMenu(). Unfortunately,
this technique makes resource specification awfully messy, since the CascadeButtons in the MenuBar and the various
PulldownMenus all have names of the form button_n. The other alternative is to use the more advanced methods of
menu creation that are described in Chapter 15, Menus.

The MainWindow provides a few other resources that control different visual attributes: -XmNshowSeparator,
XmNmainWindowMarginWidth, and XmNmainWindowMarginHeight. The XmNshowSeparator resource
controls whether or not Separator widgets are displayed between the different areas of a MainWindow. The margin
resources specify the width and height of the MainWindow's margins. Generally, these resources should not be set by
the application, but left to the user to specify. For example:

 *XmMainWindow.showSeparator: True
 *XmMainWindow.mainWindowMarginWidth: 10
 *XmMainWindow.mainWindowMarginHeight: 10

The class name for the MainWindow widget is XmMainWindow. If these resource settings were specified in an
app−defaults file, they would affect all of the MainWindow widgets in the application. If a user makes these
specifications in his .Xdefaults file, they would apply to all MainWindow widgets in all applications.

5.5 Summary

This chapter introduced you to the concepts involved in creating the main window of an application. To a lesser
degree, we showed you how the MainWindow widget can be used to accomplish some of the necessary tasks. We
identified the areas involved in a MainWindow and used some convenience routines to build some adequate
prototypes.

The MainWindow can be difficult to understand because of its capabilities as a ScrolledWindow and because it
supports the management of so many other objects. The work area of a MainWindow usually contains a manager
widget that contains other widgets. Although the MainWindow can handle the layout of its different areas, we do not
necessarily encourage you to use all its of its features. For larger, production−style applications, you would probably
be better off using the MainWindow for the sake of the MenuBar, while placing the rest of the layout in the hands of a
more general−purpose manager widget. These are described in Chapter 8, Manager Widgets.

5 The Main Window 5.5 Summary

105

You could also decide not to use the MainWindow widget at all. If done properly, you could probably use one of the
manager widget classes described in Chapter 8 and still be Motif−compliant. Depending on your application, you
might find this technique easier to deal with than the MainWindow widget.

5.6 Exercises

Based on the material in this chapter, you should be able to do the following exercises:

Modify dynapix.c to have a new PulldownMenu that controls the background color of the pixmap.•
Modify dynapix.c so that it has a command area. The callback for the Command widget should understand
either filenames or color names. If you feel adventurous, try to have it understand both the command file
and the command color. Each command would take a second argument indicating the file or color to use.

•

5 The Main Window 5.6 Exercises

106

6 Introduction to Dialogs

This chapter describes the fundamental concepts that underly all Motif dialogs. It provides a foundation for the more
advanced material in the following chapters. In the course of the introduction, the chapter also provides information
about Motif's predefined MessageDialog classes.

In Chapter 4, The Main Window, we discussed the top−level windows that are managed by the window manager and
that provide the overall framework for an application. Most applications are too complex to do everything in one main
top−level window. Situations arise that call for secondary windows, or transient windows, that serve specific
purposes. These windows are commonly referred to as dialog boxes, or more simply as dialogs.

Dialog boxes play an integral role in a GUI−based interface such as Motif. The examples in this book use dialogs in
many ways, so just about every chapter can be used to learn more about dialogs. We've already explored some of the
basic concepts in Chapter 2, The Motif Programming Model, and Chapter 3, Overview of the Motif Toolkit.
However, the use of dialogs in Motif is quite complex, so we need more detail to proceed further.

The Motif Style Guide makes a set of generic recommendations about how all dialogs should look. The Style Guide
also specifies precisely how certain dialogs should look, how they should respond to user events, and under what
circumstances the dialogs should be used. We refer to these dialogs as predefined Motif dialogs, since the Motif
toolkit implements each of them for you. These dialogs are completely self−sufficient, opaque objects that require
very little interaction from your application. In most situations, you can create the necessary dialog using a single
convenience routine and you're done. If you need more functionality than what is provided by a predefined Motif
dialog, you may have to create your own customized dialog. In this case, building and handling the dialog requires a
completely different approach.

There are three chapters on basic dialog usage in this book−−two on the predefined Motif dialogs and one on
customized dialogs. There is also an additional chapter later in the book that deals with more advanced dialog topics.
This first chapter discusses the most common class of Motif dialogs, called MessageDialogs. These are the simplest
kinds of dialogs; they typically display a short message and use a small set of standard responses, such as OK, Yes, or
No. These dialogs are transient, in that they are intended to be used immediately and then dismissed. MessageDialogs
define resources and attributes that are shared by most of the other dialogs in the Motif toolkit, so they provide a
foundation for us to build upon in the later dialog chapters. Although Motif dialogs are meant to be opaque objects,
we will examine their implementation and behavior in order to understand how they really work. This information can
help you understand not only what is happening in your application, but also how to create customized dialogs.

Chapter 6, Selection Dialogs, describes another set of predefined Motif dialogs, called SelectionDialogs. Since these
dialogs are the next step in the evolution of dialogs, most of the material in this chapter is applicable there as well.
SelectionDialogs typically provide the user with a list of choices. These dialogs can remain displayed on the screen so
that they can be used repeatedly. Chapter 7, Custom Dialogs, addresses the issues of creating customized dialogs, and
Chapter 21, Advanced Dialog Programming, discusses some advanced topics in X and Motif programming using
dialogs as a backdrop.

6.1 The Purpose of Dialogs

For most applications, it is impossible to develop an interface that provides the full functionality of the application in a
single main window. As a result, the interface is typically broken up into discrete functional modules, where the
interface for each module is provided in a separate dialog box.

107

As an example, consider an electronic mail application. The broad range of different functions includes searching for
messages according to patterns, composing messages, editing an address book, reporting error messages, and so on.
Dialog boxes are used to display simple messages, as shown in the figure. They are also used to prompt the user to
answer simple questions, as shown in the figure. A dialog box can also present a more complicated interaction, as
shown in the figure.

A message dialog

A question dialog

6 Introduction to Dialogs 6 Introduction to Dialogs

108

A custom dialog box

In the figure, many different widget classes are used to provide an interface that allows the user to save e−mail
messages in different folders. The purpose of a dialog is to focus on one particular task in an application. Since the
scope of these tasks is usually quite limited, an application usually provides them in dialog boxes, rather than in its
main window.

There is actually no such thing as a dialog widget class in the Motif toolkit. A dialog is actually made up of a
DialogShell widget and a manager widget child that implements the visible part of the dialog. The DialogShell
interacts with the window manager to provide the transient window behavior required of dialogs. When we refer to a
dialog widget, we are really talking about the manager widget and all of its children collectively.

When you write a custom dialog, you simply create and manage the children of the DialogShell in the same way that
you create and manage the children of a top−level application shell. The predefined Motif dialogs follow the same
approach, except that the toolkit creates the manager widget and all of its children internally. Most of the standard
Motif dialogs are composed of a DialogShell and either a MessageBox or SelectionBox widget. Each of these widget
classes creates and manages a number of internal widgets without application intervention. See Chapter 3, Overview
of the Motif Toolkit, to review the various types of predefined Motif dialogs.

All of the predefined Motif dialogs are subclassed from the BulletinBoard widget class. As such, a BulletinBoard can
be thought of as the generic dialog widget class, although it can certainly be used as generic manager widget (see
Chapter 8, Manager Widgets). Indeed, a dialog widget is a manager widget, but it is usually not treated as such by the
application. The BulletinBoard widget provides the keyboard traversal mechanisms that support gadgets, as well as a
number of dialog−specific resources.

It is important to note that for the predefined Motif dialogs, each dialog is implemented as a single widget class, even
though there are smaller, primitive widgets under the hood. When you create a MessageBox widget, you automatically
get a set of Labels and PushButtons that are laid out as described in the Motif Style Guide. What is not created
automatically is the DialogShell widget that manages the MessageBox widget. You can either create the shell yourself

6 Introduction to Dialogs 6 Introduction to Dialogs

109

and place the MessageBox in it or use a Motif convenience routine that creates both the shell and its dialog widget
child.

The Motif toolkit uses the DialogShell widget class as the parent for all of the predefined Motif dialogs. In this
context, a MessageBox widget combined with a DialogShell widget creates what the Motif toolkit calls a
MessageDialog. A careful look at terminology can help you to distinguish between actual widget class and Motif
compound objects. The name of the actual widget class ends in Box, while the name of the compound object made up
of the widget and a DialogShell ends in Dialog. For example, the convenience routine XmCreateMessageBox()
creates a MessageBox widget, which you need to place inside of a DialogShell yourself. Alternatively,
XmCreateMessageDialog() creates a MessageDialog composed of a MessageBox and a DialogShell.

Another point about terminology involves the commonly−used term dialog box. When we say dialog box, we are
referring to a compound object composed of a DialogShell and a dialog widget, not the dialog widget alone. This
terminology can be confusing, since the Motif toolkit also provides widget classes that end in box.

One subtlety in the use of MessageBox and SelectionBox widgets is that certain types of behavior depend on whether
or not the widget is a direct child of a DialogShell. For example, the Motif Style Guide says that clicking on the OK
button in the action area of a MessageDialog invokes the action of the dialog and then dismisses the dialog.
Furthermore, pressing the RETURN key anywhere in the dialog is equivalent to clicking on the OK button. However,
none of this takes place when the MessageBox widget is not a direct child of a DialogShell.

Perhaps the most important thing to remember is how the Motif toolkit treats dialogs. Once a dialog widget is placed
in a DialogShell, the toolkit tends to treat the entire combination as a single entity. In fact, as we move on, you'll find
that the toolkit's use of convenience routines, callback functions, and popup widget techniques all hide the fact that the
dialog is composed of these discrete elements. While the Motif dialogs are really composed of many primitive
widgets, such as PushButtons and TextFields, the single−entity approach implies that you never access the subwidgets
directly. If you want to change the label for a button, you set a resource specific to the dialog class, rather than getting
a handle to the button widget and changing its resource. Similarly, you always install callbacks on the dialog widget
itself, instead of installing them directly on buttons in the control or action areas.

This approach may be confusing for those already familiar with Xt programming, but not yet familiar with the Motif
toolkit. Similarly, those who learn Xt programming through experiences with the Motif toolkit might get a
misconception of what Xt programming is all about. We try to point out the inconsistencies between the two
approaches so that you will understand the boundaries between the Motif toolkit and its Xt foundations.

6.2 The Anatomy of a Dialog

As described in Chapter 3, Overview of the Motif Toolkit, dialogs are typically broken down into two regions known
as the control and action areas. The control area is also referred to as the work area. The control area contains the
widgets that provide the functionality of the dialog, such as Labels, ToggleButtons, and List widgets. The action area
contains PushButtons whose callback routines actually perform the action of the dialog box. While most dialogs
follow this pattern, it is important to realize that these two regions represent user−interface concepts and do not
necessarily reflect how Motif dialogs are implemented.

the figure shows these areas in a sample dialog box.

6 Introduction to Dialogs 6.2 The Anatomy of a Dialog

110

A sample dialog box

The Motif Style Guide describes in a general fashion how the control and action areas for all dialogs should be laid
out. For predefined Motif dialogs, the control area is rigidly specified. For customized dialogs, there is only a general
set of guidelines to follow. The guidelines for the action area specify a number of common actions that can be used in
both predefined Motif dialogs and customized dialogs. These actions have standard meanings that help ensure
consistency between different Motif applications.

By default, the predefined Motif MessageDialogs provide three action buttons, which are normally labeled OK,
Cancel, and Help, respectively. SelectionDialogs provide a fourth button, normally labeled Apply, which is placed
between the OK and Cancel buttons. This button is created but not managed, so it is not visible unless the application
explicitly manages it. The Style Guide specifies that the OK button applies the action of the dialog and dismisses it,
while the Apply button applies the action but does not dismiss the dialog. The Cancel button dismisses the dialog
without performing any action and the Help button provides any help that is available for the dialog. When you are
creating custom dialogs, or even when you are using the predefined Motif dialogs, you may need to provide actions
other than the default ones. If so, you should change the labels on the buttons so that the actions are obvious. You
should try to use the common actions defined by the Motif Style Guide if they are appropriate, since these actions have
standard meanings. We will address this issue further as it comes up in discussion; it is not usually a problem until you
create your own customized dialogs, as described in Chapter 7, Custom Dialogs.

6.3 Creating Motif Dialogs

Under most circumstances, creating a predefined Motif dialog box is very simple. All Motif dialog types have
corresponding convenience routines that simplify the task of creating and managing them. For example, a standard
MessageDialog can be created as shown in the following code fragment:

 #include <Xm/MessageB.h>

 extern Widget parent;
 Widget dialog;
 Arg arg[5];

6 Introduction to Dialogs 6.3 Creating Motif Dialogs

111

 XmString t;
 int n = 0;

 t = XmStringCreateLocalized ("Hello World");
 XtSetArg (arg[n], XmNmessageString, t); n++;
 dialog = XmCreateMessageDialog (parent, "message", arg, n);
 XmStringFree (t);

The convenience routine does almost everything automatically. The only thing that we have to do is specify the
message that we want to display.

6.3.1 Dialog Header Files

As we mentioned earlier, there are two basic types of predefined Motif dialog boxes: MessageDialogs and
SelectionDialogs. MessageDialogs present a simple message, to which a yes (OK) or no (Cancel) response usually
suffices. There are six types of MessageDialogs: ErrorDialog, InformationDialog, QuestionDialog, TemplateDialog,
WarningDialog, and WorkingDialog. These types are not actually separate widget classes, but rather instances of the
generic MessageDialog that are configured to display different graphic symbols. All of the MessageDialogs are
compound objects that are composed of a MessageBox widget and a DialogShell. When using MessageDialogs, you
must include the file <Xm/MessageB.h>.

SelectionDialogs allow for more complicated interactions. The user can select an item from a list or type an entry into
a TextField widget before acting on the dialog. There are essentially four types of SelectionDialogs, although the
situation is a bit more complex than for MessageDialogs. The PromptDialog is a specially configured
SelectionDialog; both of these dialogs are compound objects that are composed of a SelectionBox widget and a
DialogShell. The Command widget and the FileSelectionDialog are based on separate widget classes. However, they
are both subclassed from the SelectionBox and share many of its features. When we use the general term "selection
dialogs," we are referring to these three widget classes plus their associated dialog shells. To use a SelectionDialog,
you must include the file <Xm/SelectioB.h>. Yes, you read that right. It does, in fact, read SelectioB.h. The reason for
the missing n is there is a fourteen−character filename limit on UNIX System V machines. For FileSelectionDialogs,
the appropriate include file is <Xm/FileSB.h>, and for the Command widget it is <Xm/Command.h>.

6.3.2 Creating a Dialog

You can use any of the following convenience routines to create a dialog box. They are listed according to the header
file in which they are declared:

<Xm/MessageB.h>:

 XmCreateMessageBox()
 XmCreateMessageDialog()
 XmCreateErrorDialog()
 XmCreateInformationDialog()
 XmCreateQuestionDialog()
 XmCreateTemplateDialog()
 XmCreateWarningDialog()
 XmCreateWorkingDialog()

<Xm/SelectioB.h>:

 XmCreateSelectionBox()
 XmCreateSelectionDialog()
 XmCreatePromptDialog()

6 Introduction to Dialogs 6.3.1 Dialog Header Files

112

<Xm/FileSB.h>:

 XmCreateFileSelectionBox()
 XmCreateFileSelectionDialog()

<Xm/Command.h>:

 XmCreateCommand()

Each of these routines creates a dialog widget. In addition, the routines that end in Dialog automatically create a
DialogShell as the parent of the dialog widget. All of the convenience functions for creating dialogs use the standard
Motif creation routine format. For example, XmCreateMessageDialog() takes the following form:

 Widget
 XmCreateMessageDialog(parent, name, arglist, argcount)
 Widget parent;
 String *name;
 ArgList arglist;
 Cardinal argcount;

In this case, we are creating a common MessageDialog, which is a MessageBox with a DialogShell parent. The
parent parameter specifies the widget that acts as the owner or parent of the DialogShell. Note that the parent must
not be a gadget, since the parent must have a window associated with it. The dialog widget itself is a child of the
DialogShell. You are returned a handle to the newly created dialog widget, not the DialogShell parent. For the
routines that just create a dialog widget, the parent parameter is simply a manager widget that contains the dialog.

The arglist and argcount parameters for the convenience routines specify resources using the old−style
ArgList format, just like the rest of the Motif convenience routines. A varargs−style interface is not available for
creating dialogs. However, you can use the varargs−style interface for setting resources on a dialog after is has been
created by using XtVaSetValues().

6.3.3 Setting Resources

There are a number of resources and callback functions that apply to almost all of the Motif dialogs. These resources
deal with the action area buttons in the dialogs. Other resources only apply to specific types of dialogs; they deal with
the different control area components such as Labels, TextFields, and List widgets. The different resources are listed
below, grouped according to the type of dialogs that they affect:

General dialog resources:

 XmNokLabelString XmNokCallback
 XmNcancelLabelString XmNcancelCallback
 XmNhelpLabelString XmNhelpCallback

MessageDialog resources:

 XmNmessageString XmNsymbolPixmap

SelectionDialog resources:

 XmNapplyLabelString XmNapplyCallback
 XmNselectionLabelString XmNlistLabelString

6 Introduction to Dialogs 6.3.3 Setting Resources

113

FileSelectionDialog resources:

 XmNfilterLabelString XmNdirListLabelString
 XmNfileListLabelString

Command resources:

 XmNpromptString

The labels and callbacks of the various buttons in the action area are specified by resources based on the standard
Motif dialog button names. For example, the XmNokLabelString resource is used to set the label for the OK
button. XmNokCallback is used to specify the callback routine that the dialog should call when that button is
activated. As discussed earlier, it may be appropriate to change the labels of these buttons, but the resource and
callback names will always have names that correspond to their default labels.

The XmNmessageString resource specifies the message that is displayed by the MessageDialog. The
XmNsymbolPixmap resource specifies the iconic symbol that is associated with each of the MessageDialog types.
This resource is rarely changed, so discussion of it is deferred until Chapter 21, Advanced Dialog Programming.

The other resources apply to the different types of selection dialogs. For example, -XmNselectionLabelString
sets the label that is placed above the list area in SelectionDialog. These resources are discussed in Chapter 6,
Selection Dialogs.

All of these resources apply to the Labels and PushButtons in the different dialogs. It is important to note that they are
different from the usual resources for Labels and PushButtons. For example, the Label resource XmNlabelString
would normally be used to specify the label for both Label and PushButton widgets. Dialogs use their own resources
to maintain the abstraction of the dialog widget as a discrete user−interface object.

Another important thing to remember about the resources that refer to widget labels is that their values must be
specified as compound strings. Compound strings allow labels to be rendered in arbitrary fonts and to span multiple
lines. See Chapter 19, Compound Strings, for more information.

The following code fragment demonstrates how to specify dialog resources and callback routines:

 Widget dialog;
 XmString msg, yes, no;
 extern void my_callback();

 dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
 yes = XmStringCreateLocalized ("Yes");
 no = XmStringCreateLocalized ("No");
 msg = XmStringCreateLocalized ("Do you want to quit?");

XtVaSetValues (dialog, XmNmessageString, msg, XmNokLabelString, yes, XmNcancelLabelString, no, NULL);
XtAddCallback (dialog, XmNokCallback, my_callback, NULL); XtAddCallback (dialog, XmNcancelCallback,
my_callback, NULL); XmStringFree (yes); XmStringFree (no); XmStringFree (msg);

6.3.4 Dialog Management

None of the Motif toolkit convenience functions manage the widgets that they create, so the application must call
XtManageChild() explicitly. It just so happens that managing a dialog widget that is the immediate child of a
DialogShell causes the entire dialog to pop up. Similarly, unmanaging the same dialog widget causes it and its

6 Introduction to Dialogs 6.3.4 Dialog Management

114

DialogShell parent to pop down. This behavior is consistent with the Motif toolkit's treatment of the dialog/shell
combination as a single object abstraction. The toolkit is treating its own dialog widgets as opaque objects and trying
to hide the fact that there are DialogShells associated with them. The toolkit is also making the assumption that when
the programmer manages a dialog, she wants it to pop up immediately.

This practice is somewhat presumptuous and it conflicts directly with the specifications for the X Toolkit Intrinsics.
These specifications say that when the programmer wants to display a popup shell on the screen, she should use
XtPopup(). Similarly, when the dialog is to be dismissed, the programmer should call XtPopdown(). The fact
that XtManageChild() happens to pop up the shell and XtUnmanageChild() causes it to pop down is
misleading to the new Motif programmer and confusing to the experienced Xt programmer.

You should understand that this discussion of managing dialogs does not apply to customized dialogs that you create
yourself. It only applies to the predefined Motif dialog widgets that are created as immediate children of DialogShells.
The Motif toolkit uses this method because it has been around for a long time and it must be supported for backwards
compatibility with older versions. Furthermore, using XtPopup() requires access to the DialogShell parent of a
dialog widget, which breaks the single−object abstraction.

There are two ways to manage Motif dialogs. You can follow the Motif toolkit conventions of using
XtManageChild() and XtUnmanageChild() to pop up and pop down dialog widgets or you can use
XtPopup() and XtPopdown() on the dialog's parent to do the same job. Whatever you do, it is good practice to
pick one method and be consistent throughout an application. It is possible to mix and match the methods, but there
may be some undesirable side effects, which we will address in the next few sections.

In an effort to make our applications easier to port to other Xt−based toolkits, we follow the established convention of
using XtPopup(). This technique can coexist easily with XtManageChild(), since popping up an already
popped−up shell has no effect. XtPopup() takes the following form:

 void
 XtPopup(shell, grab_kind)
 Widget shell;
 XtGrabKind grab_kind;

The shell parameter to the function must be a shell widget; in this case it happens to be a DialogShell. If you
created the dialog using one of the Motif convenience routines, you can get a handle to the DialogShell by calling
XtParent() on the dialog widget.

The grab_kind parameter can be one of XtGrabNone, XtGrabNonexclusive, or XtGrabExclusive. We
almost always use XtGrabNone, since the other values imply a server grab, which means that other windows on the
desktop are locked out. Grabbing the server results in what is called modality; it implies that the user cannot interact
with anything but the dialog. While a grab may be desirable in some cases, the Motif toolkit provides some predefined
resources that handle the grab for you automatically. The advantage of using this alternate method is that it allows the
client to communicate more closely with the Motif Window Manager (mwm) and it provides for different kinds of
modality. These methods are discussed in Section #smodaldlg. For detailed information on XtPopup() and the
different uses of grab_kind, see Volume Four, X Toolkit Intrinsics Programming Manual.

If you call XtPopup() on a dialog widget that has already been popped up using XtManageChild(), the routine
has no effect. As a result, if you attempt to specify grab_kind as something other than XtGrabNone, it also has
no effect.

The counterpart to XtPopup() is XtPopdown(). Any time you want to pop down a shell, you can use this
function, which has the following form:

6 Introduction to Dialogs 6.3.4 Dialog Management

115

 void
 XtPopdown(shell)
 Widget shell;

Again, the shell parameter should be the XtParent() of the dialog widget. If you use XtUnmanageChild()
to pop down a dialog, it is not necessary to call XtPopdown(), although we advise it for correctness and good form.
However, it is important to note that if you use XtUnmanageChild() to pop down a dialog, you must use
XtManageChild() to redisplay it again. Don't forget that the dialog widget itself is not a shell, so managing or
unmanaging it still takes place when you use the manage and unmanage functions.

Let's take a closer look at how dialogs are really used in an application. Examining the overall design and the
mechanics that are involved will help to clarify a number of issues about managing and unmanaging dialogs and
DialogShells. The program listed in the source code displays an InformationDialog when the user presses a
PushButton in the application's main window. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* hello_dialog.c −− your typical Hello World program using
 * an InformationDialog.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, rc, pb;
 extern void popup(); /* callback for the pushbuttons −− pops up dialog */
 extern void exit();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rc = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel, NULL);
 pb = XtVaCreateManagedWidget ("Hello",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (pb, XmNactivateCallback, popup, "Hello World");
 pb = XtVaCreateManagedWidget ("Goodbye",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (pb, XmNactivateCallback, exit, NULL);

 XtManageChild (rc);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback for the PushButtons. Popup an InformationDialog displaying
 * the text passed as the client data parameter.
 */
 void
 popup(button, client_data, call_data)
 Widget button;

6 Introduction to Dialogs 6.3.4 Dialog Management

116

 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog;
 XmString xm_string;
 extern void activate();
 Arg args[5];
 int n = 0;
 char *text = (char *) client_data;

 /* set the label for the dialog */
 xm_string = XmStringCreateLocalized (text);
 XtSetArg (args[n], XmNmessageString, xm_string); n++;

 /* Create the InformationDialog as child of button */
 dialog = XmCreateInformationDialog (button, "info", args, n);

 /* no longer need the compound string, free it */
 XmStringFree (xm_string);

 /* add the callback routine */
 XtAddCallback (dialog, XmNokCallback, activate, NULL);

 /* manage the dialog */
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* callback routine for when the user presses the OK button.
 * Yes, despite the fact that the OK button was pressed, the
 * widget passed to this callback routine is the dialog!
 */
 void
 activate(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 puts ("OK was pressed.");
 }

The output of this program is shown in the figure.

6 Introduction to Dialogs 6.3.4 Dialog Management

117

Output of hello_dialog.c

Dialogs are often invoked from callback routines attached to PushButtons or other interactive widgets. Once the
dialog is created and popped up, control of the program is returned to the main event−handling loop
(XtAppMainLoop()), where normal event processing resumes. At this point, if the user interacts with the dialog by
selecting a control or activating one of the action buttons, a callback routine for the dialog is invoked. In the source
code we happen to use an InformationDialog, but the type of dialog used is irrelevant to the model.

When the PushButton in the main window is pressed, popup() is called. A text string that is used as the message to
display in the InformationDialog is passed as client data. The dialog uses a single callback routine, activate(), for
the XmNokCallback resource. This function is invoked when the user presses the OK button. The callback simply
prints a message to standard output that the button has been pressed. Similar callback routines could be installed for
the Cancel and Help buttons through the XmNcancelCallback and -XmNhelpCallback resources.

6.3.5 Closing Dialogs

You might notice that activating either the OK or the Cancel button in the previous example causes the dialog to be
automatically popped down. The Motif Style Guide says that when any button in the action area of a predefined Motif
dialog is pressed, except for the Help button, the dialog should be dismissed. The Motif toolkit takes this specification
at face value and enforces the behavior, which is consistent with the idea that Motif dialogs are self−contained,
self−sufficient objects. They manage everything about themselves from their displays to their interactions with the
user. And when it's time to go away, they unmanage themselves. Your application does not have to do anything to
cause any of the behavior to occur.

Unfortunately, this behavior does not take into account error conditions or other exceptional events that may not
necessarily justify the dialog's dismissal. For example, if pressing OK causes a file to be updated, but the operation
fails, you may not want the dialog to be dismissed. If the dialog is still displayed, the user can try again without having
to repeat the actions that led to popping up the dialog.

The XmNautoUnmanage resource provides a way around the situation. This resource controls whether the dialog
box is automatically unmanaged when the user selects an action area button other than the Help button. If
XmNautoUnmanage is True, after the callback routine for the button is invoked, the DialogShell is popped down
and the dialog widget is unmanaged automatically. However, if the resource is set to False, the dialog is not
automatically unmanaged. The value of this resource defaults to True for MessageDialogs and SelectionDialogs; it
defaults to False for FileSelectionDialogs.

Since it is not always appropriate for a dialog box to unmanage itself automatically, it turns out to be easier to set
XmNautoUnmanage to False in most circumstances. This technique makes dialog management easier, since it
keeps the toolkit from indiscriminately dismissing a dialog simply because an action button has been activated. While
it is true that we could program around this situation by calling XtPopup() or XtManageChild() from a
callback routine in error conditions, this type of activity is confusing because of the double−negative action it implies.
In other words, programming around the situation is just undoing something that should not have been done in the
first place.

This discussion brings up some issues about when a dialog should be unmanaged and when it should be destroyed. If
you expect the user to have an abundant supply of computer memory, you may reuse a dialog by retaining a handle to
the dialog, as shown in Example 5−4 later in this chapter. There are also performance considerations that may affect
whether you choose to destroy or reuse dialogs. It takes less time to reuse a dialog than it does to create a new one,
provided that your application is not so large that it is consuming all of the system's resources. If you do not retain a

6 Introduction to Dialogs 6.3.5 Closing Dialogs

118

handle to a dialog, and if you need to conserve memory and other resources, you should destroy the dialog whenever
you pop it down.

Another method the user might use to close a dialog is to select the Close item from the window menu. This menu can
be pulled down from the title bar of a window. Since the menu belongs to the window manager, rather than the shell
widget or the application, you cannot install any callback routines for its menu items. However, you can use the
XmNdeleteResponse resource to control how the DialogShell responds to a Close action. The Motif VendorShell,
from which the DialogShell is subclassed, is responsible for trapping the notification and determining what to do next,
based on the value of the resource. It can have one of the following values:

XmUNMAP

This value causes the dialog to be unmapped. The dialog disappears from the screen, but it is not destroyed,
nor is it iconified. The dialog widget and its windows are still intact and can be redisplayed using
XtPopup(). This value is the default for DialogShells.

XmDESTROY

This value destroys the DialogShell and calls its XmNdestroyCallback. Note that all of the shell's
children are also destroyed, including the dialog widget and its subwidgets. When the dialog is destroyed, you
cannot redisplay the dialog or reference its handle again. If you need the dialog again, you have to create
another one. Examples of using the XmNdestroyCallback are presented in Chapter 21, Advanced Dialog
Programming.

XmDO_NOTHING

This value causes the toolkit to take no action. The value should only be specified in circumstances where you
want to handle the event on your own. However, handling the event involves much more than installing a
simple callback routine. It requires building a lower−level mechanism that interprets the proper events when
they are sent by the window manager. The most common thing to do in such cases is to activate the default
action of the dialog or to interpose a prompting mechanism to verify the user's action. This topic is discussed
in Chapter 16, Interacting With the Window Manager.
It may be convenient for your application to know when a dialog has been popped up or down. If so, you can
install callbacks that are invoked whenever either of these events take place. The actions of popping up and
down dialogs can be monitored through the -XmNpopupCallback and XmNpopdownCallback callback
routines. For example, when the function associated with a XmNpopupCallback is invoked, you could
position the dialog automatically, rather than allowing the window manager to control the placement. See
Chapter 7, Custom Dialogs, for more information on these callbacks.

6.3.6 Generalizing Dialog Creation

Posting dialogs that display informative messages is something just about every application is going to do frequently.
Rather than write a separate routine for each case where a message needs to be displayed, we can generalize the
process by writing a single routine that handles most, if not all, cases. the source code shows the PostDialog()
routine. This routine creates a MessageDialog of a given type and displays an arbitrary message. Rather than use the
convenience functions provided by Motif for each of the MessageDialog types, the routine uses the generic function
XmCreateMessageDialog() and configures the symbol to be displayed by setting the XmNdialogType
resource. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /*
 * PostDialog() −− a generalized routine that allows the programmer
 * to specify a dialog type (message, information, error, help, etc..),

6 Introduction to Dialogs 6.3.6 Generalizing Dialog Creation

119

 * and the message to display.
 */
 Widget
 PostDialog(parent, dialog_type, msg)
 Widget parent;
 int dialog_type;
 char *msg;
 {
 Widget dialog;
 XmString text;

 dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
 text = XmStringCreateLocalized (msg);
 XtVaSetValues (dialog,
 XmNdialogType, dialog_type,
 XmNmessageString, text,
 NULL);
 XmStringFree (text);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);

 return dialog;
 }

This routine allows the programmer to specify several parameters: the parent widget, the type of dialog that is to be
used, and the message that is to be displayed. The function returns the new dialog widget, so that the calling routine
can modify it, unmanage it, or keep a handle to it. You may have additional requirements that this simplified example
does not satisfy. For instance, the routine does not allow you to specify callback functions for the buttons in the action
area and it does not handle the destruction of the widget when it is no longer needed. You could extend the routine to
handle these issues, or you could control them outside the context of the function. You may also want to extend the
routine so that it reuses the same dialog each time it is called and so that it allows you to disable the different action
area buttons. All of these issues are discussed again in Chapter 6, Selection Dialogs, and in Chapter 21, Advanced
Dialog Programming.

6.4 Dialog Resources

The following sections discuss resources that are specific to Motif dialogs. In most cases, these resources are
BulletinBoard widget resources, since all Motif dialogs are subclassed from this class. However, they are not intended
to be used by generic BulletinBoard widgets. The resources only apply when the widget is an immediate child of a
DialogShell widget; they are really intended to be used exclusively by the predefined Motif dialog classes. Remember
that the resources must be set on the dialog widget, not the DialogShell. See Chapter 8, Manager Widgets, for details
on the generic BulletinBoard resources.

6.4.1 The Default Button

All predefined Motif dialogs have a default button in their action area. The default button is activated when the user
presses the RETURN key in the dialog. The OK button is normally the default button, but once the dialog is
displayed, the user can change the default button by using the arrow keys to traverse the action buttons. The action
button with the keyboard focus is always the default button. Since the default button can be changed by the user, the
button that is the default is only important when the dialog is initially popped up. The importance of the default button
lies in its ability to influence the user's default response to the dialog.

6 Introduction to Dialogs 6.4 Dialog Resources

120

You can change the default button for a MessageDialog by setting the XmNdefaultButtonType resource on the
dialog widget. This resource is specific to MessageDialogs; it cannot be set for the various types of selection dialogs.
The resource can have one of the following values:

XmDIALOG_OK_BUTTON

This value specifies that the default button is the furthest button on the left of the dialog. By default, this
button is the OK button, although its label may have been changed to another string.

XmDIALOG_CANCEL_BUTTON

This value specifies that the Cancel button is the default button. This value is appropriate in situations where
the action of the dialog is destructive, such as for a WarningDialog that is posted in order to warn the user of a
possibly dangerous action.

XmDIALOG_HELP_BUTTON

This value specifies the Help button, which is always the furthest button on the right of a Motif dialog. This
button is rarely set as the default button.

XmDIALOG_NONE

This value specifies that there is no default button.
T h e v a l u e s f o r X m N d e f a u l t B u t t o n T y p e c o m e u p a g a i n l a t e r , w h e n w e d i s c u s s
X m M e s s a g e B o x G e t C h i l d () a n d a g a i n i n C h a p t e r 6 , S e l e c t i o n D i a l o g s , f o r
XmSelectionBoxGetChild(). An example of how the default button type can be used is shown in the
s o u r c e c o d e X m S t r i n g C r e a t e L o c a l i z e d () i s o n l y a v a i l a b l e i n M o t i f 1 . 2 ;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /*
 * WarningMsg() −− Inform the user that she is about to embark on a
 * dangerous mission and give her the opportunity to back out.
 */
 void
 WarningMsg(parent, client_data, call_data)
 Widget parent;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget dialog;
 XmString text, ok_str, cancel_str;
 char *msg = (char *) client_data;

 if (!dialog)
 dialog = XmCreateWarningDialog (parent, "warning", NULL, 0);
 text = XmStringCreateLtoR (msg, XmFONTLIST_DEFAULT_TAG);
 ok_str = XmStringCreateLocalized ("Yes");
 cancel_str = XmStringCreateLocalized ("No");
 XtVaSetValues (dialog,
 XmNmessageString, text,
 XmNokLabelString, ok_str,
 XmNcancelLabelString, cancel_str,
 XmNdefaultButtonType, XmDIALOG_CANCEL_BUTTON,
 NULL);
 XmStringFree (text);
 XmStringFree (ok_str);
 XmStringFree (cancel_str);

 XtManageChild (dialog);

6 Introduction to Dialogs 6.4 Dialog Resources

121

 XtPopup (XtParent (dialog), XtGrabNone);
 }

The intent of this function is to create a dialog that tries to discourage the user from performing a destructive
action. By using a WarningDialog and by making the Cancel button the default choice, we have given the
user adequate warning that the action may have dangerous consequences. The output of a program running
this code fragment is shown in the figure.

Output of WarningMsg()

You can also set the defaul t but ton for a dialog by the sett ing the Bul let inBoard resource
-XmNdefaultButton. This technique works for both MessageDialogs and SelectionDialogs. The resource
value must be a widget ID, which means that you have to get a handle to a subwidget in the dialog to set the
resource. You can get the handle to subwidgets us ing XmMessageBoxGetChi ld() or
XmSelectionBoxGetChild(). Since this method breaks the Motif dialog abstraction, we describe it
later in Section #sinternwid.

6.4.2 Initial Keyboard Focus

When a dialog widget is popped up, one of the internal widgets in the dialog has the keyboard focus. This widget is
typically the default button for the dialog, which makes sense in most cases. However, there are situations where it is
appropriate for another widget to have the initial keyboard focus. For example, when a PromptDialog is popped up, it
makes sense for the TextField to have the keyboard focus so that the user can immediately start typing a response.

In Motif 1.1, it is not easy to set the initial keyboard focus in a dialog widget to anything other than a button in the
action area. Motif 1.2 has introduced the XmNinitialFocus resource to deal with this situation. Since this resource
is a Manager widget resource, it can be used for both MessageDialogs and SelectionDialogs, although it is normally
only used for SelectionDialogs. The resource specifies the subwidget that has the keyboard focus the first time that the
dialog is popped up. If the dialog is popped down and popped up again later, it remembers the widget that had the
keyboard focus when it was popped down and that widget is given the keyboard focus again. The resource value must
again be a widget ID. The default value of XmNinitialFocus for MessageDialogs is the subwidget that is also the
XmNdefaultButton for the dialog. For SelectionDialogs, the text entry area is the default value for the resource.

6.4.3 Button Sizes

The XmNminimizeButtons resource controls how the dialog sets the widths of the action area buttons. If the
resource is set to True, the width of each button is set so that it is as small as possible while still enclosing the entire

6 Introduction to Dialogs 6.4.2 Initial Keyboard Focus

122

label, which means that each button will have a different width. The default value of False specifies that the width
of each button is set to the width of the widest button, so that all buttons have the same width.

6.4.4 The Dialog Title

When a new shell widget is mapped to the screen, the window manager creates its own window that contains the title
bar, resize handles, and other window decorations and makes the window of the DialogShell the child of this new
window. This technique is called reparenting a window; it is only done by the window manager in order to add
window decorations to a shell window. The window manager reparents instances of all of the shell widget classes
except OverrideShell. These shells are used for menus and thus should not have window manager decorations.

Most window managers that reparent shell windows display titles in the title bars of their windows. For predefined
Motif dialogs, the Motif toolkit sets the default title to the name of the dialog widget with the string _popup
appended. Since this string is almost certainly not an appropriate title for the window, you can change the title
explicitly using the -XmNdialogTitle BulletinBoard resource. (Do not confuse this title with the message
displayed in MessageDialog, which is set by XmNmessageString.) The value for -XmNdialogTitle must be a
compound string. The BulletinBoard in turn sets the -XmNtitle resource of the DialogShell; the value of this
resource is a regular C string.

So, you can set the title for a dialog window in one of two ways. The following code fragment shows how to set the
title using the -XmNdialogTitle resource:

 XmString title_string;

 title_string = XmStringCreateLocalized ("Dialog Box");
 dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);
 XtVaSetValues (dialog,
 XmNdialogTitle, title_string,
 NULL);
 XmStringFree (title_string);

This technique requires creating a compound string. If you set the XmNtitle resource directly on the DialogShell,
you can use a regular C string, as in the following code fragment:

 dialog = XmCreateMessageDialog (parent, "dialog_name", NULL, 0);
 XtVaSetValues (XtParent (dialog),
 XmNtitle, "Dialog Box",
 NULL);

While the latter method is easier and does not require creating and freeing a compound string, it does break the
abstraction of treating the dialog as a single entity.

6.4.5 Dialog Resizing

The XmNnoResize resource controls whether or not the window manager allows the dialog to be resized. If the
resource is set to True, the window manager does not display resize handles in the window manager frame for the
dialog. The default value of False specifies that the window manager should provide resize handles. Since some
dialogs cannot handle resize events very well, you may find it better aesthetically to prevent the user from resizing
them.

This resource is an attribute of the BulletinBoard widget, even though it only affects the shell widget parent of a
dialog widget. The resource is provided as a convenience to the programmer, so that she is not required to get a handle

6 Introduction to Dialogs 6.4.4 The Dialog Title

123

to the DialogShell. The resource only affects the presence of resize handles in the window manager frame; it does not
deal with other window manager controls. See Chapter 16, Interacting With the Window Manager, for details on how
to specify the window manager controls for a DialogShell, or any shell widget, directly.

6.4.6 Dialog Fonts

The BulletinBoard widget provides resources that enable you to specify the fonts that are used for all of the button,
Label, and Text widget descendants of the BulletinBoard. Since Motif dialog widgets are subclassed from the
BulletinBoard, you can use these resources to make sure that the fonts that are used within a dialog are consistent. The
XmNbuttonFontList resource specifies the font list that is used for all of the button descendants of the dialog.
The resource is set on the dialog widget itself, not on its individual children. Similarly, the XmNlabelFontList
resource is used to set the font list for all of the Label descendants of the dialog and XmNtextFontList is used for
all of the Text and TextField descendants.

If one of these resources is not set, the toolkit determines the font list by searching up the widget hierarchy for an
ancestor that is a subclass of BulletinBoard, VendorShell, or MenuShell. If an ancestor is found, the font list resource
is set to the value of that font list resource in the ancestor widget. See Chapter 19, Compound Strings, for more
information on font lists.

You can override the XmNbuttonFontList, XmNlabelFontList, and XmNtextFontList resources on a
per−widget basis by setting the XmNfontList resource directly on individual widgets. Of course, you must break
the dialog abstraction and retrieve the widgets internal to the dialog itself to set this resource. While we describe how
to do this in the following section, we do not recommend configuring dialogs down to this level of detail.

6.5 Dialog Callback Routines

As mentioned earlier, the predefined Motif dialogs have their own resources to reference the labels and callback
routines for the action area PushButtons. Instead of accessing the PushButton widgets in the action area to install
callbacks, you use the resources XmNokCallback, XmNcancelCallback, and XmNhelpCallback on the
dialog widget itself. These callbacks correspond to each of the three buttons, OK, Cancel, and Help.

Installing callbacks for a dialog is no different than installing them for any other type of Motif widget; it may just
seem different because the dialog widgets contain so many subwidgets. The following code fragment demonstrates the
installation of simple callback for all of the buttons in a MessageDialog:

 ...
 dialog = XmCreateMessageDialog (w, "notice", NULL, 0);
 ...
 XtAddCallback (dialog, XmNokCallback, ok_pushed, "Hi");
 XtAddCallback (dialog, XmNcancelCallback, cancel_pushed, "Foo");
 XtAddCallback (dialog, XmNhelpCallback, help_pushed, NULL);
 XtManageChild (dialog);
 ...

 /* ok_pushed() −−the OK button was selected. */
 void
 ok_pushed(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;

XtPointer call_data; { char *message = (char *) client_data; printf ("OK was selected: %s0, message); } /*
cancel_pushed() −−the Cancel button was selected. */ void cancel_pushed(widget, client_data, call_data) Widget

6 Introduction to Dialogs 6.4.6 Dialog Fonts

124

widget; XtPointer client_data;

XtPointer call_data; { char *message = (char *) client_data; printf ("Cancel was selected: %s0, message); } /*
help_pushed() −−the Help button was selected. */ void help_pushed(widget, client_data, call_data) Widget widget;
XtPointer client_data;

XtPointer call_data; { printf ("Help was selected0); } In this example, a dialog is created and callback routines for
each of the three responses are added using XtAddCallback(). We also provide simple client data to demonstrate
how the data is passed to the callback routines. These callback routines simply print the fact that they have been
activated; the messages they print are taken from the client data.

All of the dialog callback routines take three parameters, just like any standard callback routine. The widget
parameter is the dialog widget that contains the button that was selected; it is not the DialogShell widget or the
PushButton that the user selected from the action area. The second parameter is the client_data, which is
supplied to XtAddCallback(), and the third is the call_data, which is provided by the internals of the widget
that invoked the callback.

The client_data parameter is of type XtPointer, which means that you can pass arbitrary values to the
function, depending on what is necessary. However, you cannot pass a float or a double value or an actual data
structure. If you need to pass such values, you must pass the address of the variable or a pointer to the data structure.
In keeping with the philosophy of abstracting and generalizing code, you should use the client_data parameter as
much as possible because it eliminates the need for some global variables and it keeps the structure of an application
modular.

For the predefined Motif dialogs, the call_data parameter is a pointer to a data structure that is filled in by the
dialog box when the callback is invoked. The data structure contains a callback reason and the event that invoked the
callback. The structure is of type XmAnyCallbackStruct, which is declared as follows:

 typedef struct {
 int reason;
 XEvent *event;
 } XmAnyCallbackStruct;

The value of the reason field is an integer value that can be any one of XmCR_HELP, XmCR_OK, or
XmCR_CANCEL. The value specifies the button that the user pressed in the dialog box. The values for the reason
field remain the same, no matter how you change the button labels for a dialog. For example, you can change the label
for the OK button to say Help, using the resource XmNokLabelString, but the reason parameter will still be
XmCR_OK when the button is activated.

Because the reason field provides information about the user's response to the dialog in terms of the button that was
pushed, we can simplify the previous code fragment and use one callback function for all of the possible actions. The
callback function can determine which button was selected by examining reason. the source code demonstrates this
simplification. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* reason.c −− examine the reason field of the callback structure
 * passed as the call_data of the callback function. This field
 * indicates which action area button in the dialog was pressed.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

6 Introduction to Dialogs 6.4.6 Dialog Fonts

125

 /* main() −−create a pushbutton whose callback pops up a dialog box */
 main(argc, argv)
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, rc, pb;
 extern void pushed();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel, NULL);

 pb = XtVaCreateManagedWidget ("Hello",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (pb, XmNactivateCallback, pushed, "Hello World");

 pb = XtVaCreateManagedWidget ("Goodbye",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (pb, XmNactivateCallback, pushed, "Goodbye World");

 XtManageChild (rc);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* pushed() −−the callback routine for the main app's pushbuttons.
 * Create and popup a dialog box that has callback functions for
 * the OK, Cancel and Help buttons.
 */
 void
 pushed(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget dialog;
 char *message = (char *) client_data;
 XmString t = XmStringCreateLocalized (message);

 /* See if we've already created this dialog −− if so,
 * we don't need to create it again. Just set the message
 * and manage it (repop it up).
 */
 if (!dialog) {
 extern void callback();
 Arg args[5];
 int n = 0;

 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 dialog = XmCreateMessageDialog (widget, "notice", args, n);
 XtAddCallback (dialog, XmNokCallback, callback, "Hi");
 XtAddCallback (dialog, XmNcancelCallback, callback, "Foo");
 XtAddCallback (dialog, XmNhelpCallback, callback, "Bar");
 }
 XtVaSetValues (dialog, XmNmessageString, t, NULL);
 XmStringFree (t);
 XtManageChild (dialog);

6 Introduction to Dialogs 6.4.6 Dialog Fonts

126

 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* callback() −−One of the dialog buttons was selected.
 * Determine which one by examining the "reason" parameter.
 */
 void
 callback(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *button;
 char *message = (char *) client_data;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

 switch (cbs−>reason) {
 case XmCR_OK : button = "OK"; break;
 case XmCR_CANCEL : button = "Cancel"; break;
 case XmCR_HELP : button = "Help";
 }
 printf ("%s was selected: %s0, button, message);
 if (cbs−>reason != XmCR_HELP) {
 /* the ok and cancel buttons "close" the widget */
 XtPopdown (XtParent (widget));
 }
 }

Another interesting change in this application is the way pushed() determines if the dialog has already been
created. By making the dialog widget handle static to the pushed() callback function, we retain a handle to this
object across multiple button presses. For each invocation of the callback, the dialog's message is reset and it is
popped up again.

Considering style guide issues again, it is important to know when it is appropriate to dismiss a dialog. As noted
earlier, the toolkit automatically unmanages a dialog whenever any of the action area buttons are activated, except for
the Help button. This behavior is controlled by XmNautoUnmanage, which defaults to True. However, if you set
this resource to False, the callback routines for the buttons in the action area have to control the behavior on their
own. In the source code the callback routine pops down the dialog when the reason is XmCR_OK or XmCR_CANCEL,
but not when it is XmCR_HELP.

6.6 Piercing the Dialog Abstraction

As described earlier, Motif treats dialogs as if they are single user−interface objects. However, there are times when
you need to break this abstraction and work with some of the individual widgets that make up a dialog. This section
describes how the dialog convenience routines work, how to work directly with the DialogShell, and how to access
the widgets that are internal to dialogs.

6.6.1 Convenience Routines

The fact that Motif dialogs are self−sufficient does not imply that they are black boxes that perform magic that you
cannot perform yourself. For example, the convenience routines for the MessageDialog types follow these basic steps:

Create a popup widget of type xmDialogShellWidgetClass using XtCreatePopupShell().•
Create a widget of type xmMessageBoxWidgetClass as the child of the DialogShell.•

6 Introduction to Dialogs 6.6 Piercing the Dialog Abstraction

127

Set the XmNdialogType resource for the dialog.•
Install a callback routine for the XmNdestroyCallback resource of the MessageBox, so that it
automatically destroys its DialogShell parent.

•

The XmNdialogType resource can be set to one of the following values:

 XmDIALOG_ERROR
 XmDIALOG_INFORMATION
 XmDIALOG_MESSAGE
 XmDIALOG_QUESTION
 XmDIALOG_TEMPLATE
 XmDIALOG_WARNING
 XmDIALOG_WORKING

The type of the dialog does not affect the kind of widget that is created. The only thing the type affects is the graphical
symbol that is displayed in the control area of the dialog. The convenience routines set the resource based on the
routine that is called (e.g. XmCreateErrorDialog() sets the resource to XmDIALOG_ERROR). The widget
automatically sets the graphical symbol based on the dialog type. You can change the type of a dialog after it is
created using XtVaSetValues(); modifying the type also changes the dialog symbol that is displayed.

The Motif dialog convenience routines create DialogShells internally to support the single−object dialog abstraction.
With these rout ines, the toolk i t is responsible for the DialogShel l , so the dialog widget uses i ts
XmNdestroyCallback to destroy its parent upon its own destruction. If the dialog is unmapped or unmanaged, so
is its DialogShell parent. The convenience routines do not add any resources or call any functions to support the
special relationship between the dialog widget and the DialogShell, since most of the code that handles the interaction
is written into the internals of the BulletinBoard.

6.6.2 The DialogShell

As your programs become more complex, you may eventually have to access the DialogShell parent of a dialog
widget in order to get certain things done. This section examines DialogShells as independent widgets and describes
how they are different from other shell widgets. There are three main features of a DialogShell that differentiate it
from an ApplicationShell and a TopLevelShell.

A DialogShell cannot be iconified by the user or by the application.•
When the parent of a DialogShell is iconified, withdrawn, unmapped, or destroyed, the DialogShell children
of that window are withdrawn or destroyed.

•

A DialogShell is always placed on top of the shell widget that owns the parent of the DialogShell.•

The DialogShell is subclassed from the TransientShell and VendorShell classes. A shell that is subclassed from
TransientShell cannot be iconified independently of its parent. However, if the parent of a DialogShell is iconified or
unmapped, the DialogShell is unmapped as well. If the parent is destroyed, so is the DialogShell and the dialog within
it. Remember, the parent of the DialogShell is another widget somewhere in the application, such as a Label, a
PushButton, as ApplicationShell, or even another DialogShell. For example, if the callback for PushButton creates a
dialog, the PushButton might be designated as the owner of the dialog. If the shell that contains the PushButton is
iconified, the dialog is also withdrawn from the screen. If the PushButton's shell or the PushButton itself is destroyed,
the dialog is destroyed as well.

The parent−child relationship between a DialogShell and its parent is different from the classic case, where the parent
actually contains the child within its geometrical bounds. The DialogShell widget is a popup child of its parent, which
means that the usual geometry−management relationship does not apply. Nonetheless, the parent widget must be
managed in order for the child to be displayed. If a widget has popup children, those children are not mapped to the

6 Introduction to Dialogs 6.6.2 The DialogShell

128

screen if the parent is not managed, which means that you must never make a menu item the parent of a DialogShell.

Assuming that the parent is displayed, the window manager attempts to place the DialogShell based on the value of
the XmNdefaultPosition BulletinBoard resource. The default value of this resource is True, which means that
the window manager positions the DialogShell so that it is centered on top of its parent. If the resource is set to
False, the application and the window manager negotiate about where the dialog is placed. This resource is only
relevant when the BulletinBoard is the immediate child of a DialogShell, which is always the case for Motif dialogs. If
you want, you can position the dialog by setting the XmNx and XmNy resources for the dialog widget. Positioning the
dialog on the screen must be done through a XmNmapCallback routine, which is called whenever the application
calls XtManageChild(). See Chapter 7, Custom Dialogs, for a discussion about dialog positioning.

The Motif Window Manager imposes an additional constraint on the stacking order of the DialogShell and its parent.
mwm always forces the DialogShell to be directly on top of its parent in the stacking order. The result is that the shell
that contains the widget acting as the parent of the DialogShell cannot be placed on top of the dialog. This behavior is
defined by the Motif Style Guide and is enforced by the Motif Window Manager and the Motif toolkit. Many
end−users have been known to report the behavior as an application−design bug, so you may want to describe this
behavior explicitly in the documentation for your application, in order to prepare the user ahead of time.

Internally, DialogShell widgets communicate frequently with dialog widgets in order to support the single−entity
abstraction promoted by the Motif toolkit. However, you may find that you need to access the DialogShell part of a
Motif dialog in order to query information from the shell or to perform certain actions on it. The include file
<Xm/DialogS.h> provides a convenient macro for identifying whether or not a particular widget is a DialogShell:

 #define XmIsDialogShell(w) XtIsSubclass(w, xmDialogShellWidgetClass)

If you need to use this macro, or you want to create a DialogShell using XmCreateDialogShell(), you need to
include <Xm/DialogS.h>.

The macro is useful if you want to determine whether or not a dialog widget is the direct child of a DialogShell. For
example, earlier in this chapter, we mentioned that the Motif Style Guide suggests that if the user activates the OK
button in a MessageDialog, the entire dialog should be popped down. If you have created a MessageDialog without
using XmCreateMessageDialog() and you want to be sure that the same thing happens when the user presses
the OK button in that dialog, you need to test whether or not the parent is a DialogShell before you pop down the
dialog. The following code fragment shows the use of the macro in this type of situation:

 /* traverse up widget tree till we find a window manager shell */
 Widget
 GetTopShell(widget)
 Widget widget;
 {
 while (widget && !XmIsWMShell (widget))
 widget = XtParent (widget));

 return widget;
 }

 void
 ok_callback(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 /* do whatever the callback needs to do ... */

6 Introduction to Dialogs 6.6.2 The DialogShell

129

/* if immediate parent is not a DialogShell, mimic the same * behavior as if it were (i.e., pop down the parent.) */ if
(!XmIsDialogShell (XtParent (dialog))) XtPopdown (GetTopShell (dialog)); } The Motif toolkit defines similar
macros for all of its widget classes. For example, <Xm/MessageB.h> defines the macro XmIsMessageBox():

 #define XmIsMessageBox(w) XtIsSubclass (w, xmMessageBoxWidgetClass)

This macro determines whether or not a particular widget is subclassed from the MessageBox widget class. Since all
of the MessageDialogs are really instances of the MessageBox class, the macro covers all of the different types of
MessageDialogs. If the widget is a MessageBox, the macro returns True whether or not the widget is an immediate
child of a DialogShell. Note that this macro does not return True if the widget is a DialogShell.

6.6.3 Internal Widgets

All of the Motif dialog widgets are composed of primitive subwidgets such as Labels, PushButtons, and TextField
widgets. For most tasks, it is possible to treat a dialog as a single entity. However, there are some situations when it is
useful to be able to get a handle to the widgets internal to the dialog. For example, one way to set the default button
for a dialog is to use the XmNdefaultButton resource. The value that you specify for this resource must be a
widget ID, so this is one of those times when it is necessary to get a handle to the actual subwidgets contained within a
dialog.

The Motif toolkit provides routines that allow you to access the internal widgets. For MessageDialogs, you can
retrieve the subwidgets using XmMessageBoxGetChild(), which has the following form:

 Widget
 XmMessageBoxGetChild(widget, child)
 Widget widget;
 unsigned char child;

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The child parameter is an
enumerated value that specifies a particular subwidget in the dialog. The parameter can have any one of the following
values:

 XmDIALOG_OK_BUTTON
 XmDIALOG_CANCEL_BUTTON
 XmDIALOG_HELP_BUTTON
 XmDIALOG_DEFAULT_BUTTON
 XmDIALOG_MESSAGE_LABEL
 XmDIALOG_SEPARATOR
 XmDIALOG_SYMBOL_LABEL

The values refer to the different widgets in a MessageDialog and they should be self−explanatory. For
SelectionDialogs, the toolkit provides the XmSelectionBoxGetChild() routine. This routine is identical to
XmMessageBoxGetChild(), except that it takes different values for the different widgets in a SelectionDialog.
The routine is discussed in Chapter 6, Selection Dialogs.

One method that you can use to customize the predefined Motif dialogs is to unmanage the subwidgets that are
inappropr ia te for your purposes. To get the widget ID for a w idget , so that you can pass i t to
XtUnmanageChild(), you need to call XmMessageBoxGetChild(). You can also use this routine to get a
handle to a widget that you want to temporarily disable. These techniques are demonstrated in the following code
fragment:

 text = XmStringCreateLocalized ("You have new mail.");
 XtSetArg (args[0], XmNmessageString, text);

6 Introduction to Dialogs 6.6.3 Internal Widgets

130

 dialog = XmCreateInformationDialog (parent, "message", args, 1);
 XmStringFree (text);

 XtSetSensitive (
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));

The output of a program using this code fragment is shown in the figure.

MessageDialog with an unmanaged Cancel button and an insensitive Help button

Since the message in this dialog is so simple, it does not make sense to have both an OK and a Cancel button, so we
unmanage the latter. On the other hand, it does make sense to have a Help button. However, there is currently no help
available, so we make the button unselectable by desensitizing it using XtSetSensitive().

6.7 Dialog Modality

The concept of forcing the user to respond to a dialog is known as modality. Modality governs whether or not the user
can interact with other windows on the desktop while a particular dialog is active. Dialogs are either modal or
modeless. There are three levels of modality: primary application modal, full application modal, and system modal. In
all cases, the user must interact with a modal dialog before control is released and normal input is re-sumed. In a
system modal dialog, the user is prevented from interacting with any other window on the display. Full application
modal dialogs allow the user to interact with any window on the desktop except those that are part of the same
application as the modal window. Primary application modal dialogs allow the user to interact with any other window
on the display except for the window that is acting as the parent for this particular dialog.

For example, if the user selected an action that caused an error dialog to be displayed, the dialog could be primary
application modal, so that the user would have to acknowledge the error before she interacts with the same window
again. This type of modality does not restrict her ability to interact with another window in the same application,
provided that the other window is not the one acting as the parent for the modal dialog.

Modal dialogs are perhaps the most frequently misused feature of a graphical user interface. Programmers who fail to
grasp the concept of event−driven programming and design, whereby the user is in control, often fall into the
convenient escape route that modal dialogs provide. This problem is difficult to detect, let alone cure, because there
are just as many right ways to invoke modal dialogs as there are wrong ways. Modality should be used in moderation,
but it should also be used consistently. Let's examine a common scenario. Note that this example does not necessarily
favor using modal dialogs; it is presented as a reference point for the types of things that people are used to doing in
tty−based programs.

6 Introduction to Dialogs 6.7 Dialog Modality

131

A text editor has a function that allows the user to save its text to a file. In order to save the text, the program needs a
filename. Once it has a filename, the program needs to check that the user has sufficient permission to open or create
the file and it also needs to see if there is already some text in the file. If an error condition occurs, the program needs
to notify the user of the error, ask for a new filename, or get permission to overwrite the file's contents. Whatever the
case, some interaction with the user is necessary in order to proceed. If this were a typical terminal−based application,
the program flow would be similar to that in the following code fragment:

 FILE *fp;
 char buf[BUFSIZ], file[BUFSIZ];
 extern char *index();

 printf ("What file would you like to use? ");
 if (!(fgets (file, sizeof file, stdin)) || file[0] == 0) {
 puts ("Cancelled.");
 return;
 }

 (index (file, '0)) = 0; / get rid of newline terminator */

 /* "a+" creates file if it doesn't exist */
 if (!(fp = fopen (file, "a+"))) {
 perror (file);
 return;
 }

 if (ftell (fp) > 0) { /* There's junk in the file already */
 printf ("Overwrite contents of %s? ", file);
 buf[0] = 0;
 if (!(fgets (buf, sizeof buf, stdin)) || buf[0] == 0 ||
 buf[0] == 'n' || buf[0] == 'N') {
 puts ("Cancelled.");
 fclose (fp);
 return;
 }
 }

 rewind (fp);

This style of program flow is still possible with a graphical user interface system using modal dialogs. In fact, the
style is frequently used by engineers who are trying to port tty−based applications to Motif. It is also a logical
approach to programming, since it does one task followed by another, asking only for information that it needs when it
needs it.

However, in an event−driven environment, where the user can interact with many different parts of the program
simultaneously, displaying a series of modal dialogs is not the best way to handle input and frequently it's just plain
wrong as a design approach. You must adopt a new paradigm in interface design that conforms to the capabilities of
the window system and meets the expectations of the user. It is essential that you understand the event−driven model
if you want to create well−written, easy−to−use applications.

Window−based applications should be modeled on the behavior of a person filling out a form, such as an employment
application or a medical questionnaire. Under this scenario, you are given a form asking various questions. You take it
to your seat and fill it out however you choose. If it asks for your license number, you can get out your driver's license
and copy down the number. If it asks for your checking account number, you can examine your checkbook for that
information. The order in which you fill out the application is entirely up to you. You are free to examine the entire
form and fill out whatever portions you like, in whatever order you like.

6 Introduction to Dialogs 6.7 Dialog Modality

132

When the form is complete, you return it to the person who gave it to you. The attendant can check it over to see if
you forgot something. If there are errors, you typically take it back and continue until it's right. The attendant can
simply ask you the question straight out and write down whatever you say, but this prevents him from doing other
work or dealing with other people. Furthermore, if you don't know the answer to the question right away, then you
have to take the form back and fill it out the way you were doing it before. No matter how you look at it, this process
is not an interview where you are asked questions in sequence and must answer them that way. You are supposed to
prepare the form off−line, without requiring interaction from anyone else.

Window−based applications should be treated no differently. Each window, or dialog, can be considered to be a form
of some sort. Allow the user to fill out the form at her own convenience and however she chooses. If she wants to
interact with other parts of the application or other programs on the desktop, she should be allowed to do so. When the
user selects one of the buttons in the action area, this action is her way of returning the form. At this time, you may
either accept it or reject it. At no point in the process so far have we needed a modal dialog.

Once the form has been submitted, you can take whatever action is appropriate. If there are errors in any section of the
dialog, you may need to notify the user of the error. Here is where a modal dialog can be used legitimately. For
example, if the user is using a FileSelectionDialog to specify the file she wants to read and the file is unreadable, then
you must notify her so that she can make another selection. In this case, the notification is usually in the form of an
ErrorDialog, with a message that explains the error and an OK button. The user can read the message and press the
button to acknowledge the error.

It is often difficult to judge what types of questions or how much information is appropriate in modal dialogs. The rule
of thumb is that questions in modal dialogs should be limited to simple, yes/no questions. You should not prompt for
any information that is already available through an existing dialog, but instead bring up that dialog and instruct the
user to provide the necessary information there. You should also avoid posting modal dialogs that prompt for a
filename or anything else that requires typing. You should be requesting this type of information through the text
fields of modeless dialog boxes.

As for the issue of forcing the user to fill out forms in a particular order, it may be perfectly reasonable to require this
type of interaction. You should implement these restrictions by managing and unmanaging separate dialogs, rather
than by using modal dialogs to prevent interaction with all but a single dialog.

All of these admonitions are not to suggest that modal dialogs are rare or that you should avoid using them at all costs.
On the contrary, they are extremely useful in certain situations, are quite common, and are used in a wide variety of
ways−−even those that we might not recommend. We have presented all of these warnings because modal dialogs are
frequently misused and programs that use fewer of them are usually better than those that use more of them. Modal
dialogs interrupt the user and disrupt the flow of work in an application. There is no sanity checking to prevent you
from misusing dialogs so it is up to you to keep the use of modal dialogs to a minimum.

6.7.1 Implementing Modal Dialogs

Once you have determined that you need to implement a modal dialog, you can use the -XmNdialogStyle resource
to set the modality of the dialog. This resource is defined by the BulletinBoard widget class; it is only relevant when
the widget is an immediate child of a DialogShell. The resource can be set to one of the following values: The value
XmDIALOG_APPLICATION_MODAL is used for backwards compatibility with Motif 1.0; it is defined to be the same
as XmDIALOG_PRIMARY_APPLICATION_MODAL.

 XmDIALOG_MODELESS
 XmDIALOG_PRIMARY_APPLICATION_MODAL
 XmDIALOG_FULL_APPLICATION_MODAL
 XmDIALOG_SYSTEM_MODAL

6 Introduction to Dialogs 6.7.1 Implementing Modal Dialogs

133

XmDIALOG_MODELESS is the default value for the resource, so unless you change the value any dialog that you
create will be modeless.

When you use one of the modal values, the user has no choice but to respond to your dialog box before continuing to
i n te rac t w i t h t he app l i ca t i on . I f you use moda l i t y a t a l l , you shou ld p robab l y avo id us i ng
XmDIALOG_SYSTEM_MODAL, since it is rarely necessary to restrict the user from interacting with all of the other
applications on the desktop. This style of modality is typically reserved for system−level interactions. Under the Motif
Window Manager, when a system modal dialog is popped up, if the user moves the mouse outside of the modal
dialog, the cursor turns into the international "do not enter" symbol. Attempts to interact with other windows cause the
server to beep.

the source code shows a sample program that displays a dialog box that the user must reply to before continuing to
interact with the application. XtSetLanguageProc() is only available in X11R5; there is no corresponding
f u n c t i o n i n X 1 1 R 4 . X m S t r i n g C r e a t e L o c a l i z e d () i s o n l y a v a i l a b l e i n M o t i f 1 . 2 ;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* modal.c −− demonstrate modal dialogs. Display two pushbuttons
 * each activating a modal dialog.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 /* main() −−create a pushbutton whose callback pops up a dialog box */
 main(argc, argv)
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, button, rowcolumn;
 void pushed();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcolumn = XtCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel, NULL, 0);

 button = XtCreateManagedWidget ("Application Modal",
 xmPushButtonWidgetClass, rowcolumn, NULL, 0);
 XtAddCallback (button, XmNactivateCallback,
 pushed, XmDIALOG_FULL_APPLICATION_MODAL);
 button = XtCreateManagedWidget ("System Modal",
 xmPushButtonWidgetClass, rowcolumn, NULL, 0);
 XtAddCallback (button, XmNactivateCallback, pushed,
 XmDIALOG_SYSTEM_MODAL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* pushed() −−the callback routine for the main app's pushbutton.
 * Create either a full−application or system modal dialog box.
 */
 void
 pushed(widget, client_data, call_data)
 Widget widget;

6 Introduction to Dialogs 6.7.1 Implementing Modal Dialogs

134

 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget dialog;
 XmString t;
 extern void dlg_callback();
 unsigned char modality = (unsigned char) client_data;

 /* See if we've already created this dialog −− if so,
 * we don't need to create it again. Just re−pop it up.
 */
 if (!dialog) {
 Arg args[5];
 int n = 0;
 XmString ok = XmStringCreateLocalized ("OK");
 XtSetArg(args[n], XmNautoUnmanage, False); n++;
 XtSetArg(args[n], XmNcancelLabelString, ok); n++;
 dialog = XmCreateInformationDialog (widget, "notice", args, n);
 XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_OK_BUTTON));
 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));
 }
 t = XmStringCreateLocalized ("You must reply to this message now!");
 XtVaSetValues (dialog,
 XmNmessageString, t,
 XmNdialogStyle, modality,
 NULL);
 XmStringFree (t);
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 void
 dlg_callback(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 XtPopdown (XtParent (dialog));
 }

The output of this program is shown in the figure.

6 Introduction to Dialogs 6.7.1 Implementing Modal Dialogs

135

Output of modal.c

This program demonstrates both application modal and system modal dialogs. The value for the XmNdialogType
resource is passed as client data to the callback routine that posts the dialog.

6.7.2 Forcing an Immediate Response

In the source code once the dialog is posted, the function returns so that XtAppMainLoop() can continue to process
the events. If the function does not return, the application will not respond to user events and, for that matter, the
dialog will not even be displayed. Just because a dialog is realized and managed does not mean that it is displayed on
the screen, as events must be processed in order for it to appear. See Chapter 21, Advanced Dialog Programming, for
a discussion of this phenomenon. (See Volume One, Xlib Programming Manual, for more information on event
processing.)

However, there are situations where it would be nice not to have to return from the function and break its flow of
control. As an example, consider a function that allows the user to perform a particularly dangerous action, such as
removing or overwriting a file. What you'd like to do is prompt the user first and allow her to reconsider the action
before proceeding. If she confirms the action, you'd like to continue from within the same function without having to
return in order to process events.

In order to write this type of function, we need to find a way to process the events that display and manage the dialog
without returning to the main loop. The user also needs to be able to respond to the dialog, so we really need to allow
normal event processing to continue in the context of the function. Let's assume that there is a hypothetical function,
AskUser(), that we can use in the following way:

 if (AskUser ("Are you sure you want to do this?") == YES) {
 /* proceed with action... */
 }

The function AskUser() should post a full application modal MessageDialog, wait for the user to respond to the
dialog, and return a predefined value for either YES or NO. The magic of the function is to get around the requirement
that events can only be read and processed directly from XtAppMainLoop(). The code for such a function is shown
in the source code XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 #define YES 1
 #define NO 2

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

136

 /*
 * AskUser() −− a generalized routine that asks the user a question
 * and returns the Yes/No response.
 */
 int
 AskUser(parent, question)
 Widget parent;
 char *question;
 {
 static Widget dialog;
 XmString text, yes, no;
 static int answer;
 extern void response();
 extern XtAppContext app;

 if (!dialog) {
 dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
 yes = XmStringCreateLocalized ("Yes");
 no = XmStringCreateLocalized ("No");
 XtVaSetValues (dialog,
 XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
 XmNokLabelString, yes,
 XmNcancelLabelString, no,
 NULL);
 XtSetSensitive (
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON),
 False);
 XtAddCallback (dialog, XmNokCallback, response, &answer);
 XtAddCallback (dialog, XmNcancelCallback, response, &answer);
 XmStringFree (yes);
 XmStringFree (no);
 }
 answer = 0;
 text = XmStringCreateLocalized (question);
 XtVaSetValues (dialog,
 XmNmessageString, text,
 NULL);
 XmStringFree (text);
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);

 /* while the user hasn't provided an answer, simulate main loop.
 * The answer changes as soon as the user selects one of the
 * buttons and the callback routine changes its value.
 */
 while (answer == 0)
 XtAppProcessEvent (app, XtIMAll);

 XtPopdown (XtParent (dialog));
 return answer;
 }

 /* response() −−The user made some sort of response to the
 * question posed in AskUser(). Set the answer (client_data)
 * accordingly and destroy the dialog.
 */
 void
 response(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

137

 {
 int *answer = (int *) client_data;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

 switch (cbs−>reason) {
 case XmCR_OK:
 *answer = YES;
 break;
 case XmCR_CANCEL:
 *answer = NO;
 break;
 default:
 return;
 }
 }

The first parameter to the function is the widget that acts as the parent of the new dialog. It is important to choose this
widget wisely. The parent widget must not be a gadget or an unrealized widget; it should be a widget that is currently
mapped to the screen. Widgets that are menu items are not good candidates, since they are not mapped to the screen
for very long. The top−level shell widget of the widget that caused the callback function to be invoked is typically a
good choice. The second parameter is the string that is displayed in the dialog.

The routine is intended to be used to display a dialog that asks a Yes/No question, so we change the OK and Cancel
labels to say Yes and No, respectively. The routine creates a QuestionDialog as a static Widget, which allows us to
reuse the dialog, rather than create it each time the function is called. This technique may improve performance on
some machines. The modality of the dialog and the labels for the PushButtons in the action area are set at creation
time, but the actual message string is set each time that the function is called, since the message can change. When we
install the callback routines for the buttons, we use the address of the answer variable as the client data. As a result,
when the user responds to the question by selecting the Yes or No button, the callback routine has access to the
variable and can change its value accordingly.

The while loop is where the application waits for the user to make a selection. The loop exits when the variable
answer is changed from its initial value (0) to either YES (1) or NO (2) by the callback routine. By using
XtAppProcessEvent(), we have effectively reproduced the XtAppMainLoop() function that is used in the
main application. Rather than returning to that level and breaking our flow of control, we have introduced a miniature
main loop in the function itself.

While the AskUser() routine in the source code is useful as it is written, there are a number of enhancements that
will make it even more useful. By using what we've learned in this chapter, we can come up with a simple, yet
extremely robust interface for prompting the user for responses to questions without breaking the natural flow of
control in the application. the source code demonstrates a generalized version of AskUser() in a complete
application. The program ask_user.c allows the user to execute UNIX commands that create and remove a temporary
file. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* ask_user.c −− the user is presented with two pushbuttons.
 * The first creates a file (/tmp/foo) and the second removes it.
 * In each case, a dialog pops up asking for verification of the action.
 *
 * This program is intended to demonstrate an advanced implementation
 * of the AskUser() function. This time, the function is passed the
 * strings to use for the OK button and the Cancel button as well as
 * the button to use as the default value.
 */

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

138

 #include <Xm/DialogS.h>
 #include <Xm/SelectioB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 #define YES 1
 #define NO 2

 /* Generalize the question/answer process by creating a data structure
 * that has the necessary labels, questions and everything needed to
 * execute a command.
 */
 typedef struct {
 char *label; /* label for pushbutton used to invoke cmd */
 char *question; /* question for dialog box to confirm cmd */
 char *yes; /* what the "OK" button says */
 char *no; /* what the "Cancel" button says */
 int dflt; /* which should be the default answer */
 char *cmd; /* actual command to execute (using system()) */
 } QandA;

 QandA touch_foo = {
 "Create", "Create /tmp/foo?", "Yes", "No", YES, "touch /tmp/foo"
 };
 QandA rm_foo = {
 "Remove", "Remove /tmp/foo?", "Yes", "No", NO, "rm /tmp/foo"
 };

 XtAppContext app;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button, rowcolumn;
 XmString label;
 void pushed();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcolumn = XtVaCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel, NULL);

 label = XmStringCreateLocalized (touch_foo.label);
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, rowcolumn,
 XmNlabelString, label,
 NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, &touch_foo);
 XmStringFree (label);

 label = XmStringCreateLocalized (rm_foo.label);
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, rowcolumn,
 XmNlabelString, label,
 NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, &rm_foo);

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

139

 XmStringFree (label);

 XtManageChild (rowcolumn);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* pushed() −−when a button is pressed, ask the question described
 * by the QandA parameter (client_data). Execute the cmd if YES.
 */
 void
 pushed(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 QandA *quest = (QandA *) client_data;

 if (AskUser (widget, quest−>question, quest−>yes, quest−>no,
 quest−>dflt) == YES) {
 printf ("Executing: %s0, quest−>cmd);
 system (quest−>cmd);
 } else
 printf ("Not executing: %s0, quest−>cmd);
 }

 /*
 * AskUser() −− a generalized routine that asks the user a question
 * and returns a response. Parameters are: the question, the labels
 * for the "Yes" and "No" buttons, and the default selection to use.
 */
 AskUser(parent, question, ans1, ans2, default_ans)
 Widget parent;
 char *question, *ans1, *ans2;
 int default_ans;
 {
 static Widget dialog; /* static to avoid multiple creation */
 XmString text, yes, no;
 static int answer;
 extern void response();

 if (!dialog) {
 dialog = XmCreateQuestionDialog (parent, "dialog", NULL, 0);
 XtVaSetValues (dialog,
 XmNdialogStyle, XmDIALOG_FULL_APPLICATION_MODAL,
 NULL);
 XtSetSensitive (
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON),
 False);
 XtAddCallback (dialog, XmNokCallback, response, &answer);
 XtAddCallback (dialog, XmNcancelCallback, response, &answer);
 }
 answer = 0;
 text = XmStringCreateLocalized (question);
 yes = XmStringCreateLocalized (ans1);
 no = XmStringCreateLocalized (ans2);
 XtVaSetValues (dialog,
 XmNmessageString, text,
 XmNokLabelString, yes,
 XmNcancelLabelString, no,
 XmNdefaultButtonType, default_ans == YES ?

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

140

 XmDIALOG_OK_BUTTON : XmDIALOG_CANCEL_BUTTON,
 NULL);
 XmStringFree (text);
 XmStringFree (yes);
 XmStringFree (no);
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);

 while (answer == 0)
 XtAppProcessEvent (app, XtIMAll);

 XtPopdown (XtParent (dialog));
 /* make sure the dialog goes away before returning. Sync with server
 * and update the display.
 */
 XSync (XtDisplay (dialog), 0);
 XmUpdateDisplay (parent);

 return answer;
 }

 /* response() −−The user made some sort of response to the
 * question posed in AskUser(). Set the answer (client_data)
 * accordingly.
 */
 void
 response(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int *answer = (int *) client_data;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

 if (cbs−>reason == XmCR_OK)
 *answer = YES;
 else if (cbs−>reason == XmCR_CANCEL)
 *answer = NO;
 }

The new version of AskUser() is more dynamic than before, since more of the dialog is configurable upon each
invocation of the function. The routine now allows you to specify the message, the labels for the OK and Cancel
buttons, and the default button for the dialog. The flexibility of the routine is achieved at the cost of a few more lines
of source code and additional parameters to the function. The performance of the function is completely unaffected.

One case that the new version of AskUser() does not deal with is the need for additional buttons in the action area
of the dialog. For example, what if you need to provide a Cancel button in addition to the Yes and No answers? Let's
say that the user has selected the Quit menu item in a text editor application. Since the user has yet to update the
changes to the file that she has been editing, the application posts a dialog that asks her if she wants to update her
changes before exiting. There are three possible responses:

Yes, update the changes and exit (Yes).•
No, don't update the changes, but exit anyway (No).•
Don't update the changes and don't exit the application (Cancel).•

One easy way to provide these three choices is to set the label for the Help button to Cancel using the

6 Introduction to Dialogs 6.7.2 Forcing an Immediate Response

141

XmNhelpLabelString resource. Then you just need to modify the callback function so that it handles the
XmCR_HELP reason and returns a new value for the Cancel button.

However, this solution does not work if you want to provide help in addition to these choices. The default
MessageDialog only provides three buttons in the action area, although in Motif 1.2 you can add additional action
area buttons to the dialog. For more information on how to handle this situation, see Chapter 7, Custom Dialogs.

6.8 Summary

Dialogs are used extensively in all window−oriented applications and their uses are quite diverse. As a result, it is
impossible to provide numerous examples of the use of any one particular style of dialog. This chapter introduced the
implementation of Motif dialogs by using the predefined MessageDialogs as examples. We described how to create
the dialogs, how to set various dialog resources, how to handle dialog callback routines, and how to implement modal
dialogs. Although our examples used MessageDialogs, much of the discussion is applicable to other types of Motif
dialogs.

The next chapter deals with the predefined Motif selection dialogs. These dialogs allow you to provide the user with a
group of choices from which to make a selection. Chapter 7, Custom Dialogs, discusses how you can break away
from the predefined Motif dialogs and build dialogs on your own. Chapter 21, Advanced Dialog Programming, gets
into advanced topics in Xt and Motif programming, using various types of MessageDialogs as examples.

6 Introduction to Dialogs 6.8 Summary

142

7 Selection Dialogs

This chapter describes the predefined Motif selection−style dialogs. These dialogs display a list of items, such as files
or commands, and allow the user to select items.

In Chapter 5, Introduction to Dialogs, we introduced the idea that dialogs are transient windows that perform a single
task in an application. Dialogs may perform tasks that range from displaying a simple message, to asking a question,
to providing a highly interactive window that obtains information from the user. The previous chapter also introduced
MessageDialogs and discussed how they are used by the Motif toolkit. This chapter discusses SelectionDialogs, which
are at the next level of complexity in predefined Motif dialogs.

In general, SelectionDialogs are used to present the user with a list of choices. The user can also enter a new selection
or edit an existing one by typing in a text area in the dialog. SelectionDialogs are appropriate when the user is
supposed to respond to the dialog with more than just a simple yes or no answer. With respect to the action area,
SelectionDialogs have the same default buttons as MessageBoxes (e.g., OK, Cancel, and Help). The dialogs also
provide an Apply button, but the button is not always managed by default. SelectionDialogs are meant to be less
transient than MessageDialogs, since the user is expected to do more than read a message.

7.1 Types of SelectionDialogs

As explained in Chapter 5, Introduction to Dialogs, there are four kinds of SelectionDialogs. The SelectionDialog
and the PromptDialog are compound objects composed of a SelectionBox and a DialogShell. To use these objects,
you need to include the header file <Xm/SelectioB.h>. The FileSelectionDialog is another compound object made up
of a FileSelectionBox and a DialogShell. The include file for this object is <Xm/FileSB.h>. The Command widget is
somewhat different, in that it is typically used as part of a larger interface, rather than as a dialog. To use the
Command widget, include the file <Xm/Command.h>. You can create each of these dialogs using the associated
convenience routines:

 XmCreateSelectionBox()
 XmCreateSelectionDialog()
 XmCreatePromptDialog()
 XmCreateFileSelectionBox()
 XmCreateFileSelectionDialog()
 XmCreateCommand()

Like the MessageDialog convenience routines, each of the SelectionDialog routines creates a dialog widget. In
addition, routines that end in Dialog automatically create a DialogShell as the parent of the dialog widget. Note that
the Command widget does not provide a convenience routine that creates a DialogShell; to put a Command widget in
a DialogShell, you must create the DialogShell yourself. All of the convenience functions use the standard format for
Motif creation routines.

The SelectionBox resource XmNdialogType specifies the type of dialog that has been created. The resource is set
automatically by the dialog convenience routines. Unlike the XmNdialogType resource for MessageDialogs, the
SelectionBox resource cannot be changed once the dialog has been created. The resource can have one of the
following values:

 XmDIALOG_WORK_AREA
 XmDIALOG_PROMPT
 XmDIALOG_SELECTION

143

 XmDIALOG_COMMAND
 XmDIALOG_FILE_SELECTION

These values should be self−explanatory, with the exception of XmDIALOG_WORK_AREA. This value is set when a
SelectionBox is not the child of a DialogShell and it is not one of the other types of dialogs. In other words, if you
create a SelectionDialog using XmCreateSelectionDialog(), the value is XmDIALOG_SELECTION, but if
you use XmCreateSelectionBox(), the value is XmDIALOG_WORK_AREA. When a SelectionBox is created as
the child of a DialogShell, the Apply button is automatically managed, except if XmNdialogType is set to
XmDIALOG_PROMPT. Otherwise, the button is created but not managed.

The different types of SelectionDialogs are meant to be used for unique purposes. Each dialog provides different
components that the user can interact with to perform a task. In the following sections, we examine each of the
SelectionDialogs in turn.

7.2 SelectionDialogs

The SelectionDialog provides a ScrolledList that allows the user to select from a list of choices, as well as a TextField
where the user can type in choices. When the user makes a selection from the list, the selected item is displayed in the
text entry area. The user can also type new or existing choices into the text entry area directly. The dialog does not
take any action until the user activates one of the buttons in the action area or presses the RETURN key. If the user
double−clicks on an item in the List, the item is displayed in the text area and the OK button is automatically
activated. the source code demonstrates the use of a SelectionDialog. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif
1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG
replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* select_dlg.c −− display two pushbuttons: days and months.
 * When the user selections one of them, post a selection
 * dialog that displays the actual days or months accordingly.
 * When the user selects or types a selection, post a dialog
 * the identifies which item was selected and whether or not
 * the item is in the list.
 *
 * This program demonstrates how to use selection boxes,
 * methods for creating generic callbacks for action area
 * selections, abstraction of data structures, and a generic
 * MessageDialog posting routine.
 */
 #include <Xm/SelectioB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 Widget PostDialog();

 char *days[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
 };
 char *months[] = {
 "January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November", "December"
 };
 typedef struct {
 char *label;
 char **strings;

7 Selection Dialogs 7.2 SelectionDialogs

144

 int size;
 } ListItem;

 ListItem month_items = { "Months", months, XtNumber (months) };
 ListItem days_items = { "Days", days, XtNumber (days) };

 /* main() −−create two pushbuttons whose callbacks pop up a dialog */
 main(argc, argv)
 char *argv[];
 {
 Widget toplevel, button, rc;
 XtAppContext app;
 void pushed();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rc = XtVaCreateWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel, NULL);

 button = XtVaCreateManagedWidget (month_items.label,
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, &month_items);

 button = XtVaCreateManagedWidget (days_items.label,
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, &days_items);

 XtManageChild (rc);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* pushed() −−the callback routine for the main app's pushbutton.
 * Create a dialog containing the list in the items parameter.
 */
 void
 pushed(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog;
 XmString t, *str;
 int i;
 extern void dialog_callback();
 ListItem *items = (ListItem *) client_data;

 str = (XmString *) XtMalloc (items−>size * sizeof (XmString));
 t = XmStringCreateLocalized (items−>label);
 for (i = 0; i < items−>size; i++)
 str[i] = XmStringCreateLocalized (items−>strings[i]);
 dialog = XmCreateSelectionDialog (widget, "selection", NULL, 0);
 XtVaSetValues (dialog,
 XmNlistLabelString, t,
 XmNlistItems, str,
 XmNlistItemCount, items−>size,
 XmNmustMatch, True,
 NULL);

7 Selection Dialogs 7.2 SelectionDialogs

145

 XtSetSensitive (
 XmSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
 XtAddCallback (dialog, XmNokCallback, dialog_callback, NULL);
 XtAddCallback (dialog, XmNnoMatchCallback, dialog_callback, NULL);
 XmStringFree (t);
 while (−−i >= 0)
 XmStringFree (str[i]); /* free elements of array */
 XtFree (str); /* now free array pointer */
 XtManageChild (dialog);

 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* dialog_callback() −−The OK button was selected or the user
 * input a name by himself. Determine whether the result is
 * a valid name by looking at the "reason" field.
 */
 void
 dialog_callback(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 char msg[256], *prompt, *value;
 int dialog_type;
 XmSelectionBoxCallbackStruct *cbs =
 (XmSelectionBoxCallbackStruct *) call_data;

 switch (cbs−>reason) {
 case XmCR_OK:
 prompt = "Selection: ";
 dialog_type = XmDIALOG_MESSAGE;
 break;
 case XmCR_NO_MATCH:
 prompt = "Not a valid selection: ";
 dialog_type = XmDIALOG_ERROR;
 break;
 default:
 prompt = "Unknown selection: ";
 dialog_type = XmDIALOG_ERROR;
 }
 XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &value);
 sprintf (msg, "%s%s", prompt, value);
 XtFree (value);
 (void) PostDialog (XtParent (XtParent (widget)), dialog_type, msg);
 if (cbs−>reason != XmCR_NO_MATCH) {
 XtPopdown (XtParent (widget));
 XtDestroyWidget (widget);
 }
 }

 /*
 * PostDialog() −− a generalized routine that allows the programmer
 * to specify a dialog type (message, information, error, help,
 * etc..), and the message to show.
 */
 Widget
 PostDialog(parent, dialog_type, msg)
 Widget parent;
 int dialog_type;
 char *msg;

7 Selection Dialogs 7.2 SelectionDialogs

146

 {
 Widget dialog;
 XmString text;

 dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);
 text = XmStringCreateLocalized (msg);
 XtVaSetValues (dialog,
 XmNdialogType, dialog_type,
 XmNmessageString, text,
 NULL);
 XmStringFree (text);
 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));
 XtSetSensitive (
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
 XtAddCallback (dialog, XmNokCallback, XtDestroyWidget, NULL);
 XtManageChild (dialog);
 return dialog;
 }

The output of the program is shown in the figure.

Output of select_dlg.c

The program displays two PushButtons, one for months and one for the days of the week. When either button is
activated, a SelectionDialog that displays the list of items corresponding to the button is popped up. In keeping with
the philosophy of modular programming techniques, we have broken the application into three routines −− two
callbacks and one general−purpose message posting function. The lists of day and month names are stored as arrays of
strings. We have declared a data structure, ListItem, to store the label and the items for a list. Two instances of this
data structure are initialized to the correct values for the lists of months and days. We pass these data structures as the
client_data to the callback function pushed(). This callback routine is associated with both of the

7 Selection Dialogs 7.2 SelectionDialogs

147

PushButtons.

The pushed() callback function creates the SelectionDialogs. Since the list of items for a SelectionDialog must be
specified as an array of XmString values, the list passed in the client_data parameter must be converted. We
create an array of compound strings the size of the l ist and copy each item into the new array using
XmStringCreateLocalized(). The resulting list is used as the value for the XmNlistItems resource. The
number of items in the list is specified as the value of the XmNlistItemCount resource. This value must be given
for the list to be displayed. It must be less than or equal to the actual number of items in the list. We also set the
XmNlistLabelString resource to specify the label for the list of items in the dialog. The SelectionDialog also
provides the XmNlistVisibleItemCount resource for specifying the number of visible items in the list. We let
the dialog use the default value for this resource.

The final resource that we set for the SelectionDialog is XmNmustMatch. This resource controls whether an item
that the user types in the text entry area must match one of the items in the list. By setting the resource to True, we
are specifying that the user cannot make up a month or day name. When the user activates the OK button or presses
the RETURN key, the widget checks the item in the text entry area against those in the list. If the selection doesn't
match any of the items in the list, the program pops up a dialog that indicates the error.

Once the dialog is created, we desensitize its Help button because we are not providing help. We install a callback
routine for the OK button using the XmNokCallback. To handle the case when the user types an item that does not
match, we also install a callback routine for the XmNnoMatchCallback. The dialog_callback() routine is
used to handle both cases. We use the reason field of the callback structure to determine why the callback was
called and act accordingly. The value field of the callback structure contains the selected item. If the item is valid,
we use the value to create a dialog that confirms the selection. Otherwise, we post an error dialog that indicates the
invalid selection. In both cases we use the generalized function, PostDialog(), to display the MessageDialog. If
the selection is valid, the routine pops down and destroys the SelectionDialog. Otherwise, we leave the dialog posted
so that the user can make another selection.

Just as a point of discussion, you should realize that it was an arbitrary decision to have the PostDialog() function
accept a char strings rather than an XmString. The routine could be modified to use an XmString, but doing so
doesn't buy us anything. If you find that your application deals with one string format more often than the other, you
may want to modify your routines accordingly. You should be aware that converting from one type of string to the
other is expensive; if it is done frequently, you may see an effect on performance. Another option is for your routine to
accept both string types as different parameters. You can pass a valid value for one parameter and NULL for the other
parameter and deal with them accordingly. For more information on handling compound strings, see Chapter 19,
Compound Strings.

7.2.1 Callback Routines

The SelectionDialog provides callbacks for its action buttons in the same way as the MessageDialog. Instead of
accessing the PushButton widgets to instal l cal lbacks, you use the resources XmNokCal lback ,
XmNapplyCallback, XmNcancelCallback, and XmNhelpCallback on the dialog widget itself. These
callbacks correspond to each of the four buttons, OK, Apply, Cancel, and Help. The SelectionDialog also provides
the XmNnoMatchCallback for handling the case when the item in the text entry area does not match an item in the
list.

All of these callback routines take three parameters, just like any standard callback routine. The callback structure that
i s p a s s e d t o a l l o f t h e c a l l b a c k r o u t i n e s i n t h e c a l l _ d a t a p a r a m e t e r i s o f t y p e
XmSelectionBoxCallbackStruct. This structure is similar to the one used by MessageDialogs, but it has
more fields. The structure is declared as follows:

7 Selection Dialogs 7.2.1 Callback Routines

148

 typedef struct {
 int reason;
 XEvent *event;
 XmString value;
 int length;
 } XmSelectionBoxCallbackStruct;

The value of the reason field is an integer value that specifies the reason that the callback routine was invoked. The
field can be one of the following values:

 XmCR_OK
 XmCR_APPLY
 XmCR_CANCEL
 XmCR_HELP
 XmCR_NO_MATCH

The value and length fields represent the compound string version of the item that the user selected from the list
or typed into the text entry area. In order to get the actual character string for the item, you have to use
XmStringGetLtoR() to convert the compound string into a character string. (See Chapter 19, Compound Strings,
for a discussion of compound strings.)

7.2.2 Internal Widgets

The SelectionDialog is obviously composed of primitive subwidgets, like PushButtons, Labels, a ScrolledList, and a
TextField widget. For most tasks, it is possible to treat the dialog as a single entity because the dialog provides
resources that manage the different components. However, there are some situations where it is useful to be able to get
a handle to the widgets internal to the dialog. The Motif toolkit provides the XmSelectionBoxGetChild()
routine to allow you to access the internal widgets. This routine takes the following form:

 Widget
 XmSelectionBoxGetChild(widget, child)
 Widget widget;
 unsigned char child;

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The child parameter is an
enumerated value that specifies a particular subwidget in the dialog. The parameter can have any one of the following
values:

 XmDIALOG_OK_BUTTON
 XmDIALOG_APPLY_BUTTON
 XmDIALOG_CANCEL_BUTTON
 XmDIALOG_HELP_BUTTON
 XmDIALOG_DEFAULT_BUTTONX
 XmDIALOG_LIST
 XmDIALOG_LIST_LABEL
 XmDIALOG_SELECTION_LABEL
 XmDIALOG_TEXT
 XmDIALOG_WORK_AREA
 XmDIALOG_SEPARATOR

The values refer to the different widgets in a SelectionDialog and they should be self−explanatory, with the exception
of XmDIALOG_WORK_AREA. A SelectionDialog can manage a work area child; this value returns the work area
child. You can customize the operation of a SelectionDialog by adding a work area that contains other components.
For a detailed discussion of this technique, see Chapter 7, Custom Dialogs.

7 Selection Dialogs 7.2.2 Internal Widgets

149

One use of XmSelectionBoxGetChild() is to get a handle to the Apply button so that you can manage it. When
you create a SelectionBox that is not a child of a DialogShell, the toolkit creates the Apply button, but it is unmanaged
by default. The Apply button is available to the PromptDialog, but it is unmanaged by default. To use the button, you
must manage it and specify a callback routine, as in the following code fragment:

 XtAddCallback (dialog, XmNapplyCallback, dialog_callback, NULL);
 XtManageChild (XmSelectionBoxGetChild (dialog, XmDIALOG_APPLY_BUTTON));

The callback routine is the same as the one we set for the OK button, but the reason field in the callback structure
will indicate that it was called as a result of the Apply button being activated.

7.3 PromptDialogs

The PromptDialog is unique among the SelectionDialogs, in that it does not create a ScrolledList object. This dialog
allows the user to type a text string in the text entry area and then enter it by selecting the OK button or by pressing
the RETURN key . the source code shows an example o f c rea t ing and us ing a PromptD ia log .
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* prompt_dlg.c −− prompt the user for a string. Two PushButtons
 * are displayed. When one is selected, a PromptDialog is displayed
 * allowing the user to type a string. When done, the PushButton's
 * label changes to the string.
 */
 #include <Xm/SelectioB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/PushB.h>

 main(argc, argv)
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, rc, button;
 void pushed();

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit and create toplevel shell */
 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* RowColumn managed both PushButtons */
 rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
 NULL);
 /* Create two pushbuttons −− both have the same callback */
 button = XtVaCreateManagedWidget ("PushMe 1",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, NULL);
 button = XtVaCreateManagedWidget ("PushMe 2",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, NULL);

 XtManageChild (rc);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

7 Selection Dialogs 7.3 PromptDialogs

150

 /* pushed() −−the callback routine for the main app's pushbuttons.
 * Create a dialog that prompts for a new button name.
 */
 void
 pushed(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog;
 XmString t = XmStringCreateLocalized ("Enter New Button Name:");
 extern void read_name();
 Arg args[5];
 int n = 0;

 /* Create the dialog −− the PushButton acts as the DialogShell's
 * parent (not the parent of the PromptDialog).
 */
 XtSetArg (args[n], XmNselectionLabelString, t); n++;
 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 dialog = XmCreatePromptDialog (widget, "prompt", args, n);
 XmStringFree (t); /* always destroy compound strings when done */

 /* When the user types the name, call read_name() ... */
 XtAddCallback (dialog, XmNokCallback, read_name, widget);

 /* If the user selects cancel, just destroy the dialog */
 XtAddCallback (dialog, XmNcancelCallback, XtDestroyWidget, NULL);

 /* No help is available... */
 XtSetSensitive (
 XmSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
 XtManageChild (dialog);

 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* read_name() −−the text field has been filled in. */
 void
 read_name(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget push_button = (Widget) client_data;
 XmSelectionBoxCallbackStruct *cbs =
 (XmSelectionBoxCallbackStruct *) call_data;

 XtVaSetValues (push_button, XmNlabelString, cbs−>value, NULL);
 /* Name's fine −− go ahead and enter it */
 XtDestroyWidget(widget);
 }

The output of the program is shown in the figure.

7 Selection Dialogs 7.3 PromptDialogs

151

Output of prompt_dlg.c

The callback routine for each of the PushButtons, pushed(), creates a PromptDialog that prompts the user to enter a
new name for the PushButton. The PushButton is passed as the client_data to the XmNokCallback routine,
read_name(), so that the routine can set the label of the PushButton directly from inside the callback. The
read_name() function destroys the dialog once it has set the label, since the dialog is no longer needed.

If the Cancel button is pressed, the text is not needed, so we can simply destroy the dialog. Since the first parameter to
a dialog callback routine is the dialog widget, we can use XtDestroyWidget as the callback routine. Since the
function only takes one parameter, and the widget that is to be destroyed is passed as the first parameter, no client data
is needed. We set XmNautoUnmanage to False for the dialog because the application is assuming the
responsibility of managing the dialog. There is no help for the dialog so the Help button is disabled by setting it
insensitive.

The text area in the PromptDialog is a TextField widget, so you can get a handle to it and set TextField widget
resources accordingly. Use XmSelectionBoxGetChild() to access the widget. In order to promote the
single−entity abstraction, the dialog provides two resources that affect the TextField widget. You can set the
XmNtextString resource to change the value of the text string in the widget. Like other string resources, the value
for this resource must be a compound string. The XmNtextColumns resource specifies the width of the TextField in
columns.

In Motif 1.1, one frustrating feature of the predefined SelectionDialogs is that when they are popped up, the TextField
widget does not receive the keyboard focus by default. If the user is not paying attention, starts typing, and then
presses the RETURN key, all of the keystrokes will be thrown away except the RETURN, which will activate the OK
button. Motif 1.2 solves this problem by introducing the XmNinitialFocus resource. This resource specifies the
widget that has the keyboard focus the first time that the dialog is popped up. The text entry area is the default value
of the resource for SelectionDialogs. If you are using Motif 1.1, you need to warn your users about the problem. You
can also program around the problem by using XmProcessTraversal() to set the focus to a particular widget.

7.4 The Command Widget

A Command widget allows the user to enter commands and have them saved in a history list widget for later
reference. The Command widget is composed of a text entry area and a command history list. Unlike all of the other
predefined Motif dialogs, this widget does not provide any action area buttons. The widget does provide a convenient
interface for applications that have a command−driven interface, such as a debugger.

7 Selection Dialogs 7.4 The Command Widget

152

You can use the convenience routine XmCreateCommand() to create a Command widget or you can use
XtVaCreateWidget() with the class xmCommandWidgetClass. Motif does not provide a convenience routine
for creating a Command widget in a DialogShell. The rationale is that the Command widget is intended to be used on
a more permanent basis, since it accumulates a history of command input. A Command widget is typically used as
part of a larger interface, such as in a MainWindow, which is why it does not have action buttons. (See Chapter 4,
The Main Window, for an example.) If you want to create a CommandDialog, you will have to create the DialogShell
widget yourself and make the Command widget its immediate child. See Section #sdialogshl in Chapter 5,
Introduction to Dialogs, for more information about DialogShells.

The Command widget class is subclassed from SelectionBox. There are similarities between the two widgets, in that
the user has the ability to select items from a list. However, the list is composed of the commands that have been
previously entered. When the user enters a command, it is added to the list. If the user selects an item from the
command history list, the command is displayed in the text entry area. Although the Command widget inherits
resources from the SelectionBox, many of the resources are not applicable since the Command widget does not have
any action area buttons. All of the SelectionBox resources for setting the labels and callbacks of the buttons do not
apply to the Command widget.

The Command widget provides a number of resources that can be used to control the command history list. The
XmNhistoryItems and XmNhistoryItemCount resources specify the list of commands and the number of
commands in the list. The XmNhistoryVisibleItemCount resource controls the number of items that are
visible in the command history. XmNhistoryMaxItems specifies the maximum number of items in the history list.
When the maximum value is reached, a command is removed from the beginning of the list to make room for each
new command that is entered.

The Command widget provides two cal lback resources, XmNcommandEnteredCal lback and
XmNcommandChangedCallback, for the text entry area. When the user changes the text in the command entry
area, the XmNcommandChangedCallback is invoked. If the user presses the RETURN key or double−clicks on an
item in the command history list, the XmNcommandEnteredCallback is called. The callback routine for each of
the callbacks takes the usual three parameters. The callback structure passed to the routines in the call_data
p a r a m e t e r i s o f t y p e X m C o m m a n d C a l l b a c k S t r u c t , w h i c h i s i d e n t i c a l t o t h e
XmSelectionBoxCallbackStruct. The possible values for the reason field in the structure are
XmCR_COMMAND_ENTERED and XmCR_COMMAND_CHANGED.

You can get a handle to the subwidgets of the Command widget using function XmCommandGetChild(). The
function takes the following form:

 Widget
 XmCommandGetChild(widget, child)
 Widget widget;
 unsigned char child;

The widget parameter is a handle to a dialog widget. The child parameter is an enumerated value that specifies a
particular subwidget in the dialog. The parameter can have any one of the following values:

 XmDIALOG_COMMAND_TEXT
 XmDIALOG_HISTORY_LIST
 XmDIALOG_PROMPT_LABEL
 XmDIALOG_WORK_AREA

The values refer to the different widgets in the Command widget and they should be self−explanatory.

7 Selection Dialogs 7.4 The Command Widget

153

In order to support the idea that the dialog is a single widget, the toolkit also provides a number of convenience
routines that you can use to modify the Command widget. The function XmCommandSetValue() sets the text in
the command entry area of the dialog. The function takes the following form:

 void
 XmCommandSetValue(widget, command)
 Widget widget;
 XmString command;

The command is displayed in the command entry area. The Command widget resource XmNcommand specifies the
text for the command entry area, so you can also set this resource directly. Alternatively, you can use
XmTextSetString() on the Text widget in the dialog to set the command. However, note that the string you
specify to this function is a regular character string, not a compound string.

I f you want to append some text to the str ing in the command entry area, you can use the rout ine
XmCommandAppendValue(), which takes the following form:

 void
 XmCommandAppendValue(widget, command)
 Widget widget;
 XmString command;

The command is added to the end of the string in the command entry area. The function XmCommandError()
displays an error message in the history area of the Command widget. The function takes the following form:

 void
 XmCommandError(widget, message)
 Widget widget;
 XmString message;

The error message is displayed until the user enters the next command.

7.5 FileSelectionDialogs

Like the Command widget, the FileSelectionBox is subclassed from SelectionBox. The FileSelectionDialog looks
somewhat different than the other selection dialogs because of its complexity and its unusual widget layout and
architecture. Functionally, the FileSelectionDialog allows the user to move through the file system and select a file or
a directory for use by the application. The dialog also lets the user specify a filter that controls the files that are
displayed in the dialog. This filter is generally specified as a regular expression reminiscent of the classic UNIX
meta−characters (e.g., * matches all files, while *.c matches all files that end in .c). the figure shows a
FileSelectionDialog.

7 Selection Dialogs 7.5 FileSelectionDialogs

154

A typical FileSelectionDialog

The control area of the FileSelectionDialog has four components. The filter text entry area specifies the directory and
the filter. The directories list displays the directories in the current directory specified by the filter. If the user selects a
directory, the filter is modified to reflect the selection. The files list shows the files in the current directory. The
selection text entry area specifies the file selected by the user. If the user selects a file from the file list, the full
pathname is displayed in the selection text entry area.

The FileSelectionDialog has four buttons in its action area. The OK, Cancel, and Help buttons are the same as for
other SelectionDialogs. The Filter button acts on the directory and pattern specified in the filter text entry area. For
example, the user could enter /usr/src/motif/lib/Xm/* as the filter. In this case, the directory is /usr/src/motif/lib/Xm
and the pattern is the "*". When the user selects the Filter button or presses RETURN in the Text widget, the
directory part of the filter is searched and all of the directories within that directory are displayed in the directories list.
The pattern part is then used to find all of the matching files in the directory and the files are shown in the files list.
Only files are placed in this list; directories are excluded since they are listed separately.

While this process seems straightforward, it can become confusing for users and programmers alike because of the
way that the widget parses the filter. For example, consider the following string: /usr/src/motif/lib/Xm. This pathname
appears to be a common directory path, but in fact, the widget interprets the filter so that the directory is
/usr/src/motif/lib and the pattern is Xm. If searched, the directories list will contain all the directories in
/usr/src/motif/lib and the files list won't contain anything because Xm is a directory, not a pattern that matches any
files. Since users frequently make this mistake when using the FileSelectionDialog, you should be sure to explain the
operation of the dialog in the documentation for your application.

The convention that the widget follows is to use the last / in the filter to separate the directory part from the pattern
part. Fortunately, the FileSelectionDialog provides resources and other mechanisms to retrieve the proper parts of the
filter specification. We will demonstrate how to use these mechanisms in the next few subsections.

7 Selection Dialogs 7.5 FileSelectionDialogs

155

7.5.1 Creating a FileSelectionDialog

The convenience function for creating a FileSelectionDialog is XmCreateFileSelectionDialog(). The
routine is declared in <Xm/FileSB.h>. The function creates a FileSelectionBox widget and its DialogShell parent and
returns the FileSelectionBox. Alternatively, you can create a FileSelectionBox widget using either
XmCreateFileSelectionBox() or XtVaCreateWidget() with the widget class specified as
xmFileSelectionBoxWidgetClass. In this case, you could use the widget as part of a larger interface, or put
it in a DialogShell yourself.

the source code demonstrates how a FileSelectionDialog can be created. This program produces the dialog shown in
the figure. The intent of the program is to display a single FileSelectionDialog and print the selection that is made. We
will provide a more realistic example shortly. For now, you should notice how little code is actually required to create
the dialog. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in -Motif 1.2; XmStringCreateSimple() is the
cor-re-sponding function in -Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET
in -Motif 1.2.

 /* show_files.c −− introduce FileSelectionDialog; print the file
 * selected by the user.
 */
 #include <Xm/FileSB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, text_w, dialog;
 XtAppContext app;
 extern void exit(), echo_file();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 /* Create a simple FileSelectionDialog −− no frills */
 dialog = XmCreateFileSelectionDialog (toplevel, "filesb", NULL, 0);
 XtAddCallback (dialog, XmNcancelCallback, exit, NULL);
 XtAddCallback (dialog, XmNokCallback, echo_file, NULL);
 XtManageChild (dialog);

 XtAppMainLoop (app);
 }

 /* callback routine when the user selects OK in the FileSelection
 * Dialog. Just print the file name selected.
 */
 void
 echo_file(widget, client_data, call_data)
 Widget widget; /* file selection box */
 XtPointer client_data;
 XtPointer call_data;
 {
 char *filename;
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) call_data;

7 Selection Dialogs 7.5.1 Creating a FileSelectionDialog

156

 if (!XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &filename))
 return; /* must have been an internal error */

 if (!*filename) { /* nothing typed? */
 puts ("No file selected.");
 XtFree(filename); /* even "" is an allocated byte */
 return;
 }

 printf ("Filename given:
 XtFree (filename);
 }

The program simply prints the selected file when the user activates the OK button. The user can change the file by
selecting an item from the files list or by typing directly in the selection text entry area. The user can also activate the
dialog by double−clicking on an item in the files list. The FileSelectionDialog itself is very simple to create; most of
the work in the program is done by the callback routine for the OK button.

7.5.2 Internal Widgets

A FileSelectionDialog is made up of a number of subwidgets, including Text, List, and PushButton widgets. You can
get the handles to these children using the routine XmFileSelectionBoxGetChild(), which takes the
following form:

 Widget
 XmFileSelectionBoxGetChild(widget, child)
 XmFileSelectionBox widget;
 unsigned char child;

The widget parameter is a handle to a dialog widget, not its DialogShell parent. The child parameter is an
enumerated value that specifies a particular subwidget in the dialog. The parameter can have any one of the following
values:

 XmDIALOG_APPLY_BUTTON
 XmDIALOG_CANCEL_BUTTON
 XmDIALOG_DEFAULT_BUTTON
 XmDIALOG_DIR_LIST
 XmDIALOG_DIR_LIST_LABEL
 XmDIALOG_FILTER_LABEL
 XmDIALOG_FILTER_TEXT
 XmDIALOG_HELP_BUTTON
 XmDIALOG_LIST
 XmDIALOG_LIST_LABEL
 XmDIALOG_OK_BUTTON
 XmDIALOG_SELECTION_LABEL
 XmDIALOG_SEPARATOR
 XmDIALOG_TEXT
 XmDIALOG_WORK_AREA

The values refer to the different widgets in a FileSelectionDialog and they should be self−explanatory, with the
exception of XmDIALOG_WORK_AREA. A FileSelectionDialog can manage a work area child; this value returns the
work area child. You can customize the operation of a FileSelectionDialog by adding a work area that contains other
components. For a detailed discussion of this technique, see Chapter 7, Custom Dialogs.

When you use XmFileSelectionBoxGetChild(), you should not assume that the returned widget is of any
particular class, so you should treat it as an opaque object as much as possible. Getting the children of a

7 Selection Dialogs 7.5.2 Internal Widgets

157

FileSelectionDialog is not necessary in most cases because the Motif toolkit provides FileSelectionDialog resources
that access most of the important resources of the children. You should only get handles to the children if you need to
change resources that are not involved in the file selection mechanisms.

7.5.3 Callback Routines

The XmNokCallback, XmNcancelCallback, XmNapplyCallback, XmNhelpCallback, and
XmNnoMatchCallback callbacks can be specified for a FileSelectionDialog as they are for SelectionDialog. The
callback routines take the usual parameters, but the callback structure passed in the call_data parameter is of type
XmFileSelectionBoxCallbackStruct. The structure is declared as follows:

 typedef struct {
 int reason;
 XEvent *event;
 XmString value;
 int length;
 XmString mask;
 int mask_length;
 XmString dir;
 int dir_length;
 XmString pattern;
 int pattern_length;
 } XmFileSelectionBoxCallbackStruct;

The value of the reason field is an integer value that specifies the reason that the callback routine was invoked. The
possible values are the same as those for a SelectionDialog:

 XmCR_OK
 XmCR_APPLY
 XmCR_CANCEL
 XmCR_HELP
 XmCR_NO_MATCH

The value field contains the item that the user selected from the files list or typed into the selection text entry area.
The value corresponds to the XmNdirSpec resource and it does not necessarily have to match an item in the
directories or files lists. The mask field corresponds to the XmNdirMask resource; it represents a combination of the
entire pathname specification in the filter. The dir and pattern fields represent the two components that make up
the mask. All of these fields are compound strings; they can be converted to character strings using
XmStringGetLtoR().

7.5.4 File Searching

Y o u c a n f o r c e a F i l e S e l e c t i o n D i a l o g t o r e i n i t i a l i z e t h e d i r e c t o r y a n d f i l e l i s t s b y c a l l i n g
XmFileSelectionDoSearch(). This routine reads the directory filter and scans the -specified directory, which
is useful if you set the mask directly. The function takes the following form:

 void
 XmFileSelectionDoSearch(widget, dirmask)
 XmFileSelectionBoxWidget widget;
 XmString dirmask;

When the routine is called, the widget invokes its directory search procedure and sets the text in the filter text entry
area to the dirmask parameter. Calling XmFileSelectionDoSearch() has the same effect as setting the filter
and selecting the Filter button.

7 Selection Dialogs 7.5.3 Callback Routines

158

By default, the FileSelectionDialog searches the directory specified in the mask according to its internal searching
algorithm. You can replace this file searching procedure with your own routine by specifying a callback routine for
the XmNfileSearchProc resource. This resource is not a callback list, so you do not install it by calling
XtAddCallback(). Since the resource is just a single procedure, you specify it as a value like you would any other
resource, as shown in the following code fragment:

 extern void my_search_proc();

 XtVaSetValues (file_selection_dialog,
 XmNfileSearchProc, my_search_proc,
 NULL);

If you specify a search procedure, it is used to generate the list of filenames for the files list. A file search routine takes
the following form:

 void
 (* XmSearchProc) (widget, search_data)
 Widget widget;
 XtPointer *search_data;

The widget parameter is the actual FileSelectionBox widget and search_data is a callback structure of type
XmFileSelectionBoxCallbackStruct. This structure is just like the one used in the callback routines
discussed in the previous section. Do not be concerned with the value of the reason field in this situation because
none of the routines along the way use the value. The search function should scan the directory specified by the dir
field of the search_data parameter. The pattern should be used to filter the files within the directory. You can
get the complete filter from the mask field.

After the search procedure has determined the new list of fi les that it is going to use, it must set the
XmNfileListItems and XmNfileListItemCount resources to store the list into the List widget used by the
FileSelectionDialog. The routine must also set the XmN-listUpdated resource to True to indicate that it has
indeed done something, whether or not any files are found. The function can also set the XmNdirSpec resource to
reflect the full file specification in the selection text entry area, so that if the user selects the OK button, the specified
file is used. Although this step is optional, we recommend doing it in case the old value is no longer valid.

To understand why it may be necessary to have your own file search procedure, consider how you would customize a
FileSelectionDialog so that it only displays the writable files in an arbitrary directory. This customization might come
in handy for a save operation in an electronic mail application, where the user invokes a Save action that displays a
FileSelectionDialog that lists the files in which the user can save messages. Files that are not writable should not be
displayed in the dialog. the source code shows an example of how a file search procedure can be used to implement
this type of dialog. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in
Motif 1.2.

 /* file_sel.c −− file selection dialog displays a list of all the writable
 * files in the directory described by the XmNmask of the dialog.
 * This program demonstrates how to use the XmNfileSearchProc for
 * file selection dialog widgets.
 */
 #include <stdio.h>
 #include <Xm/Xm.h>
 #include <Xm/FileSB.h>
 #include <Xm/DialogS.h>
 #include <Xm/PushBG.h>

7 Selection Dialogs 7.5.3 Callback Routines

159

 #include <Xm/PushB.h>
 #include <X11/Xos.h>
 #include <sys/stat.h>

 void do_search(), new_file_cb();

 /* routine to determine if a file is accessible, a directory,
 * or writable. Return −1 on all errors or if the file is not
 * writable. Return 0 if it's a directory or 1 if it's a plain
 * writable file.
 */
 int
 is_writable(file)
 char *file;
 {
 struct stat s_buf;

 /* if file can't be accessed (via stat()) return. */
 if (stat (file, &s_buf) == −1)
 return −1;
 else if ((s_buf.st_mode & S_IFMT) == S_IFDIR)
 return 0; /* a directory */
 else if (!(s_buf.st_mode & S_IFREG) || access (file, W_OK) == −1)
 /* not a normal file or it is not writable */
 return −1;
 /* legitimate file */
 return 1;
 }

 /* main() −− create a FileSelectionDialog */
 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, dialog;
 XtAppContext app;
 extern void exit();
 Arg args[5];
 int n = 0;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 XtSetArg (args[n], XmNfileSearchProc, do_search); n++;
 dialog = XmCreateFileSelectionDialog (toplevel, "Files", args, n);
 XtSetSensitive (
 XmFileSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
 /* if user presses OK button, call new_file_cb() */
 XtAddCallback (dialog, XmNokCallback, new_file_cb, NULL);
 /* if user presses Cancel button, exit program */
 XtAddCallback (dialog, XmNcancelCallback, exit, NULL);

 XtManageChild (dialog);

 XtAppMainLoop (app);
 }

 /* a new file was selected −− check to see if it's readable and not
 * a directory. If it's not readable, report an error. If it's a

7 Selection Dialogs 7.5.3 Callback Routines

160

 * directory, scan it just as tho the user had typed it in the mask
 * Text field and selected "Search".
 */
 void
 new_file_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *file;
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) call_data;

 /* get the string typed in the text field in char * format */
 if (!XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &file))
 return;
 if (*file != '/') {
 /* if it's not a directory, determine the full pathname
 * of the selection by concatenating it to the "dir" part
 */
 char *dir, *newfile;
 if (XmStringGetLtoR (cbs−>dir, XmFONTLIST_DEFAULT_TAG, &dir)) {
 newfile = XtMalloc (strlen (dir) + 1 + strlen (file) + 1);
 sprintf (newfile, "%s/%s", dir, file);
 XtFree(file);
 XtFree (dir);
 file = newfile;
 }
 }
 switch (is_writable (file)) {
 case 1 :
 puts (file); /* or do anything you want */
 break;
 case 0 : {
 /* a directory was selected, scan it */
 XmString str = XmStringCreateLocalized (file);
 XmFileSelectionDoSearch (widget, str);
 XmStringFree (str);
 break;
 }
 case −1 :
 /* a system error on this file */
 perror (file);
 }
 XtFree (file);
 }

 /* do_search() −− scan a directory and report only those files that
 * are writable. Here, we let the shell expand the (possible)
 * wildcards and return a directory listing by using popen().
 * A *real* application should −not− do this; it should use the
 * system's directory routines: opendir(), readdir() and closedir().
 */
 void
 do_search(widget, search_data)
 Widget widget; /* file selection box widget */
 XtPointer search_data;
 {
 char *mask, buf[BUFSIZ], *p;
 XmString names[256]; /* maximum of 256 files in dir */
 int i = 0;

7 Selection Dialogs 7.5.3 Callback Routines

161

 FILE *pp, *popen();
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) search_data;

 if (!XmStringGetLtoR (cbs−>mask, XmFONTLIST_DEFAULT_TAG, &mask))
 return; /* can't do anything */

 sprintf (buf, "/bin/ls %s", mask);
 XtFree (mask);
 /* let the shell read the directory and expand the filenames */
 if (!(pp = popen (buf, "r")))
 return;
 /* read output from popen() −− this will be the list of files */
 while (fgets (buf, sizeof buf, pp)) {
 if (p = index (buf, '0))
 *p = 0;
 /* only list files that are writable and not directories */
 if (is_writable (buf) == 1 &&
 (names[i] = XmStringCreateLocalized (buf)))
 i++;
 }
 pclose (pp);
 if (i) {
 XtVaSetValues (widget,
 XmNfileListItems, names,
 XmNfileListItemCount, i,
 XmNdirSpec, names[0],
 XmNlistUpdated, True,
 NULL);
 while (i > 0)
 XmStringFree (names[−−i]);
 } else
 XtVaSetValues (widget,
 XmNfileListItems, NULL,
 XmNfileListItemCount, 0,
 XmNlistUpdated, True,
 NULL);
 }

The program simply displays a FileSelectionDialog that only lists the files that are writable by the user. The
directories listed may or may not be writable. We are not testing that case here as it is handled by another routine that
deals specifically with directories, which are discussed in the next section. The XmNfileSearchProc is set to
do_search(), which is our own routine that creates the list of files for the files List widget. The function calls
is_writable() to determine if a file is accessible and if it is a directory or a regular file that is writable.

The callback routine for the OK button is set to new_file_cb() through the XmNokCallback resource. This
routine is called when a new file is selected in from the files list or new text is entered in the selection text entry area
and the OK button is pressed. The specified file is evaluated using is_writable() and acted on accordingly. If it
is a directory, the directory is scanned as if it had been entered in the filter text entry area. If the file cannot be read, an
error message is printed. Otherwise, the file is a legitimate selection and, for demonstration purposes, the filename is
printed to stdout.

Obviously, a real application would do something more appropriate in each case; errors would be reported using
ErrorDialogs and legitimate values would be used by the application. An example of such a program is given in
Chapter 14, Text Widgets, as file_browser.c. This program is an extension of the source code that takes a more
realistic approach to using a FileSelectionDialog. Of course, the intent of that program is to show how Text widgets
work, but its use of dialogs is consistent with the approach we are taking here. The FileSelectionDialog also provides

7 Selection Dialogs 7.5.3 Callback Routines

162

a directory searching function that is analogous to the file searching function. While file searching may be necessary
for some applications, it is less likely that customized directory searching will be as useful, since the default action
taken by the toolkit should cover all common usages. However, since it is impossible to second−guess the
requirements of all applications, Motif allows you to specify a directory searching function through the
XmNdirSearchProc resource.

The procedure is used to create the list of directories. The method used by the procedure is virtually identical to the
one used for files, except that the routine must set different resources. The routine must set the XmNdirListItems
and XmNdirListItemCount resources to store the list of directories in the List widget. The value for
XmNlistUpdated must be set just as it was for the file selection routine and XmNdirectoryValid must also be
set to either True or False. If the directory cannot be read, XmNdirectoryValid is set to False to prevent the
XmNfileSearchProc from being called. In this way, the file searching procedure is protected from getting invalid
directories from the directory searching procedure. In order to fully customize the directory and file searching
functions in a FileSelectionDialog, it is important to understand exactly how the dialog works. This material is
advanced and is intended for programmers who need to write advanced file and/or directory searching routines. When
the user or the application invokes a directory search, the FileSelectionDialog performs the following tasks:

The List widgets are unmapped to give the user immediate feedback that something is happening. So, if a file
and/or directory search takes a long time, the user has a visual cue that the application is not waiting for input.

•

All of the items are deleted from the List widgets.•
The widget calls its qualify search procedure to construct a proper directory mask, base directory, and file
search pattern based on the text in the filter text entry area. The procedure creates a callback structure of type
XmFileSelectionBoxCallbackStruct for use by the directory and file search routines.

•

The XmNdirSearchProc function is called with the callback structure constructed by the qualify search
procedure. The directory search routine checks to be sure that it can search the specified directory and if it
can, it creates the list of directories for the dialog. If the directory cannot be searched, the routine sets
XmNdirectoryValid to False.

•

The XmNfileSearchProc function is called if XmNdirectoryValid has been set to True. This
routine creates the list of files for the dialog. If XmNdirectoryValid has been set to False, the file list
remains empty.

•

Just as for the directory and file search routines, you can write your own qualify search procedure and install it as the
value for the XmNqualifySearchProc resource. The routine takes the following form:

 void
 (* XmQualifyProc) (widget, input_data, output_data)
 Widget widget;
 XtPointer *input_data;
 XtPointer *output_data;

The widget parameter is the actual FileSelectionBox widget; input_data and output_data are callback
structures of type XmFileSelectionBoxCallbackStruct. input_data contains the directory information
that needs to be qualified. The routine uses this information to fill in the output_data callback structure that is
then passed to the directory and file search procedures.

The XmNfileTypeMask resource indicates the types of files for which a particular search routine should be
looking. The resource can be set to one of the following values:

 XmFILE_REGULAR
 XmFILE_DIRECTORY
 XmFILE_ANY_TYPE

7 Selection Dialogs 7.5.3 Callback Routines

163

If you are using the same routine for both the XmNdirSearchProc and the XmNfileSearchProc, you can
query this resource to determine the type of file to search for.

7.6 Summary

This chapter described the different types of selection dialogs provided by the Motif toolkit. These dialogs implement
some common functionality that is needed by many different applications. This chapter builds on the material in
Chapter 5, Introduction to Dialogs, which introduced the concept of dialogs and discussed the basic mechanisms that
implement them. While the dialogs are designed to be used as single−entity abstractions, they can be customized to
provide additional functionality as necessary. We describe how to customize the dialogs and how to create your own
dialogs in Chapter 7, Custom Dialogs.

7 Selection Dialogs 7.6 Summary

164

8 Custom Dialogs

This chapter describes how to create new types of dialogs, either by customizing Motif dialogs or by creating entirely
new dialogs.

In this chapter we examine methods for creating your own dialogs. The need for such dialogs exists when those
provided by Motif are too limited in functionality or are not specialized enough for your application. Sometimes it is
not clear when you need to create your own dialog. In some situations, you may find that a Motif dialog would be just
fine if only they did this one little thing. Fortunately, you can often make small adjustments to a predefined Motif
dialog, rather than building an entirely new dialog box from scratch.

There are some issues to consider before you decide how you want to approach the problem of developing custom
dialogs. For example, do you want to use your own widget layout or is the layout of one of the predefined dialogs
sufficient? Do you have specialized user−-interface appearance and functionality needs that go beyond what is
provided by Motif? The answers to these questions affect the design of your dialogs. The discussion and examples
provided in this chapter address both scenarios. We provide information on how to create dialogs that are based on the
predefined Motif dialogs, as well as how to design completely new dialogs.

Before we get started, we should mention that creating your own dialogs makes heavy use of manager widgets, such
as the Form, BulletinBoard, RowColumn, and PanedWindow widgets. While we use and describe the manager
widgets in context, you may want to consult Chapter 8, Manager Widgets, for specific details about these widgets.

8.1 Modifying Motif Dialogs

We begin by discussing the simpler case of modifying existing Motif dialogs. In Chapter 5, Introduction to Dialogs,
we showed you how to modify a dialog to some extent by changing the default labels on the buttons in the action area
or by unmanaging or desensitizing certain components in the dialog. What we did not mention is that you can also add
new components to a dialog box to expand its functionality. All of the predefined Motif dialog widgets let you add
children. In this sense, you can treat a dialog as a manager widget. In Motif 1.1, you can only add a single work area
child to a Motif dialog, which limits the amount of customization that is possible. Motif 1.2 allows you to add multiple
children to an existing dialog, so you can provide additional controls, action area buttons, and even a MenuBar.

8.1.1 Modifying MessageDialogs

At the end of Chapter 5, Introduction to Dialogs, we described a scenario where an application might want to have
more than three action area buttons in a MessageDialog. If the user has selected the Quit button in a text editor but has
not saved her changes, an application might want to post a dialog that asks about saving the changes before exiting.
The user could want to save the changes and exit, not save the changes and exit anyway, cancel the exit operation, or
get help.

In Motif 1.1, the MessageDialog only supported three action area buttons, so creating a dialog with four buttons
required designing a custom dialog. However, in Motif 1.2, the MessageDialog allows you to provide additional
action area buttons. the source code demonstrates how to create a QuestionDialog with four action area buttons. This
example uses functionality that is new in Motif 1.2, so it only works with the 1.2 version of the Motif toolkit.

 /* question.c −− create a QuestionDialog with four action buttons
 */
 #include <Xm/MessageB.h>

165

 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, pb;
 extern void pushed();

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);
 pb = XtVaCreateManagedWidget ("Button",
 xmPushButtonWidgetClass, toplevel, NULL);
 XtAddCallback (pb, XmNactivateCallback, pushed, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 pushed(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog, no_button;
 extern void dlg_callback();
 Arg args[5];
 int n = 0;
 XmString m = XmStringCreateLocalized
 ("Do you want to update your changes?");
 XmString yes = XmStringCreateLocalized ("Yes");
 XmString no = XmStringCreateLocalized ("No");

 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 XtSetArg (args[n], XmNmessageString, m); n++;
 XtSetArg (args[n], XmNokLabelString, yes); n++;
 dialog = XmCreateQuestionDialog (w, "notice", args, n);
 XtAddCallback (dialog, XmNokCallback, dlg_callback, NULL);
 XtAddCallback (dialog, XmNcancelCallback, dlg_callback, NULL);
 XtAddCallback (dialog, XmNhelpCallback, dlg_callback, NULL);
 XmStringFree (m);
 XmStringFree (yes);

 no_button = XtVaCreateManagedWidget ("no",
 xmPushButtonWidgetClass, dialog,
 XmNlabelString, no,
 NULL);
 XtAddCallback (no_button, XmNactivateCallback, dlg_callback, NULL);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 void
 dlg_callback(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {

8 Custom Dialogs 8 Custom Dialogs

166

 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

 switch (cbs−>reason) {
 case XmCR_OK :
 case XmCR_CANCEL :
 XtPopdown (XtParent (w));
 break;
 case XmCR_ACTIVATE :
 XtPopdown (XtParent (XtParent (w)));
 break;
 case XmCR_HELP :
 puts ("Help selected");
 }
 }

The dialog box from the program is shown in the figure.

Output of question.c

The extra button is added to the dialog by creating a PushButton as a child of the dialog. We are treating the
MessageDialog just like any other manager widget. The MessageDialog inserts any additional PushButton children
into the action area after the OK button, which is why we added a No button. If you add more than one button, they
are all put after the OK button, in the order that you create them. We have also changed the label of the OK button so
that it is now the Yes button.

Since the No button is not part of the standard MessageDialog, we have to set the callback routine on its
XmNactivateCallback. For the rest of the buttons, we use the callbacks defined by the dialog. The dialog
callback routine, dlg_callback(), has to handle the various callbacks in different ways. By checking the
reason field of the callback structure, the routine can determine which button was selected. For the Yes and Cancel
buttons, the routine unposts the dialog by popping down the DialogShell parent of the dialog. For the No button, we
need to be a bit more careful about popping down the right widget. Since the widget in this case is the PushButton,
we need to call XtParent() twice to get the DialogShell.

With Motif 1.2, the MessageDialog also supports the addition of other children besides PushButtons. If you add a
MenuBar child, it is placed across the top of the dialog, although it is not clear why you would want a MenuBar in a
MessageDialog. Any other type of widget child is considered the work area. The work area is placed below the
message text if it exists. If there is a symbol, but no message, the work area is placed to the right of the symbol. The
MessageDialog only supports the addition of one work area; the layout of multiple work area children is undefined. In
Motif 1.1, only a single work area child can be added to a MessageDialog. This child is always placed below the
message text.

8 Custom Dialogs 8 Custom Dialogs

167

The XmNdialogType resource can take the value XmDIALOG_TEMPLATE in Motif 1.2. This value creates a
TemplateDialog, which is basically an empty MessageDialog that can be modified by the programmer. By default, the
dialog only contains a Separator child. By setting various resources on a TemplateDialog when it is created, you can
cause the dialog to create other standard children. If you set a string or callback resource for an action area button, the
button is created. If you set the XmNmessageString resource, the message is displayed in the standard location. If
you set the XmNsymbolPixmap resource, the specified symbol appears in its normal location. If you don't set a
particular resource, then that child is not created, which means that you cannot modify the resource later with
XtSetValues(), set a callback for the child with XtAddCallback(), or retrieve the child with
XmMessageBoxGetChild().

8.1.2 Modifying SelectionDialogs

The Motif SelectionDialog supports the same types of modifications as the MessageDialog. With Motif 1.2, you can
provide additional action area buttons, a work area child, and a MenuBar. Unlike the MessageDialog, the first widget
that is added is taken as the work area, regardless of whether it is a PushButton or a MenuBar. The fact that the first
child is always considered the work area is a bug. As a result of the bug, you need to be careful about the order in
which you add children to a SelectionDialog. If you want to add a PushButton to the action area of a SelectionDialog,
you need to add an unmanaged work area widget first, so that the PushButton is placed in the action area, rather than
used as the work area. After you add a work area, if you add a MenuBar, it is placed along the top of the dialog, and
PushButton children are inserted after the OK button. The position of the work area child is controlled by the
XmNchildPlacement resource, which can take the following values:

 XmPLACE_ABOVE_SELECTION
 XmPLACE_BELOW_SELECTION
 XmPLACE_TOP

The SelectionDialog only supports the addition of one work area; the layout of multiple work area children is
undefined. In Motif 1.1, only a single work area child can be added to a SelectionDialog. This child is always placed
between the list and the text entry area.

Consider providing additional controls in a PromptDialog like the one used in the program prompt_dlg from
Chapter 6, Selection Dialogs. In this program, the dialog prompts the user for a new label for the PushButton that
activated the dialog. By adding another widget to the dialog, we can expand its functionality to prompt for either a
label name or a button color. The user enters either value in the same text input area and the RadioBox controls how
the text is evaluated. the source code shows the new program. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in -Motif
1.2; XmStringCreateSimple() is the corresponding function in -Motif 1.1. XmFONTLIST_DEFAULT_TAG
replaces XmSTRING_DEFAULT_CHARSET in -Motif 1.2.

 /* modify_btn.c −− demonstrate how a default Motif dialog can be
 * modified to support additional items that extend the usability
 * of the dialog itself. This is a modification of the prompt_dlg.c
 * program.
 */
 #include <Xm/SelectioB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/PushB.h>

 main(argc, argv)
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, rc, button;
 void pushed();

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

168

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit and create toplevel shell */
 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* RowColumn managed both PushButtons */
 rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, toplevel,
 NULL);
 /* Create two pushbuttons −− both have the same callback */
 button = XtVaCreateManagedWidget ("PushMe 1",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, NULL);
 button = XtVaCreateManagedWidget ("PushMe 2",
 xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, NULL);

 XtManageChild (rc);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* pushed() −−the callback routine for the main app's pushbuttons.
 * Create a dialog that prompts for a new button name or color.
 * A RadioBox is attached to the dialog. Which button is selected
 * in this box is held as an int (0 or 1) in the XmNuserData resource
 * of the dialog itself. This value is changed when selecting either
 * of the buttons in the ToggleBox and is queried in the dialog's
 * XmNokCallback function.
 */
 void
 pushed(pb, client_data, call_data)
 Widget pb;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog, toggle_box;
 XmString t, btn1, btn2;
 extern void read_name(), toggle_callback();
 Arg args[5];
 int n = 0;

 /* Create the dialog −− the PushButton acts as the DialogShell's
 * parent (not the parent of the PromptDialog). The "userData"
 * is used to store the value
 */
 t = XmStringCreateLocalized ("Enter New Button Name:");
 XtSetArg (args[n], XmNselectionLabelString, t); n++;
 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 XtSetArg (args[n], XmNuserData, 0); n++;
 dialog = XmCreatePromptDialog (pb, "notice_popup", args, n);
 XmStringFree (t); /* always destroy compound strings when done */

 /* When the user types the name, call read_name() ... */
 XtAddCallback (dialog, XmNokCallback, read_name, pb);

 /* If the user selects cancel, just destroy the dialog */
 XtAddCallback (dialog, XmNcancelCallback, XtDestroyWidget, NULL);

 /* No help is available... */

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

169

 XtUnmanageChild (XmSelectionBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));

 /* Create a toggle box −− callback routine is toggle_callback() */
 btn1 = XmStringCreateLocalized ("Change Name");
 btn2 = XmStringCreateLocalized ("Change Color");
 toggle_box = XmVaCreateSimpleRadioBox (dialog,
 "radio_box", 0 /* inital value */, toggle_callback,
 XmVaRADIOBUTTON, btn1, 0, NULL, NULL,
 XmVaRADIOBUTTON, btn2, 0, NULL, NULL,
 NULL);
 XtManageChild (toggle_box);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* callback for the items in the toggle box −− the "client data" is
 * the item number selected. Since the function gets called whenever
 * either of the buttons changes from true to false or back again,
 * it will always be called in pairs −− ignore the "False" settings.
 * When cbs−>set is true, set the dialog's label string accordingly.
 */
 void
 toggle_callback(toggle_box, client_data, call_data)
 Widget toggle_box;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog = XtParent(XtParent(toggle_box));
 XmString str;
 int n = (int) client_data;
 XmToggleButtonCallbackStruct *cbs =
 (XmToggleButtonCallbackStruct *) call_data;

 if (cbs−>set == False)
 return; /* wait for the one that toggles "on" */
 if (n == 0)
 str = XmStringCreateLocalized ("Enter New Button Name:");
 else
 str = XmStringCreateLocalized ("Enter Text Color:");
 XtVaSetValues (dialog,
 XmNselectionLabelString, str,
 XmNuserData, n, /* reset the user data to reflect new value */
 NULL);
 XmStringFree (str);
 }

 /* read_name() −−the text field has been filled in. Get the userData
 * from the dialog widget and set the PushButton's name or color.
 */
 void
 read_name(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *text;
 int n;
 Widget push_button = (Widget) client_data;
 XmSelectionBoxCallbackStruct *cbs =
 (XmSelectionBoxCallbackStruct *) call_data;

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

170

 /* userData: n == 0 −> Button Label, n == 1 −> Button Color */
 XtVaGetValues (dialog, XmNuserData, &n, NULL);

 if (n == 0)
 XtVaSetValues (push_button, XmNlabelString, cbs−>value, NULL);
 else {
 /* convert compound string into regular text string */
 XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &text);
 XtVaSetValues (push_button,
 XtVaTypedArg, XmNforeground,
 XmRString, text, strlen (text) + 1,
 NULL);
 XtFree (text); /* must free text gotten from XmStringGetLtoR() */
 }
 }

The new dialog is shown in the figure.

Output of modify_btn.c

We add a RadioBox as the work area child of the PromptDialog. The ToggleButtons in the RadioBox indicate whether
the input text is supposed to change the label of the PushButton or its text color. To determine which of these
attributes to change, we use the callback routine toggle_callback().

Rather than storing the state of the RadioBox in a global variable, we store the value in the XmNuserData resource
of the dialog widget. Using this technique, we can retrieve the value anytime we wish and minimize the number of
global variables in the program. The XmNuserData resource is available for all Motif widgets except shells, so it is
a convenient storage area for arbitrary values. The type of value that XmNuserData takes is any type whose size is
less than or equal to the size of an XtPointer, which is typically defined as a char pointer. As a result, storing an
int works just fine. If you want to store a data -structure in this resource, you need to store a pointer to the structure.
The size or type of the structure is irrelevant, since pointers are the same size. You might run into problems with
unusual architectures where pointers of different types are not the same size, like DOS.

8 Custom Dialogs 8.1.2 Modifying SelectionDialogs

171

When the user enters new text and presses RETURN or activates the OK button, read_name() is called. This
callback routine gets the XmNuserData from the dialog widget. If the value is 0, the label of the PushButton is reset
using the XmNlabelString resource. Since the callback routine provides the text in compound string format, it is
already in the correct format for the label. If the XmNuserData is 1, then the text describes a color name for the
PushButton.

Rather than converting the string into a color explicitly, we use the XtVaTypedArg feature of XtVaSetValues()
to do the conversion for us. This feature converts a value to the format needed by the specified resource. The
XmNforeground resource takes a variable of type Pixel as a value. The conversion works provided there is an
underlying conversion function to support it. For more information on conversion functions, how to write them, or
how to install your own, see Volume Four, X Toolkit Intrinsics Programming Manual. Motif does not supply a
conversion function to change a compound string into a Pixel value, but there is one for converting a C string into a
Pixel. We convert the compound string into a C string using XmStringGetLtoR() and then set the foreground
color as follows:

 XtVaSetValues (push_button,
 XtVaTypedArg, XmNforeground,
 XmRString, text, strlen (text) + 1,
 NULL);

The amount of customization that is possible with the predefined Motif dialogs varies greatly between Motif 1.1 and
Motif 1.2. We've described the possibilities for both MessageDialogs and SelectionDialogs using the two versions of
the toolkit. If the layouts that are possible do not meet your needs, you should consider building your own dialogs
from scratch.

8.2 Designing New Dialogs

In this section, we introduce the methods for building a dialog entirely from scratch. To create a new dialog, you need
to follow basically the same steps that are used by the Motif convenience routines, which we described in Section
#sdlgconv. We've modified the list a bit to reflect the flexibility that you have in controlling the kind of dialog that
you make. Here are the steps that you need to follow:

Choose a shell widget that best fits the needs of your dialog. You may continue to use a DialogShell if you
like.

•

Choose an appropriate manager widget to control the layout of the components of the dialog. This manager is
a child of the shell widget. The manager widget you choose greatly affects how the dialog is laid out. You do
not have to use a BulletinBoard or Form widget, but you can if you like. If you do want to use a DialogShell
with either a Form or a BulletinBoard widget as the manager, you can use one of the Motif convenience
routines: XmCreateBulletinBoardDialog() or XmCreateFormDialog(). These routines give
you a starting point for creating a custom dialog. However, in this chapter, we create each of the widgets
explicitly, so that you have a complete sense of what goes into a dialog.

•

Create the control area, which may include any of the Motif primitive or manager widgets. This step is the one
that gives you the most flexibility, as you have complete control over the contents and layout of the control
area.

•

Create an action area with PushButtons such as OK, Cancel, and Help. Since you are creating the control
area yourself, you cannot use XmNokCallback and the other resources specific to the predefined Motif
dialogs. Instead, you use the callback resources appropriate for the widgets that you use in the dialog.

•

Pop up the shell created in the first step.•

8 Custom Dialogs 8.2 Designing New Dialogs

172

8.2.1 The Shell

In Chapter 4, The Main Window, we demonstrated the purpose of a main window in an application and the kinds of
widgets that you use in a top−level window. Dialog boxes, as introduced in Chapter 5, Introduction to Dialogs, are
thought of as transient windows that act as satellites to a top−level shell. A transient dialog should use a DialogShell
widget. However, not all dialogs are transient. A dialog may act as a secondary application window that remains on
display for an extended period of time. This usage is especially common in large applications. The MainWindow
widget can even be used in a dialog box. For dialogs of this type, you may want to use a TopLevelShell or an
ApplicationShell.

Choosing the appropriate shell widget for a dialog depends on the activities carried out in the dialog, so it is difficult
to provide rules or even heuristics to guide you in your choice. As discussed in Chapter 5, a DialogShell cannot be
iconified, it is always placed on top of the shell widget that owns the parent of the dialog, and it is always destroyed or
withdrawn from the screen if its parent is destroyed or withdrawn. These three characteristics may influence your
decision to use a DialogShell. An ApplicationShell or a TopLevelShell, on the other hand, is always independent of
other windows, so you can change its stacking order, iconify it separately, and not worry about it being withdrawn
because of another widget. The main difference between an ApplicationShell and a TopLevelShell is that an
ApplicationShell is designed to start a completely new widget tree, as if it were a completely separate application. It is
recommended that an application only have one ApplicationShell.

For some applications, you may want a shell with characteristics of several of the available shell classes.
Unfortunately, it is difficult to intermix the capabilities of a DialogShell with those of an ApplicationShell or a
TopLevelShell because it involves doing quite a bit of intricate window manager interaction. Having ultimate control
over the activities of a shell widget requires setting up a number of event handlers on the shell and monitoring certain
window property event state changes. Aside from being very complicated, you run the risk of breaking Motif
compliance. See Chapter 16, Interacting With the Window Manager, for details on how you might handle this
situation.

Once you have chosen the shell widget that you want to use, you need to decide how to create it. A DialogShell can be
created using XtCreatePopupShell(), XtVaCreatePopupShell(), or the Motif convenience routine,
XmCreateDialogShell(). An ApplicationShell or a TopLevelShell can be created using either of the popup
shell routines, XtAppCreateShell() or XtVaAppCreateShell(). The difference between the two types of
routines involves whether the newly−created shell is treated like a popup shell or as a more permanent window on the
desktop. If you create the shell as a popup shell, you need to select an adequate parent. The parent for a popup shell
must be an initialized and realized widget. It can be any kind of widget, but it may not be a gadget because the parent
must have a window. A dialog that uses a popup shell inherits certain attributes from its parent. For example, if the
parent is insensitive (XmNsensitive is set to False), the entire dialog is insensitive as well.

8.2.2 The Manager Child

The manager widget that you choose for a dialog is the only managed child of the shell widget, which means that the
widget must contain both the control area and the action area of the dialog and manage the relationship between them.
Recall that the Motif Style Guide suggests that a dialog be composed of two main areas: the control area and the action
area. Both of these areas extend to the left and right sides of a dialog and are stacked vertically, with the control area
on the top. The action area usually does not fluctuate in size as the shell is resized, while the control area may be
resized in any way. the figure illustrates the general layout of a dialog.

8 Custom Dialogs 8.2.1 The Shell

173

Layout of a dialog

Motif dialog widgets handle this layout automatically. When you create your own dialog, you are responsible for
managing the layout. We recommend using the PanedWindow widget as the manager widget for a dialog. The
PanedWindow supports vertically stacked windows, each of which may or may not be resizable, which allows you to
create the suggested layout. If you use a PanedWindow as the manager widget for a dialog, it can manage two other
managers that act as the control and action areas. The control area can be resizable, while the action area is not. The
PanedWindow also provides a separator between the panes, which fulfills the Style Guide recommendation that there
be a Separator widget between the control and action areas.

Of course you can use whatever manager widget you like for a dialog. If you use a BulletinBoard or a Form widget,
you may be able to take advantage of the special interaction these widgets have with a DialogShell. The RowColumn
widget can also lay out its children vertically, so you could use one to manage the control and action areas of a dialog.
The difficulty with using a RowColumn involves resizing, in that there is no way to tell the widget to keep the bottom
partition a constant height while allowing the top to fluctuate as necessary. The same problem can also arise with
other manager widgets, so you need to be sure that the resizing behavior is appropriate.

8.2.3 The Control Area

The control area of a dialog box contains the widgets that provide the functionality of the dialog, such as Labels,
ToggleButtons, and List widgets. Creating the control area of a dialog is entirely application−defined. You can use
any of the Motif primitive and manager widgets in the control area to implement the functionality of the dialog. The
ability to design your own control area is the main reason to create your own dialog as opposed to using one of the
predefined Motif dialogs.

8.2.4 The Action Area

The action area of a dialog contains PushButtons whose callback routines actually perform the action of the dialog
box. Constructing the action area for a dialog involves specifying labels and callback routines for the buttons and
determining the best way to get information from the control area of the dialog. The Motif Style Guide defines a
number of common dialog box actions. The common actions are designed to provide consistency betweeen different
Motif applications. You are not required to use the common actions, but you should consider them before creating
your own arbitrary actions. The button labels and their corresponding actions are shown in the following list.

Yes
Indicates an affirmative response and causes the dialog to be dismissed.

No

8 Custom Dialogs 8.2.3 The Control Area

174

Indicates a negative response and vauses the dialog to be dismissed.
OK

Applies any changes reflected in the control area, performs any related actions, and causes the dialog box to
be dismissed.

Close
Closes the dialog box without performing any action.

Apply
Applies any changes reflected in the control area, performs any related actions, and leaves the dialog open for
further interaction.

Retry
Tries the task in progress again. This action is commonly found in dialog boxes that report errors.

Stop
Stops the task in progress at the next possible breaking proint. This action is often found in dialog boxes that
indicate that the application is "busy."

Pause
Pauses the task in progress. This action is used in combination with Resume.

Resume
Resumes the task in progress. This action is used in combination with Pause.

Reset
Resets the controls in the work area to the values they had at the time the dialog was originally opened.

Cancel
Resets the controls in the work area and causes the dialog to be dismissed.

Help
Provides help for the dialog box.
The following heuristics can help in designing the action area for a dialog box:

Lay out the action area as a single horizontal row at the bottom of the dialog.•
Set the action area apart from the rest of the dialog using a Separator.•
Use single−word button labels.•
Choose command−style verbs over nouns when possible. Since some words can be interpreted in more than
one way, be careful to avoid ambiguity.

•

Affirmative actions should be placed farthest to the left (in a left−to−right language environment), followed
by negative actions, followed by cancelling actions. For example, Yes should always be placed to the left of
No.

•

Help, if available, should always be placed farthest to the right (in a left−to−right language environment).•

Depending on your application, you may want to create your own actions and overlook some of these guidelines. the
figure shows a custom dialog from an e−mail application that demonstrates some of the issues involved in designing
an action area.

8 Custom Dialogs 8.2.3 The Control Area

175

A custom dialog

In this dialog, the Help button is the only one with a label recommended by Motif. Since the other common actions
did not effectively represent the actions of the dialog, we chose our own labels. We decided not to use the Cancel
action because we didn't want to combine the actions of Reset and Close in one button. Instead, we separated the
functionality into two actions. The Clear button resets the controls without closing the window and the Done button
closes the window. While Cancel, the recommended Motif label, implies that the action specified by the dialog should
not be taken, Done merely suggests that the dialog be dismissed. Selecting Done does not cancel anything, it just
dismisses the dialog. Close might be more appropriate, but since the dialog is part of an electronic mail application
where the term "close" is used to describe the action of closing a folder, we are not using that label to avoid ambiguity.

We do not use the OK action in the dialog because it doesn't work with the desired usage of the dialog. Let's say the
user selects a date to search for messages and then presses the OK button to start the search. By definition, OK should
perform the action and dismiss the dialog. If that were to happen here, the user would never see the results of the
search. While Apply might be more appropriate for our desired action, we decided to use Search instead because it is
more descriptive of the action being taken by the dialog.

8.3 Building a Dialog

Now that we've explained the design process for a dialog, let's create a real dialog and identify each of the steps in the
process. Consider the problem of providing help. While the Motif InformationDialog is adequate for brief help

8 Custom Dialogs 8.3 Building a Dialog

176

messages, a customized dialog may be more appropriate for displaying large amounts of text. Our custom dialog
displays the text in a scrolling region which is capable of handling arbitrarily large amounts of data.

the source code shows a program that uses a main application window as a generic backdrop. The MainWindow
widget contains a MenuBar that has two menus: File and Help. The Help menu contains several items that, when
selected, pop up a dialog window that displays the associated help text. The text that we provide happens to be
predefined in the program, but you could incorporate information from other sources, such as a database or an external
file. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in -Motif 1.2; XmStringCreateSimple() is the
corresponding function in -Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET
in -Motif 1.2.

 /* help_text.c:
 * Create a simple main window that contains a sample (dummy) work
 * area and a menubar. The menubar contains two items: File and Help.
 * The items in the Help pulldown call help_cb(), which pops up a
 * home−made dialog that displays predefined help texts. The purpose
 * of this program is to demonstrate how one might approach the
 * problem displaying a large amount of text in a dialog box.
 */
 #include <stdio.h>
 #include <ctype.h>
 #include <Xm/DialogS.h>
 #include <Xm/MainW.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Form.h>
 #include <Xm/Text.h>
 #include <Xm/PushBG.h>
 #include <Xm/LabelG.h>
 #include <Xm/PanedW.h>

 /* The following help text information is a continuous stream of characters
 * that will all be placed in a single ScrolledText object. If a specific
 * newline is desired, you must do that yourself. See "index_help" below.
 */
 String context_help[] = {
 "This is context−sensitive help. Well, not really, but such",
 "help text could easily be generated by a real help system.",
 "All you really need to do is obtain information from the user",
 "about the widget from which he needs help, or perhaps prompt",
 "for other application−specific contexts.",
 NULL
 };

 String window_help[] = {
 "Each of the windows in your application should have an",
 "XmNhelpCallback associated with it so you can monitor when",
 "the user presses the Help key over any particular widget.",
 "This is another way to provide context−sensitive help.",
 "The MenuBar should always have a Help entry at the far right",
 "that provides help for most aspects of the program, including",
 "the user interface. By providing different levels of help",
 "indexing, you can provide multiple stages of help, making the",
 "entire help system easier to use.",
 NULL
 };

 String index_help[] = {
 "This is a small demonstration program, so there is very little",

8 Custom Dialogs 8.3 Building a Dialog

177

 "material to provide an index. However, an index should contain",
 "a summary of the type of help available. For example, we have:0,
 " Help On Context0,
 " Help On Windows0,
 " This Index0,
 "0,
 "Higher−end applications might also provide a tutorial.",
 NULL
 };

 String *help_texts[] = {
 context_help,
 window_help,
 index_help
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, rc, main_w, menubar, w;
 extern void help_cb(), file_cb();
 XmString str1, str2, str3;
 Widget *cascade_btns;
 int num_btns;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* the main window contains the work area and the menubar */
 main_w = XtVaCreateWidget ("main_w",
 xmMainWindowWidgetClass, toplevel, NULL);

 /* Create a simple MenuBar that contains two cascade buttons */
 str1 = XmStringCreateLocalized ("File");
 str2 = XmStringCreateLocalized ("Help");
 menubar = XmVaCreateSimpleMenuBar (main_w, "main_w",
 XmVaCASCADEBUTTON, str1, 'F',
 XmVaCASCADEBUTTON, str2, 'H',
 NULL);
 XmStringFree (str1);
 XmStringFree (str2);

 /* create the "File" pulldown menu −− callback is file_cb() */
 str1 = XmStringCreateLocalized ("New");
 str2 = XmStringCreateLocalized ("Open");
 str3 = XmStringCreateLocalized ("Quit");
 XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, str1, 'N', NULL, NULL,
 XmVaPUSHBUTTON, str2, 'O', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, str3, 'Q', NULL, NULL,
 NULL);
 XmStringFree (str1);
 XmStringFree (str2);
 XmStringFree (str3);

 /* create the "Help" menu −− callback is help_cb() */

8 Custom Dialogs 8.3 Building a Dialog

178

 str1 = XmStringCreateLocalized ("On Context");
 str2 = XmStringCreateLocalized ("On Window");
 str3 = XmStringCreateLocalized ("Index");
 w = XmVaCreateSimplePulldownMenu (menubar, "help_menu", 1, help_cb,
 XmVaPUSHBUTTON, str1, 'C', NULL, NULL,
 XmVaPUSHBUTTON, str2, 'W', NULL, NULL,
 XmVaPUSHBUTTON, str3, 'I', NULL, NULL,
 NULL);
 XmStringFree (str1);
 XmStringFree (str2);
 XmStringFree (str3);

 /* Identify the Help Menu for the MenuBar */
 XtVaGetValues (menubar,
 XmNchildren, &cascade_btns,
 XmNnumChildren, &num_btns,
 NULL);
 XtVaSetValues (menubar,
 XmNmenuHelpWidget, cascade_btns[num_btns−1],
 NULL);
 XtManageChild (menubar);

 /* the work area for the main window −− just create dummy stuff */
 rc = XtVaCreateWidget ("rc", xmRowColumnWidgetClass, main_w, NULL);
 str1 = XmStringCreateLtoR ("0 This is an Empty0ample Control Area0 ",
 XmFONTLIST_DEFAULT_TAG);
 XtVaCreateManagedWidget ("label", xmLabelGadgetClass, rc,
 XmNlabelString, str1,
 NULL);
 XmStringFree (str1);
 XtManageChild (rc);
 XtManageChild (main_w);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback for all the entries in the File pulldown menu. */
 void
 file_cb(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 int item_no = (int) client_data;

 if (item_no == 2) /* the Quit menu button */
 exit (0);
 printf ("Item %d (%s) selected0, item_no + 1, XtName (w));
 }

 /* climb widget tree until we get to the top. Return the Shell */
 Widget
 GetTopShell(w)
 Widget w;
 {
 while (w && !XtIsWMShell (w))
 w = XtParent (w);
 return w;
 }

8 Custom Dialogs 8.3 Building a Dialog

179

 #include "info.xbm" /* bitmap data used by our dialog */

 /* callback for all the entries in the Help pulldown menu.
 * Create a dialog box that contains control and action areas.
 */
 void
 help_cb(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget help_dialog, pane, text_w, form, sep, widget, label;
 extern void DestroyShell();
 Pixmap pixmap;
 Pixel fg, bg;
 Arg args[10];
 int n = 0;
 int i;
 char *p, buf[BUFSIZ];
 int item_no = (int) client_data;
 Dimension h;

 /* Set up a DialogShell as a popup window. Set the delete
 * window protocol response to XmDESTROY to make sure that
 * the window goes away appropriately. Otherwise, it's XmUNMAP
 * which means it'd be lost forever, since we're not storing
 * the widget globally or statically to this function.
 */
 help_dialog = XtVaCreatePopupShell ("Help",
 xmDialogShellWidgetClass, GetTopShell (w),
 XmNdeleteResponse, XmDESTROY,
 NULL);

 /* Create a PanedWindow to manage the stuff in this dialog. */
 pane = XtVaCreateWidget ("pane", xmPanedWindowWidgetClass, help_dialog,
 XmNsashWidth, 1, /* PanedWindow won't let us set these to 0! */
 XmNsashHeight, 1, /* Make small so user doesn't try to resize */
 NULL);

 /* Create a RowColumn in the form for Label and Text widgets.
 * This is the control area.
 */
 form = XtVaCreateWidget ("form1", xmFormWidgetClass, pane, NULL);
 XtVaGetValues (form, /* once created, we can get its colors */
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);

 /* create the pixmap of the appropriate depth using the colors
 * that will be used by the parent (form).
 */
 pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),
 RootWindowOfScreen (XtScreen (form)),
 info_bits, info_width, info_height,
 fg, bg, DefaultDepthOfScreen (XtScreen (form)));

 /* Create a label gadget using this pixmap */
 label = XtVaCreateManagedWidget ("label", xmLabelGadgetClass, form,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 XmNleftAttachment, XmATTACH_FORM,

8 Custom Dialogs 8.3 Building a Dialog

180

 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);

 /* prepare the text for display in the ScrolledText object
 * we are about to create.
 */
 for (p = buf, i = 0; help_texts[item_no][i]; i++) {
 p += strlen (strcpy (p, help_texts[item_no][i]));
 if (!isspace (p[−1])) /* spaces, tabs and newlines are spaces.. */
 p++ = ' '; / lines are concatenated together, insert a space */
 }
 −−p = 0; / get rid of trailing space... */

 XtSetArg (args[n], XmNscrollVertical, True); n++;
 XtSetArg (args[n], XmNscrollHorizontal, False); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNeditable, False); n++;
 XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
 XtSetArg (args[n], XmNwordWrap, True); n++;
 XtSetArg (args[n], XmNvalue, buf); n++;
 XtSetArg (args[n], XmNrows, 5); n++;
 text_w = XmCreateScrolledText(form, "help_text", args, n);
 /* Attachment values must be set on the Text widget's PARENT,
 * the ScrolledWindow. This is the object that is positioned.
 */
 XtVaSetValues (XtParent (text_w),
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, label,
 XmNtopAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);
 XtManageChild (text_w);
 XtManageChild (form);

 /* Create another form to act as the action area for the dialog */
 form = XtVaCreateWidget ("form2", xmFormWidgetClass, pane,
 XmNfractionBase, 5,
 NULL);

 /* The OK button is under the pane's separator and is
 * attached to the left edge of the form. It spreads from
 * position 0 to 1 along the bottom (the form is split into
 * 5 separate grids via XmNfractionBase upon creation).
 */
 widget = XtVaCreateManagedWidget ("OK",
 xmPushButtonGadgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 1,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 2,
 XmNshowAsDefault, True,
 XmNdefaultButtonShadowThickness, 1,
 NULL);
 XtAddCallback (widget, XmNactivateCallback, DestroyShell, help_dialog);

 /* This is created with its XmNsensitive resource set to False
 * because we don't support "more" help. However, this is the

8 Custom Dialogs 8.3 Building a Dialog

181

 * place to attach it to if there were any more.
 */
 widget = XtVaCreateManagedWidget ("More",
 xmPushButtonGadgetClass, form,
 XmNsensitive, False,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 3,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 4,
 XmNshowAsDefault, False,
 XmNdefaultButtonShadowThickness, 1,
 NULL);

 /* Fix the action area pane to its current height −− never let it resize */
 XtManageChild (form);

 XtVaGetValues (widget, XmNheight, &h, NULL);
 XtVaSetValues (form, XmNpaneMaximum, h, XmNpaneMinimum, h, NULL);

 XtManageChild (pane);

 XtPopup (help_dialog, XtGrabNone);
 }

 /* The callback function for the "OK" button. Since this is not a
 * predefined Motif dialog, the "widget" parameter is not the dialog
 * itself. That is only done by Motif dialog callbacks. Here in the
 * real world, the callback routine is called directly by the widget
 * that was invoked. Thus, we must pass the dialog as the client
 * data to get its handle. (We could get it using GetTopShell(),
 * but this way is quicker, since it's immediately available.)
 */
 void
 DestroyShell(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget shell = (Widget) client_data;

 XtDestroyWidget(shell);
 }

The output of the program is shown in the figure.

8 Custom Dialogs 8.3 Building a Dialog

182

Output of help_text.c

The function help_cb() is the callback routine that is invoked by all of the Help menu items. This routine follows
the steps that we outlined earlier to create the dialog box.

8.3.1 The Shell

Since the dialog is a transient dialog, we use a DialogShell widget for the shell. We create the shell as follows:

 help_dialog = XtVaCreatePopupShell ("Help",
 xmDialogShellWidgetClass, GetTopShell (w),
 XmNdeleteResponse, XmDESTROY,
 NULL);

Instead of using XtVaCreatePopupShell(), we could have used a Motif convenience routine as shown in the
following code fragment:

 n = 0;
 XtSetArg (args[n], XmNdeleteResponse, XmDESTROY); n++;
 help_dialog = XmCreateDialogShell (GetTopShell (w), "Help", args, n);

Both methods return a DialogShell. The XmNdeleteResponse resource is set to XmDESTROY because we want the
Close item from the window menu in the window manager's titlebar for the shell to destroy the shell and its children.
The default value for this resource is XmUNMAP; had we wanted to reuse the same dialog upon each invocation, we
would have used XmUNMAP and retained a handle to the dialog widget.

The name of the dialog is Help, since that is the first parameter in the call to XtVaCreatePopupShell().
Resource specifications in a resource file that pertain to this dialog should use Help as the widget name, as shown
below:

 *Help*foreground: green

The string displayed in the title bar of a dialog defaults to the name of the dialog. Since the name of the dialog is Help,
the title defaults to the same value. However, this method of -setting the title does not prevent the value from being

8 Custom Dialogs 8.3.1 The Shell

183

changed by the user in a resource file. For example, the following specification changes the title:

 *Help.title: Help Dialog

The title can also be set using the XmNtitle resource, as shown in the following code fragment: XmNtitle is
defined identically to XtNtitle, which is an Xt resource, which means that the value is a regular character string,
not a compound string.

 help_dialog = XtVaCreatePopupShell ("Help",
 xmDialogShellWidgetClass, parent,
 XmNtitle, "Help Dialog",
 NULL);

When the title is hard−coded in the application, any resource specifications in a resource file are ignored.

8.3.2 The Manager Child

The next task is to create a manager widget that acts as the sole child of the DialogShell, since shell widgets can have
only one managed child. This section deals heavily with manager widget issues, so if you have problems keeping up,
you should look ahead to Chapter 8, Manager Widgets. However, the main point of the section is to provide enough
context for you to understand the source code We are using a PanedWindow widget as the child of the DialogShell, as
per our earlier recommendations. The PanedWindow is created as follows:

 pane = XtVaCreateWidget ("pane",
 xmPanedWindowWidgetClass, help_dialog,
 XmNsashWidth, 1,
 XmNsashHeight, 1,
 NULL);

The PanedWindow manages two Form widget children, one each for the control area and the action area. These
children are also called the PanedWindow's panes. Normally, in a PanedWindow, the user can resize the panes by
moving the control sashes that are placed between the panes. Because the action area is not supposed to grow or
shrink in size, we don't want to allow the user to adjust the sizes of the panes. There are really two issues involved
here: the user might try to resize the panes individually or she might resize the entire dialog, which would cause the
PanedWindow itself to resize them.

You can prevent the PanedWindow from resizing the action area when it is itself resized by setting the pane's
XmNskipAdjust resource to True. However, this technique still allows the user to resize the individual panes,
which means that you need to disable the control sashes. The best way to prevent both undesirable resize possibilities
is to set the action area pane's maximum and minimum allowed heights to the same value. These settings should cause
the PanedWindow to disable the sashes for that particular pane, but due to a bug in the PanedWindow widget class,
the sashes are rarely disabled. To compensate, we try to make the sashes invisible by setting their sizes to a minimum
value. Unfortunately, the -PanedWindow won't let you set the size of a sash to 0 (a design error), so we set the values
for -XmNsashWidth and XmNsashHeight to 1. The only other problem that might arise is that keyboard traversal
still allows the user to reach the sashes, so you may want to remove them from the traversal list by setting their
XmNtraversalOn resources to False. This issue is described in detail in Chapter 8, Manager Widgets.

The PanedWindow widget is created unmanaged using XtVaCreateWidget(). As pointed out in Chapter 8,
Manager Widgets, manager widgets should not be managed until all of their children have been created and managed.
Using this order allows the children's desired sizes and positions to be specified before the manager widget tries to
negotiate other sizes and positions.

8 Custom Dialogs 8.3.2 The Manager Child

184

8.3.3 The Control Area

The Form widget is the control area, so it is created as a child of the PanedWindow, as shown in the following
fragment:

 form = XtVaCreateWidget ("form1", xmFormWidgetClass, pane, NULL);

As far as the PanedWindow is concerned, the Form widget is a single child whose width is stretched to the left and
right edges of the shell. Within the Form, we add two widgets: a Label widget that contains the help pixmap and a
ScrolledText for the help information.

In order to create the Label, we must first create the pixmap it is going to use. The following code fragment shows
how we create the pixmap and then create the Label:

 XtVaGetValues (form,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);

 pixmap = XCreatePixmapFromBitmapData (XtDisplay (form),
 RootWindowOfScreen (XtScreen (form)),
 bitmap_bits, bitmap_width, bitmap_height,
 fg, bg, DefaultDepthOfScreen (XtScreen (form)));

 label = XtVaCreateManagedWidget ("label", xmLabelGadgetClass, form,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);

We cannot create the pixmap until we know the foreground and background colors, so we retrieve these colors from
the Form, since it has a valid window and colormap. This approach works for either monochrome or color screens.
We use these values as the foreground and background for the pixmap we create in the call to
XCreatePixmapFromBitmapData(). We could have used XmGetPixmap() to create a pixmap, but this
routine does not allow us to load a pixmap directly from bitmap data, as we have done here. For us to use
XmGetPixmap(), the file that contains the bitmap data would have to exist at run−time, or we would have to load
the bitmap data directly into a static XImage. For more information on this technique, see Section #spixmaps in
Chapter 3, Overview of the Motif Toolkit. The bits for the bitmap, the width, and the height are predefined in the X
bitmap file included earlier in the program (info.xbm). The Label uses the pixmap by setting the XmNlabelType and
XmNlabelPixmap resources (see Chapter 11, Labels and Buttons, for more information on these resources).

The attachment resources we specified for the Label are constraint resources for the Form widget that describe how
the Form should lay out its children. These constraint resources are ignored by the Label widget itself. See Chapter 8,
Manager Widgets, for a complete description of how constraint resources are handled by widgets. In this case, the top,
bottom, and left sides of the Label are all attached to the edge of the Form, which causes the Label to position itself
relative to the Form.

Next, we create a ScrolledText compound object to display the help text, as shown in the following fragment:

 n = 0;
 XtSetArg (args[n], XmNscrollVertical, True); n++;
 XtSetArg (args[n], XmNscrollHorizontal, False); n++;

8 Custom Dialogs 8.3.3 The Control Area

185

 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNeditable, False); n++;
 XtSetArg (args[n], XmNcursorPositionVisible, False); n++;
 XtSetArg (args[n], XmNwordWrap, True); n++;
 XtSetArg (args[n], XmNvalue, buf); n++;
 XtSetArg (args[n], XmNrows, 5); n++;
 text_w = XmCreateScrolledText(form, "help_text", args, n);

 XtVaSetValues (XtParent (text_w),
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, label,
 XmNtopAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);

 XtManageChild (text_w);

In order to use XmCreateScrolledText(), we must use the old−style XtSetArg() method of setting the
resources that are passed to the function. The routine actually creates two widgets that appear to be a single interface
object. A ScrolledWindow widget and a Text widget are created so that the Text widget is a child of the
ScrolledWindow. The toolkit returns a handle to the Text widget, but since the ScrolledWindow widget is the direct
child of the Form, we set the constraint resources on the ScrolledWindow, not the Text widget. The top, right, and
bottom sides of the ScrolledWindow are attached to the Form, while the left side is attached to the Label widget, so
that the two widgets are always positioned next to each other.

We could have passed these resource/value pairs in the args list, but then the resources would have been set on both
the ScrolledWindow widget and the Text widget. Since the attachment constraints would be ignored by the Text
widget, there would be no real harm in setting them on both widgets. However, it is better programming style to set
the resources directly on the ScrolledWindow. Details on the Text widget and the ScrolledText object can be found in
Chapter 14, Text Widgets. Chapter 9, ScrolledWindows and ScrollBars, discusses the ScrolledWindow widget and
its resources.

The text for the widget is set using the XmNvalue resource. The value for this resource is the appropriate help text
taken from the help_texts array declared at the beginning of the program. We set the XmNeditable resource to
False so that the user cannot edit the help text.

The Text and Label widgets are the only two items in the Form widget. Once these children are created and managed,
the Form can be managed using XtManageChild().

8.3.4 The Action Area

At this point, the control area of the dialog has been created, so it is time to create the action area. In our example, the
action area is pretty simple, as the only action needed is to close the dialog. We use the OK button for this action. For
completeness, we have also provided a More button to support additional or extended help. Since we don't provide
any additional help, we set this button insensitive (although you can extend this example by providing it).

The action area does not have to be contained in a separate widget, although it is generally much easier to do so. We
use a Form widget in order to position the buttons evenly across the width of the dialog. We create the Form as
follows:

 form = XtVaCreateWidget ("form2", xmFormWidgetClass, pane,
 XmNfractionBase, 5,
 NULL);

8 Custom Dialogs 8.3.4 The Action Area

186

The XmNfractionBase resource of the Form widget is set to five, so that the Form is broked down into five equal
units, as shown in the figure.

The XmNfractionBase resource divides the Form into equal units

Position zero is the left edge of the form and position five is the right edge of the form. We chose five because it gave
us the best layout aesthetically. The region is divided up equally, so you can think of the sections as percentages of the
total width (or height) of the Form. By using this layout method, we don't have to be concerned with the width of the
Form or of the DialogShell itself, since we know that the placement of the buttons will always be proportional. We
create the OK button as shown in the following code fragment:

 widget = XtVaCreateManagedWidget ("OK",
 xmPushButtonGadgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 1,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 2,
 XmNshowAsDefault, True,
 XmNdefaultButtonShadowThickness, 1,
 NULL);

The left and right sides of the button are placed at positions one and two, respectively. Since this button is the default
button for the dialog, we want the button to be displayed as such. We set XmNshowAsDefault to True and
XmNdefaultButtonShadowThickness to 1. The value for the latter resource is a pixel value that specifies the
width of an extra three−dimensional border that is placed around the default button to distinguish it from the other
buttons. If the value for XmNshowAsDefault is False, the button is not shown as the default, regardless of the
value of the default shadow thickness. The XmNshowAsDefault resource can also take a numeric value that
indicates the shadow thickness to use, but its value is only interpreted in this way if
XmNdefaultButtonShadowThickness is set to 0. This functionality is for backwards compatibility with Motif
1.0 and should not be used.

Because the dialog is not reused, we want the callback for the OK button to destroy the DialogShell. We use the
XmNactivateCallback of the PushButton to implement the functionality. The callback routine is
DestroyShell(), which is shown below:

 static void
 DestroyShell(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {

8 Custom Dialogs 8.3.4 The Action Area

187

 Widget shell = (Widget) client_data;

 XtDestroyWidget(shell);
 }

Since the dialog is not a predefined Motif dialog, the widget parameter to the callback routine is not the dialog, but
the PushButton that caused the callback to be invoked. This difference is subtle and it is often overlooked by
programmers who are breaking away from the predefined dialogs to build their own dialogs. We pass the DialogShell,
help_dialog, as client data to the callback routine, so that the callback can destroy the widget.

The More button is not used in the application, since we do not provide any additional help for the dialog. We create
the button as follows:

 widget = XtVaCreateManagedWidget ("More",
 xmPushButtonGadgetClass, form,
 XmNsensitive, False,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 3,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 4,
 XmNshowAsDefault, False,
 XmNdefaultButtonShadowThickness, 1,
 NULL);

In this case, the XmNshowAsDefault resource is set to False. We have also set XmN-sensitive to False so
that the widget is insensitive to user input.

Once the buttons in the action area have been created, we need to fix the size of the action area. We manage the Form
and then we retrieve the height of one of the action area buttons, so that we can use the value as the minimum and
maximum height of the pane. We set the XmNpaneMaximum and XmNpaneMinimum constraint resources on the
Form, so that the PanedWindow sets the action area to a constant height.

Once the control area and the action area have been created and managed, the PanedWindow is managed using
XtManageChild() and the dialog is popped up using XtPopup(). This last step is necessary because the
DialogShell is not automatically popped up when you manage the PanedWindow widget. This special behavior only
happens when the immediate child of the DialogShell is a BulletinBoard or Form widget. This program provides an
example of why you should never rely on this behavior or expect it to happen. See Chapter 5, Introduction to
Dialogs, for a complete discussion of the posting of dialogs.

8.4 Generalizing the Action Area

While dialogs can vary in many respects, the structure of the action area usually remains consistent for all dialogs.
Most large programs are going to make use of many customized dialogs. In the general case, you do not want to
rewrite the code to generate an action area for each special case. It is much easier and more efficient to write a
generalized routine that creates an action area for any dialog.

Whenever we generalize any procedure, we first identify how the situation may change from one case to the next. For
example, not all action areas have only two buttons; you may have any number from one to, say, ten. As a result, you
need to be able to change the number of partitions in the Form widget to an arbitrary value depending on the number
of actions in the dialog. The positions to which the left and right sides of each action button are attached also need to
be adjusted.

8 Custom Dialogs 8.4 Generalizing the Action Area

188

Some known quantities in this equation are that the action area must be at the bottom of a dialog and it must contains
PushButtons. While the PushButtons may be either widgets or gadgets, you should probably choose one or the other
and use them consistently throughout your application. Since gadgets use the colors of their parent, one advantage of
using them is that you can set the colors of all of the buttons quite easily, as shown in the following resource
specification:

 *action_area.foreground: red

On the other hand, since widgets have windows, you can specify different colors for different buttons. For example,
you could use blue for the OK button and red for the Cancel button, as shown in the following specifications:

 *action_area.ok_button.foreground: blue
 *action_area.cancel_button.foreground: red

In general, all of the buttons in the action area should be from the same class, and all of the action areas in an
application should be consistent with one another.

Each button in an action area has its own label, its own callback routine, and its own associated client data. To create a
general action area, we need a data structure that abstracts this information. The ActionAreaItem structure is
defined as follows:

 typedef struct {
 char *label; /* PushButton's Label */
 void (*callback)(); /* pointer to a callback routine */
 XtPointer data; /* client data for the callback routine */
 } ActionAreaItem;

This data structure contains all of the information that we need to know in order to create an action area; the rest of the
information is known or it can be derived.

Now we can write a routine that creates an action area. The purpose of the function is to create and return a composite
widget that contains the specified number of PushButtons, where the buttons are arranged horizontally and evenly
spaced. The CreateActionArea() routine is used in the source code This program does not do anything
substant ial , but i t does present a general ized architecture for creat ing dialogs for an appl icat ion.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* action_area.c −− demonstrate how CreateActionArea() can be used
 * in a real application. Create what would otherwise be identified
 * as a PromptDialog, only this is of our own creation. As such,
 * we provide a TextField widget for input. When the user presses
 * Return, the OK button is activated.
 */
 #include <Xm/DialogS.h>
 #include <Xm/PushBG.h>
 #include <Xm/PushB.h>
 #include <Xm/LabelG.h>
 #include <Xm/PanedW.h>
 #include <Xm/Form.h>
 #include <Xm/RowColumn.h>
 #include <Xm/TextF.h>

 typedef struct {
 char *label;

8 Custom Dialogs 8.4 Generalizing the Action Area

189

 void (*callback)();
 XtPointer data;
 } ActionAreaItem;

 static void
 do_dialog(), close_dialog(), activate_cb(),
 ok_pushed(), clear_pushed(), help();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 button = XtVaCreateManagedWidget ("Push Me",
 xmPushButtonWidgetClass, toplevel, NULL);
 XtAddCallback (button, XmNactivateCallback, do_dialog, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback routine for "Push Me" button. Actually, this represents
 * a function that could be invoked by any arbitrary callback. Here,
 * we demonstrate how one can build a standard customized dialog box.
 * The control area is created here and the action area is created in
 * a separate, generic routine: CreateActionArea().
 */
 static void
 do_dialog(w, client_data, call_data)
 Widget w; /* will act as dialog's parent */
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog, pane, rc, text_w, action_a;
 XmString string;
 extern Widget CreateActionArea();
 static ActionAreaItem action_items[] = {
 { "OK", ok_pushed, NULL },
 { "Clear", clear_pushed, NULL },
 { "Cancel", close_dialog, NULL },
 { "Help", help, "Help Button" },
 };

 /* The DialogShell is the Shell for this dialog. Set it up so
 * that the "Close" button in the window manager's system menu
 * destroys the shell (it only unmaps it by default).
 */
 dialog = XtVaCreatePopupShell ("dialog",
 xmDialogShellWidgetClass, XtParent (w),
 XmNtitle, "Dialog Shell", /* give arbitrary title in wm */
 XmNdeleteResponse, XmDESTROY, /* system menu "Close" action */
 NULL);

 /* now that the dialog is created, set the Cancel button's

8 Custom Dialogs 8.4 Generalizing the Action Area

190

 * client data, so close_dialog() will know what to destroy.
 */
 action_items[2].data = (XtPointer) dialog;

 /* Create the paned window as a child of the dialog. This will
 * contain the control area and the action area
 * (created by CreateActionArea() using the action_items above).
 */
 pane = XtVaCreateWidget ("pane", xmPanedWindowWidgetClass, dialog,
 XmNsashWidth, 1,
 XmNsashHeight, 1,
 NULL);

 /* create the control area which contains a
 * Label gadget and a TextField widget.
 */
 rc = XtVaCreateWidget ("control_area", xmRowColumnWidgetClass, pane, NULL);
 string = XmStringCreateLocalized ("Type Something:");
 XtVaCreateManagedWidget ("label", xmLabelGadgetClass, rc,
 XmNlabelString, string,
 NULL);
 XmStringFree (string);

 text_w = XtVaCreateManagedWidget ("text−field",
 xmTextFieldWidgetClass, rc, NULL);

 /* RowColumn is full −− now manage */
 XtManageChild (rc);

 /* Set the client data for the "OK" and "Cancel" buttons */
 action_items[0].data = (XtPointer) text_w;
 action_items[1].data = (XtPointer) text_w;

 /* Create the action area. */
 action_a = CreateActionArea (pane, action_items, XtNumber (action_items));

 /* callback for Return in TextField. Use action_a as client data */
 XtAddCallback (text_w, XmNactivateCallback, activate_cb, action_a);

 XtManageChild (pane);
 XtPopup (dialog, XtGrabNone);
 }

 /* The next four functions are the callback routines for the buttons
 * in the action area for the dialog created above. Again, they are
 * simple examples, yet they demonstrate the fundamental design approach.
 */
 static void
 close_dialog(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget shell = (Widget) client_data;

 XtDestroyWidget (shell);
 }

 /* The "ok" button was pushed or the user pressed Return */
 static void
 ok_pushed(w, client_data, call_data)

8 Custom Dialogs 8.4 Generalizing the Action Area

191

 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget text_w = (Widget) client_data;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
 char *text = XmTextFieldGetString (text_w);

 printf ("String = %s0, text);
 XtFree (text);
 }

 static void
 clear_pushed(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget text_w = (Widget) client_data;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

 /* cancel the whole operation; reset to NULL. */
 XmTextFieldSetString (text_w, "");
 }

 static void
 help(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 String string = (String) client_data;

 puts(string);
 }

 /* When Return is pressed in TextField widget, respond by getting
 * the designated "default button" in the action area and activate
 * it as if the user had selected it.
 */
 static void
 activate_cb(text_w, client_data, call_data)
 Widget text_w; /* user pressed Return in this widget */
 XtPointer client_data; /* action_area passed as client data */
 XtPointer call_data;
 {
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
 Widget dflt, action_area = (Widget) client_data;

 /* get the "default button" from the action area... */
 XtVaGetValues (action_area, XmNdefaultButton, &dflt, NULL);
 if (dflt) /* sanity check −− this better work */
 /* make the default button think it got pushed using
 * XtCallActionProc(). This function causes the button
 * to appear to be activated as if the user pressed it.
 */
 XtCallActionProc (dflt, "ArmAndActivate", cbs−>event, NULL, 0);
 }

 #define TIGHTNESS 20

8 Custom Dialogs 8.4 Generalizing the Action Area

192

 Widget
 CreateActionArea(parent, actions, num_actions)
 Widget parent;
 ActionAreaItem *actions;
 int num_actions;
 {
 Widget action_area, widget;
 int i;

 action_area = XtVaCreateWidget ("action_area", xmFormWidgetClass, parent,
 XmNfractionBase, TIGHTNESS*num_actions − 1,
 XmNleftOffset, 10,
 XmNrightOffset, 10,
 NULL);

 for (i = 0; i < num_actions; i++) {
 widget = XtVaCreateManagedWidget (actions[i].label,
 xmPushButtonWidgetClass, action_area,
 XmNleftAttachment, i? XmATTACH_POSITION : XmATTACH_FORM,
 XmNleftPosition, TIGHTNESS*i,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNrightAttachment,
 i != num_actions − 1 ? XmATTACH_POSITION : XmATTACH_FORM,
 XmNrightPosition, TIGHTNESS * i + (TIGHTNESS − 1),
 XmNshowAsDefault, i == 0,
 XmNdefaultButtonShadowThickness, 1,
 NULL);
 if (actions[i].callback)
 XtAddCallback (widget, XmNactivateCallback,
 actions[i].callback, actions[i].data);
 if (i == 0) {
 /* Set the action_area's default button to the first widget
 * created (or, make the index a parameter to the function
 * or have it be part of the data structure). Also, set the
 * pane window constraint for max and min heights so this
 * particular pane in the PanedWindow is not resizable.
 */
 Dimension height, h;
 XtVaGetValues (action_area, XmNmarginHeight, &h, NULL);
 XtVaGetValues (widget, XmNheight, &height, NULL);
 height += 2 * h;
 XtVaSetValues (action_area,
 XmNdefaultButton, widget,
 XmNpaneMaximum, height,
 XmNpaneMinimum, height,
 NULL);
 }
 }

 XtManageChild (action_area);

 return action_area;
 }

The application uses a PushButton to create and pop up a customized dialog. The control area is composed of a
RowColumn widget that contains a Label gadget and a TextField widget. The action area is created using
CreateActionArea(). The actions and the number of actions are specified in the actions and num_actions
parameters. We use a Form widget to lay out the actions. We give the Form the name action_area, since it is
descriptive and it makes it easy for the user to specify the area in a resource file. The output of the program in shown

8 Custom Dialogs 8.4 Generalizing the Action Area

193

in the figure.

Output of action_area.c

In order to distribute the PushButtons evenly across the action area, we use the XmN-fractionBase resource of the
Form widget to segment the widget into equal portions. The value of the resource is based on the value of the
TIGHTNESS definition, which controls the spacing between buttons. A higher value causes the PushButtons to be
closer together, while a lower value spaces them further apart. We use the value 20 for purely aesthetic reasons. As
each button is created, its attachments are set. The left side of the first button and right side of the last button are
attached to the left and right edges of the Form, respectively, while all of the other left and right edges are attached to
positions.

The callback routine and associated client data for each button are added using XtAddCallback(). The first button
in the action area is specified as the default button for the dialog. The XmNdefaultButton resource indicates
which button is designated as the default button for certain actions that take place in the control area of the dialog. The
XmN-activateCallback of the TextField widget in the control area uses the resource to activate the default
button when the user presses the RETURN key in the TextField.

The CreateActionArea() function also sets XmNpaneMaximum and XmNpaneMinimum constraint resources
on the action area. These are PanedWindow constraint resources that are used to specify the height of the action area.
The assumption, of course, is that the parent of the action area is a PanedWindow. If that is not true, these resource
specifications have no effect.

8.5 Using a TopLevelShell for a Dialog

You don't have to use a DialogShell widget to implement a dialog. In fact, it is quite common to use a TopLevelShell
or even an ApplicationShell in cases where the particular functionality is an important part of a larger application. For
example, an e−mail application has a variety of functions that range from reading messages to composing new ones.
As shown in the figure, you can have a separate TopLevelShell, complete with a MenuBar, that looks and acts like a
separate application, but is still considered a dialog, since it is only a subpart of the whole application.

As you can see, this dialog uses the same elements as other dialogs. The control area is complete with a ScrolledText
region and other controls, while the action area contains action buttons. The principal difference between this dialog
and a dialog implemented with a DialogShell is that this dialog that uses a TopLevelShell may be iconified separately
from the other windows in the program.

8 Custom Dialogs 8.5 Using a TopLevelShell for a Dialog

194

A message composition dialog from an e−mail application

When you need to implement a dialog with a TopLevelShell, you should not regard or implement it as a popup dialog.
But for the most part, there is little difference from this approach and the method discussed for regular dialogs. You
may still use BulletinBoards, Forms, and RowColumns to manage the inner controls. You still need an action area
(provided you want to look and act like a dialog), and you still need to handle the cases where the dialog is popped up
and down. You can create the TopLevelShell with XtVaAppCreateShell(). The shell is automatically mapped
onto the screen when you call XtPopup(). You may also want to call XMapRaised() on the shell, in case it is
already popped up but is not at the top of the window hierarchy.

In direct contrast to the DialogShell widget, managing the immediate child of a TopLevelShell does not cause the
dialog to pop up automatically. Even if that child is subclassed from the BulletinBoard widget, this type of behavior
only happens if the shell is a DialogShell widget. Because you are using a TopLevelShell, you cannot rely on the
special communication that happens between a DialogShell and a BulletinBoard or Form widget. As a result, many
resources such as XmNautoUnmanage and XmNdialogTitle no longer apply. To achieve the effects of these
resources, you have to implement the functionality yourself.

If you want to use one of the standard Motif dialogs, such as a MessageDialog or a FileSelectionDialog, in a shell
widget that can be iconified iconified separately from its primary window shell, you can put the dialog in a
TopLevelShell. Create the shell using XtVaAppCreateShell() and then use one of the Motif convenience
routines to create a MessageBox or a FileSelectionBox, rather than the corresponding dialog widget. The following
code fragment shows an example of this usage:

 shell = XtVaAppCreateShell (NULL, "Class",
 topLevelShellWidgetClass, dpy,
 XtNtitle, "Dialog Shell Title",
 NULL);

8 Custom Dialogs 8.5 Using a TopLevelShell for a Dialog

195

 dialog = XmCreateMessageBox (shell, "MessageDialog", NULL, 0);

 XtAddCallback (dialog, XmNokCallback, callback_func, NULL);
 XtAddCallback (dialog, XmNcancelCallback, callback_func, NULL);
 XtAddCallback (dialog, XmNhelpCallback, help_func, NULL);

8.6 Positioning Dialogs

In all of the dialog examples that you have seen so far, the toolkit has handled the positioning of the dialog. For
dialogs that use the DialogShell widget with a subclass of BulletinBoard as the immediate child, the
XmNdefaultPosition resource controls this behavior. If the resource is True, the dialog is centered relative to
the parent of the DialogShell and placed on top of the parent. If the resource is set to False, the application is
responsible for positioning the dialog. It is easy to position a dialog using the XmNmapCallback resource that is
supported by all of the Motif manager widgets, as shown in the source code

 /* map_dlg.c −− Use the XmNmapCallback to automatically position
 * a dialog on the screen. Each time the dialog is displayed, it
 * is mapped down and to the right by 200 pixels in each direction.
 */
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 /* main() −−create a pushbutton whose callback pops up a dialog box */
 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 XtAppContext app;
 void pushed();

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 button = XtVaCreateManagedWidget ("Push Me",
 xmPushButtonWidgetClass, toplevel,
 NULL);

 XtAddCallback (button, XmNactivateCallback, pushed, "Hello World");

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback function for XmNmapCallback. Position dialog in 200 pixel
 * "steps". When the edge of the screen is hit, start over.
 */
 static void
 map_dialog(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Position x, y;
 Dimension w, h;

 XtVaGetValues(dialog,
 XmNwidth, &w,

8 Custom Dialogs 8.6 Positioning Dialogs

196

 XmNheight, &h,
 NULL);

 if ((x + w) >= WidthOfScreen (XtScreen (dialog)))
 x = 0;
 if ((y + h) >= HeightOfScreen (XtScreen (dialog)))
 y = 0;
 XtVaSetValues (dialog,
 XmNx, x,
 XmNy, y,
 NULL);

 x += 200;
 y += 200;
 }

 /* pushed() −−the callback routine for the main app's pushbutton.
 * Create and popup a dialog box that has callback functions for
 * the Ok, Cancel and Help buttons.
 */
 void
 pushed(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 extern void response();
 Widget dialog;
 Arg arg[5];
 int n = 0;
 char *message = (char *) client_data;
 XmString t = XmStringCreateLocalized (message);

 XtSetArg (arg[n], XmNmessageString, t); n++;
 XtSetArg (arg[n], XmNdefaultPosition, False); n++;
 dialog = XmCreateMessageDialog (w, "notice", arg, n);
 XmStringFree (t);

 XtAddCallback (dialog, XmNmapCallback, map_dialog, NULL);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

Each time the dialog is mapped to the screen, the map_dialog() routine is invoked. The routine merely places the
dialog at a location that is 200 pixels from its previous position. Obviously, this example is meant to demonstrate the
technique of positioning a dialog, rather than providing any useful functionality. The XmNwidth, XmNheight,
XmNx, and XmNy resources are retrieved from the DialogShell widget since the dialog is a predefined Motif dialog.
Similarly, the position of the DialogShell is set by calling XtVaSetValues() using the same resources.

If you are using an ApplicationShell or a TopLevelShell, rather than a DialogShell, the position of the dialog is subject
to various resources that are controlled by the user and/or the window manager. For example, if the user is using
mwm, she can set the resource interactivePlacement, which allows her to position the shell interactively.
While it is acceptable for an application to control the placement of a DialogShell, it should not try to control the
placement of a TopLevelShell or an ApplicationShell because that is the user's domain. However, if you feel you
must, you can position any shell widget directly by setting its XmNx and XmNy resources to the desired position when
the shell is created or later using XtVaSetValues(). The Motif toolkit passes the coordinate values to the window
manager and allows it to position the dialog at the intended location.

8 Custom Dialogs 8.6 Positioning Dialogs

197

This issue is an important dilemma in user−interface design. If you are going to hard−code the position of a dialog on
the screen, you probably do not want to position the dialog at that location each time that it is popped up. Imagine that
you pop up a dialog, move it to an uncluttered area on your screen, interact with it for a while, and then pop it down. If
you use the dialog again, you would probably like it to reappear in the location where you put it previously. The best
way to handle this dilemma is to avoid doing any of your own dialog placement, with the possible exception of the
first time that a dialog is popped up.

Whether or not you want to position a dialog when it is displayed, you may still find it useful to be informed about
when a dialog is popped up or down. The XmNmapCallback is not the best tool for this purpose, since it is not
ca l led each t ime the popped−up s ta te o f the d ia log changes . The XmNpopupCa l lback and
XmNpopdownCallback callbacks are meant for this purpose. These resources are defined and implemented by X
Toolkit Intrinsics for all shell widgets. The XmNpopupCallback is invoked each time XtPopup() is called on a
shell widget, while the XmNpopdownCallback is called for XtPopdown().

People often get confused by the terminology of a dialog being popped down and a shell being iconified. Remember
that whether or not a shell is popped up is independent of its iconic state. Although a DialogShell cannot be iconified
separately, other shells can. These shells may also be popped up and down using XtPopup() and XtPopdown()
independent of their iconic state. XtPopup() causes a shell to be deiconified, while XtPopdown() causes the
dialog and its icon to be withdrawn from the screen, regardless of its iconic state. The subject of window iconification
is discussed in Chapter 16, Interacting With the Window Manager.

8.7 Summary

Obviously, it is impossible to cover all of the possible scenarios of how dialogs can and should be used in an
application. If nothing else, you should come away from the chapters on dialogs with a general feeling for the design
approach that we encourage. You should also understand the steps that are necessary to create and use both predefined
Motif dialogs and customized dialogs. For a final look at some particularly thorny issues in using dialogs, see .

8 Custom Dialogs 8.7 Summary

198

9 Manager Widgets

This chapter provides detailed descriptions of the various classes of Motif manager widgets. Examples explore the
various methods of positioning children within the BulletinBoard, Form, and RowColumn widgets.

As their name implies, manager widgets manage other widgets, which means that they control the size and location
(geometry) and input focus policy for one or more widget children. The relationship between managers and the
widgets that they manage is commonly referred to as the parent−child model. The manager acts as the parent and the
other widgets are its children. Since manager widgets can also be children of other managers, this model produces the
widget hierarchy, which is a framework for how widgets are laid out visually on the screen and how resources are
specified in the resource database.

While managers are used and explained in different contexts throughout this book, this chapter discusses the details of
the different manager widget classes. Chapter 3, Overview of the Motif Toolkit, discusses the general concepts behind
manager widgets and how they fit into the broader application model. You are encouraged to review the material in
this and other chapters for a wider range of examples, since it is impossible to deal with all of the possibilities here.
For an in−depth discussion of the X Toolkit Composite and Constraint widget classes, from which managers are
subclassed, see Volume Four, X Toolkit Intrinsics Programming Manual.

9.1 Types of Manager Widgets

The Manager widget class is a metaclass for a number of functional subclasses. The Manager widget class is never
instantiated; the functionality it provides is inherited by each of its subclasses. In this chapter, we describe the
general−purpose Motif manager widgets, which are introduced below:

BulletinBoard

The BulletinBoard is the most basic of the manager widgets. The geometry management is, as the class name
implies, like a bulletin board. A child is pinned up on the BulletinBoard in a particular location and remains
there until it moves itself or someone else moves it. The BulletinBoard widget does not impose any layout
policy on its children, but it does support keyboard traversal. The BulletinBoard is a superclass for more
sophisticated and useful managers. The BulletinBoard is also designed to be used as the container for dialog
boxes, so it has translation tables and callback routines for this purpose. The predefined Motif dialogs use the
BulletinBoard widget class to handle all of their input mechanisms; each dialog widget class handles its own
geometry management. See Chapter 5, Introduction to Dialogs, for a complete discussion of dialogs.

Form

The Form widget is subclassed from the BulletinBoard. The Form extends the capabilities of the
BulletinBoard by introducing a sophisticated geometry management policy that involves both absolute and
relative positioning and sizing of its children. For example, a Form may lay out its children in a grid−like
manner, anchoring the edges of each child to specific positions on the grid, or it may attach the children to one
another in a chain−like fashion.

RowColumn

The RowColumn widget lays out its children in rows and columns. Resources control the number of rows or
columns and the packing of widgets into those rows and columns. The Motif toolkit uses the RowColumn
internally to implement many objects that are not implemented as individual widgets, such as PopupMenus,
PulldownMenus, MenuBars, RadioBoxes, and CheckBoxes. There are a number of RowColumn resources

199

that are specific to these objects.
Frame

The purpose of the Frame widget is to provide a visible, three−dimensional border for objects such as
RowColumns or Labels that do not provide a border for themselves. In Motif 1.2, the Frame widget may have
two children: a work area child and a label child. With Motif 1.1, the Frame widget may have only one child.
In either case, the Frame sizes itself just big enough to contain its children.

PanedWindow

The PanedWindow manages its children in a vertically−tiled format. The widget takes its width from the
widest widget in its list of children. The PanedWindow also provides control sashes or grips that enable the
user to adjust the individual heights of the PanedWindow's children. Constraint resources for the
PanedWindow allow each child to specify its desired maximum and minimum height and whether it may be
resized.

DrawingArea

Although the DrawingArea widget is subclassed from the Manager widget class, it is not generally used in the
way that conventional managers are used. The widget does not do any drawing and it doesn't define any
keyboard or mouse behavior, although it does provide callbacks for user input. It is basically a free−form
widget that can be used for application−specific purposes. The widget provides callback resources to handle
keyboard, mouse, exposure, and resize events. While the DrawingArea widget can have children, it does not
manage them in any defined way. Since the DrawingArea widget is typically used for drawing, rather than for
managing other widgets, it is discussed separately in Chapter 10, The DrawingArea Widget.

ScrolledWindow

The ScrolledWindow widget provides a viewing area into another widget. The user can adjust the viewing
area using ScrollBars that are attached to the ScrolledWindow. The ScrolledWindow can handle scrolling
automatically, so that the application does not have to do any work. The widget also has an
application−defined mode, which allows an application to control all of the aspects of scrolling. Since the
operation of the ScrolledWindow is tied to the operation of ScrollBars, the two widgets are discussed together
in Chapter 9, ScrolledWindows and ScrollBars.

MainWindow

The MainWindow widget is subclassed from the ScrolledWindow widget. The MainWindow is the standard
layout manager for the main application window in a Motif application. The widget is designed to lay out a
MenuBar, a work area, ScrollBars, a command area, and a message area. Since the MainWindow is central to
any real Motif application, it is discussed separately in Chapter 4, The Main Window.

Scale

The Scale widget displays a slider object that has a specific value in a range of values. The user can adjust the
value of the widget by moving the slider. The Scale creates and manages its own widgets; the only children
that you can add to a Scale are Label widgets that represent tickmarks. The widget class is not meant to be a
general−purpose manager, so it is described separately in Chapter 13, The Scale Widget.
The MessageBox, SelectionBox, FileSelectionBox, and Command widgets are also Motif manager widgets.
These widgets are used for predefined Motif dialogs and are discussed in Chapter 5, Introduction to Dialogs;
Chapter 6, Selection Dialogs; and Chapter 7, Custom Dialogs.

9.2 Creating Manager Widgets

A manager widget may be created and destroyed like any other widget. The main difference between using a manager

9 Manager Widgets 9.2 Creating Manager Widgets

200

and other widgets involves when the widget is declared to be managed in the creation process. While we normally
suggest that you create widgets using XtVaCreateManagedWidget(), we recommend that you create a manager
widget using XtVaCreateWidget() instead, and then manage it later using XtManageChild(). To understand
why this technique can be important, you need to understand how a manager widget manages its children.

A manager widget manages its children by controlling the sizes and positions of the children. The process of widget
layout only happens when the child and the parent are both in the managed state. If a child is created as an unmanaged
widget, the parent skips over that widget when it is determining the layout until such time as the child is managed.
However, if a manager widget is not itself managed, it does not perform geometry management on any of its children
regardless of whether those children are managed. To be precise, a manager does not actually manage its children until
it is both managed and realized. If you realize all of your widgets at once, by calling XtRealizeWidget() on the
top−level widget of the application, as described in Chapter 2, The Motif Programming Model, it should not make a
difference whether a manager is managed before or after its children are created. However, if you are adding widgets
to a tree of already−realized widgets, the principles set forth in this section are important. If you are adding children to
an already−realized parent, the child is automatically realized when it is managed. If you are adding a manager widget
as a child of a realized widget, you should explicitly realize the widget before you manage it. Otherwise, the resize
calculations may be performed in the wrong order. In a case such as this, it is essential to use XtManageChild()
rather than XtVaCreateManagedWidget(), since doing so allows you to make the explicit realize call before
managing the widget.

To demonstrate the problems that you are trying to avoid, consider creating a manager as a managed widget before
any of its children are created. The manager is going to have a set of PushButtons as its children. When the first child
is added using XtVaCreateManagedWidget(), the manager widget negotiates the size and position of the
PushButton. Depending on the type of manager widget being used, the parent either changes its size to accommodate
the new child or it changes the size of the child to its own size. In either case, these calculations are not necessary
because the geometry needs to change as more buttons are added. The problem becomes complicated by the fact that
when the manager's size changes, it must also negotiate its new size with its own parent, which causes that parent to
negotiate with its parent all the way up to the highest−level shell. If the new size is accepted, the result goes back
down the widget tree with each manager widget resizing itself on the way down. Repeating this process each time a
child is added almost certainly affects performance.

Because of the different geometry management methods used by the different manager widgets, there is the possibility
that all of this premature negotiation can result in a different layout than you intended. For example, as children are
added to a RowColumn widget, the RowColumn checks to see if there is enough room to place the new child on the
same row or column. If there isn't, then a new row or column is created. This behavior depends heavily on whether the
RowColumn is managed and also on whether its size has been established by being realized. If the manager parent is
not managed when the children are added, the whole process can be avoided, yet you still have the convenience of
using XtVaCreateManagedWidget() for all of the widget children. When the manager is itself managed, it
queries its children for their size and position requests, calculates its own size requirements, and communicates that
size back up the widget tree.

F o r b e s t r e s u l t s , y o u s h o u l d u s e X t V a C r e a t e W i d g e t () t o c r e a t e m a n a g e r w i d g e t s a n d
XtVaCreateManagedWidget() to create primitive widgets. Creating a primitive widget as an unmanaged
widget serves no purpose, unless you explicitly want the widget's parent to ignore it for some reason. If you are adding
another manager as a child, the same principle applies; you should also create it as an unmanaged widget until all its
children are added as well. The idea is to descend as deeply into the widget tree and create as many children as
possible before managing the manager parents as you ascend back up. Once all the children have been added,
XtManageChild() can be called for the managers so that they only have to negotiate with their parents once, thus
saving time, improving performance, and probably producing better results.

9 Manager Widgets 9.2 Creating Manager Widgets

201

Despite all we've just said, realize that the entire motivating factor behind this principle is to optimize the method by
which managers negotiate sizes and positions of their children. If a manager only has one child, it does not matter if
you create the manager widget as managed or not. Also, the geometry management constraints of some widgets are
such that no negotiation is required between the parent and the children. In these situations, it is not necessary to
create the manager as an unmanaged widget, even though it has children. We will explain these cases as they arise.

In the rest of this chapter, we examine the basic manager widget classes and present examples of how they can be
used. While geometry management is the most obvious and widely used aspect of the widget class, managers are also
responsible for keyboard traversal, gadget display, and gadget event handling. Many of the resources of the Manager
metaclass are inherited by each of its subclasses for handling these tasks.

9.3 The BulletinBoard Widget

The BulletinBoard is the most basic of the manager widget subclasses. The BulletinBoard widget does not enforce
position or size policies on its children, so it is rarely used by applications as a general geometry manager for widgets.
The BulletinBoard is the superclass for the Form widget and all of the predefined Motif dialog widgets. To support
these roles, the BulletinBoard has a number of resources that are used specifically for communicating with
DialogShells.

The BulletinBoard has callback resources for FocusIn, FocusOut, and MapNotify events. These callbacks are
invoked when the user moves the mouse or uses the TAB key to traverse the widget hierarchy. The events do not
require much visual feedback and they only require application−specific callback routines when an application needs
to set internal states based on the events. The XmNfocusCallback and XmNmapCallback resources are used
extensively by DialogShells.

Despite the low profile of the BulletinBoard as a manager widget, there is a lot to be learned from it, since the
principles also apply to most other manager widgets. In this spirit, let's take a closer look at the BulletinBoard widget
and examine the different things that can be done with it as a manager widget. If you want to use a BulletinBoard
directly in an application, you must include the file <Xm/BulletinB.h>. The following code fragment shows the
recommended way to create a BulletinBoard:

 Widget bboard;

 bboard = XtVaCreateWidget ("name",
 xmBulletinBoardWidgetClass, parent,

resource−value−list,
 NULL);

 /* Create children */

 XtManageChild (bboard);

The parent parameter is the parent of the BulletinBoard, which may be another manager widget or a shell widget.
You can specify any of the resources that are specific to the BulletinBoard, but unless you are using the widget as a
dialog box, your choices are quite limited.

9.3.1 Resources

Of the few BulletinBoard resources not tied to DialogShells, the only visual one is XmN-shadow-Type. When used
in conjunction with the XmNshadowThickness resource, you can control the three−dimensional appearance of the
widget. There are four possible values for XmNshadowType:

9 Manager Widgets 9.3 The BulletinBoard Widget

202

 XmSHADOW_IN
 XmSHADOW_OUT
 XmSHADOW_ETCHED_IN
 XmSHADOW_ETCHED_OUT

The default value for XmNshadowThickness is 0, except when the BulletinBoard is the child of a DialogShell, in
which case the default value is 1. In either case, the value can be changed by the application or by the user.

The XmNbuttonFontList resource may be set to a font list as described in Chapter 19, Compound Strings. This
font list is used for each of the button children of the BulletinBoard, when the button does not specify its own font. If
the resource is not specified, its value is taken from the XmNbuttonFontList of the nearest ancestor that is a
subclass of Bul let inBoard, VendorShel l , or MenuShel l . Similar ly, the XmNlabelFontList and
XmNtextFontList resources can be set for the Labels and Text widgets, respectively, that are direct children of
the BulletinBoard.

9.3.2 Geometry Management

Since the BulletinBoard does not provide any geometry management by default, you must be prepared to manage the
positions and sizes of the widgets within a BulletinBoard. As a result, you must set the XmNx and XmNy resources for
each child. You may also have to set the XmNwidth and XmNheight resources if you need consistent or
predetermined sizes for the children. In order to maintain the layout, you must add an event handler for resize
(ConfigureNotify) events, so that the new sizes and positions of the children can be calculated. the source code
shows the use of an event handler with the BulletinBoard. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4.

 /* corners.c −− demonstrate widget layout management for a
 * BulletinBoard widget. There are four widgets each labeled
 * top−left, top−right, bottom−left and bottom−right. Their
 * positions in the bulletin board correspond to their names.
 * Only when the widget is resized does the geometry management
 * kick in and position the children in their correct locations.
 */
 #include <Xm/BulletinB.h>
 #include <Xm/PushB.h>

 char *corners[] = {
 "Top Left", "Top Right", "Bottom Left", "Bottom Right",
 };

 static void resize();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, bboard;
 XtAppContext app;
 XtActionsRec rec;
 int i;

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit and create toplevel shell */
 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create your standard BulletinBoard widget */

9 Manager Widgets 9.3.2 Geometry Management

203

 bboard = XtVaCreateManagedWidget ("bboard",
 xmBulletinBoardWidgetClass, toplevel, NULL);

 /* Set up a translation table that captures "Resize" events
 * (also called ConfigureNotify or Configure events). If the
 * event is generated, call the function resize().
 */
 rec.string = "resize";
 rec.proc = resize;
 XtAppAddActions (app, &rec, 1);
 XtOverrideTranslations (bboard,
 XtParseTranslationTable ("<Configure>: resize()"));

 /* Create children of the dialog −− a PushButton in each corner. */
 for (i = 0; i < XtNumber (corners); i++)
 XtVaCreateManagedWidget (corners[i],
 xmPushButtonWidgetClass, bboard, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* resize(), the routine that is automatically called by Xt upon the
 * delivery of a Configure event. This happens whenever the widget
 * gets resized.
 */
 static void
 resize(w, event, args, num_args)
 Widget w; /* The widget (BulletinBoard) that got resized */
 XEvent *event; /* The event struct associated with the event */
 String args[]; /* unused */
 int *num_args; /* unused */
 {
 WidgetList children;
 Dimension w_width, w_height;
 short margin_w, margin_h;
 XConfigureEvent *cevent = (XConfigureEvent *) event;
 int width = cevent−>width;
 int height = cevent−>height;

 /* get handle to BulletinBoard's children and marginal spacing */
 XtVaGetValues (w,
 XmNchildren, &children,
 XmNmarginWidth, &margin_w,
 XmNmarginHeight, &margin_h,
 NULL);

 /* place the top left widget */
 XtVaSetValues (children[0],
 XmNx, margin_w,
 XmNy, margin_h,
 NULL);
 /* top right */
 XtVaGetValues (children[1], XmNwidth, &w_width, NULL);
 XtVaSetValues (children[1],
 XmNx, width − margin_w − w_width,
 XmNy, margin_h,
 NULL);
 /* bottom left */
 XtVaGetValues (children[2], XmNheight, &w_height, NULL);
 XtVaSetValues (children[2],

9 Manager Widgets 9.3.2 Geometry Management

204

 XmNx, margin_w,
 XmNy, height − margin_h − w_height,
 NULL);
 /* bottom right */
 XtVaGetValues (children[3],
 XmNheight, &w_height,
 XmNwidth, &w_width,
 NULL);
 XtVaSetValues (children[3],
 XmNx, width − margin_w − w_width,
 XmNy, height − margin_h − w_height,
 NULL);
 }

The program uses four widgets, labeled Top Left, Top Right, Bottom Left, and Bottom Right. The positions of the
buttons in the BulletinBoard correspond to their names. Since the widgets are not positioned when they are created,
the geometry management only happens when the widget is resized. the figure shows the application before and after
a resize event.

Output of corners.c before and after a resize event

When a resize event occurs, X generates a ConfigureNotify event. This event is interpreted by Xt and the
translation table of the widget corresponding to the resized window is searched to see if the application is interested in
being notified of the event. We have indicated interest in this event by calling XtAppAddActions() and
XtOverrideTranslations(), as shown below:

 XtActionsRec rec;
 ...
 rec.string = "resize";
 rec.proc = resize;
 XtAppAddActions (app, &rec, 1);
 XtOverrideTranslations (bboard,
 XtParseTranslationTable ("<Configure>: resize()"));

9 Manager Widgets 9.3.2 Geometry Management

205

As described in Volume Four, X Toolkit Intrinsics Programming Manual, a translation table pairs a sequence of one
or more events with a sequence of one or more functions that are called when the event sequence occurs. In this case,
the event is a ConfigureNotify event and the function is resize(). Translations are specified as strings and
then parsed into an internal format with the function XtParseTranslationTable(). The routine creates an
internal structure of events and the functions to which they correspond. Xt provides the table for translating event
strings such as <Configure> to the actual ConfigureNotify event, but Xt cannot convert the string
resize() to an actual function unless we provide a lookup table. The XtActionsRec type performs this task.
The structure is defined as follows:

 typedef struct {
 String string;
 XtActionProc proc;
 } XtActionsRec;

The action list is initialized to map the string resize to the actual function resize() using
XtAppAddActions(). We install the translation table on the widget using XtOverrideTranslations() so
that when a ConfigureNotify event occurs, the resize() function is called.

The resize() function takes four arguments. The first two arguments are a pointer to the widget in which the event
occurred and the event structure. The args and num_args parameters are ignored because we did not specify any
extra parameters to be passed to the function when we installed it. Since the function is called as a result of the event
happening on the BulletinBoard widget, we know that we are dealing with a composite widget. We also know that
there is only one event type that could have caused the function to be called, so we cast the event parameter
accordingly.

The task of the function is to position the children so that there is one per corner in the BulletinBoard. We get a handle
to all of the children of the BulletinBoard. Since we are going to place the children around the perimeter of the widget,
we also need to know how far from the edge to place them. This distance is taken from the values for
XmNmarginWidth and XmNmarginHeight. All three resource values are retrieved in the following call:

 XtVaGetValues (w,
 XmNchildren, &children,
 XmNmarginWidth, &margin_w,
 XmNmarginHeight, &margin_h,
 NULL);

The remainder of the function simply places the children at the appropriate positions within the BulletinBoard. The
routine uses a very simple method for geometry management, but it does demonstrate the process.

The general issue of geometry management for composite widgets is not trivial. If you plan on doing your own
geometry management for a BulletinBoard or any other composite widget, you should be very careful to consider all
the resources that could possibly affect layout. In our example, we considered the margin width and height, but there
is a lso XmNal lowOver lap , XmNborderWid th (wh ich is a genera l Core w idget resource) ,
XmN-shadowThickness (a general manager widget resource) and the same values associated with the children of
the BulletinBoard.

There are also issues about what to do if a child decides to resize itself, such as if a label widget gets wider. In this
case, you must first evaluate what the geometry layout of the widgets would be if you were to grant the Label
permission to resize itself as it wants. This evaluation is done by asking each of the children how big they want to be
and calculating the hypothetical layout. The BulletinBoard either accepts or rejects the new layout. Of course, the
BulletinBoard may have to make itself bigger too, which requires asking its parent for a new size, and so on. If the
BulletinBoard cannot resize itself, then you have to decide whether to force other children to be certain sizes or to

9 Manager Widgets 9.3.2 Geometry Management

206

reject the resize request of the child that started all the negotiation. Geometry management is by no means a simple
task; it is explained more completely in Volume Four, X Toolkit Intrinsics Programming Manual.

9.4 The Form Widget

The Form widget is subclassed from the BulletinBoard class, so it inherits all of the resources that the BulletinBoard
has to offer. Accordingly, the children of a Form can be placed at specific x,y coordinates and geometry management
can be performed as in the source code However, the Form provides additional geometry management features that
allow its children to be positioned relative to one another and relative to specific locations in the Form.

In order to use a Form, you must include the file <Xm/Form.h>. A Form is created in a similar way to other manager
widgets, as shown below:

 Widget form;

 form = XtVaCreateWidget ("name",
 xmFormWidgetClass, parent,

resource−value−list,
 NULL);

 /* create children */

 XtManageChild (form);

9.4.1 Form Attachments

Geometry management in a Form is done using attachment resources. These resources are constraint resources, which
means that they are specified for the children of the Form. The resources provide various ways of specifying the
position of a child of a Form by attaching each of the four sides of the child to another entity. The side of a widget can
be attached to another widget, to a fixed position in the Form, to a flexible position in the Form, to the Form itself, or
to nothing at all. These attachments can be considered hooks, rods, and anchor points, as shown in the figure.

9 Manager Widgets 9.4 The Form Widget

207

Attachments in a Form

In this figure, there are three widgets. The sizes and types of the widgets are not important. What is important is the
relationship between the widgets with respect to their positions in the Form. Widget 1 is attached to the top and left
sides of the Form by creating two attachments. The top side of the widget is hooked to the top of the Form. It can slide
from side to side, but it cannot be moved up or down (just like a shower curtain). The left side can slide up and down,
but not to the right or to the left. Given these two attachment constraints, the top and left sides of the widget are fixed.
The right and bottom edges of the widget are not attached to anything, but other widgets are attached to those edges.

The left side of Widget 2 is attached to the right side of Widget 1. Similarly, the top side of Widget 2 is attached to
the top side of Widget 1. As a result, the top and left sides of the widget cannot be moved unless Widget 1 moves.
The same kind of attachments hold for Widget 3. The top side of this widget is attached to the bottom of Widget 1
and its left side is attached to the left side of Widget 1. Given these constraints, no matter how large each of the
widgets may be, or how the Form may be resized, the positional relationship of the widgets is maintained.

In general, you must attach at least two adjacent edges of a widget to keep it from moving unpredictably. If you attach
opposing sides of the widget, the widget will probably be resized by the Form in order to satisfy the attachment
policies. The following resources represent the four sides of a widget:

 XmNtopAttachment
 XmNbottomAttachment
 XmNrightAttachment
 XmNleftAttachment

For example, if we want to specify that the top of a widget is attached to something, we use the
XmNtopAttachment resource. Each of the four resources can be set to one of the following values:

9 Manager Widgets 9.4 The Form Widget

208

 XmATTACH_FORM
 XmATTACH_OPPOSITE_FORM
 XmATTACH_WIDGET
 XmATTACH_OPPOSITE_WIDGET
 XmATTACH_NONE
 XmATTACH_SELF
 XmATTACH_POSITION

When an attachment is set to XmATTACH_FORM, the specified side is attached to the Form as shown in the figure. If
the resource that has this value is XmNtopAttachment, then the top side of the widget is attached to the top of the
Form. The top attachment does not guarantee that the widget will not move from side to side. If
XmNbottomAttachment is also set to XmATTACH_FORM, the bottom of the widget is attached to the bottom side
of the Form. With both of these attachments, the widget is resized to the height of the Form itself. The same would be
true for the right and left edges of the widget if they were attached to the Form.

XmNtopAttachment set to XmATTACH_FORM

When an attachment is set to XmATTACH_OPPOSITE_FORM, the specified side of the widget is attached to the
opposite side of the Form. For example, if XmNtopAttachment is set to XmATTACH_OPPOSITE_FORM, the top
side of the widget is attached to the bottom side of the Form. This value must be used with a negative offset value
(discussed in the next section) or the widget is placed off of the edge of the Form and it is not visible. While it may
seem confusing, this value is the only one that can be applied to an attachment resource that allows you to specify a
constant offset from the edge of a Form. The XmATTACH_WIDGET value indicates that the side of a widget is
attached to another widget. The other widget must be specified using the appropriate resource from the following list:

 XmNtopWidget
 XmNbottomWidget
 XmNleftWidget
 XmNrightWidget

The value for one of these resources must be the widget ID. For example, the figure shows how to attach the right side
of Widget 1 to the left side of Widget 2. This attachment method is commonly used to chain together a series of
adjacent widgets. Chaining widgets horizontally does not guarantee that the widgets will be aligned vertically, or vice

9 Manager Widgets 9.4 The Form Widget

209

versa.

XmNrightAttachment set to XmATTACH_WIDGET

The XmATTACH_OPPOSITE_WIDGET value is just like XmATTACH_WIDGET, except that the widget is attached to
the same edge of the specified widget, as shown in the figure. In this case, the right side of Widget 1 is attached to the
right side of Widget 3. This attachment method allows you to align the edges of a group of widgets. As with
XmATTACH_WIDGET, the other widget must be specified using XmNtopWidget, XmN-bottom-Widget,
XmNleftWidget, or XmNrightWidget.

XmNrightAttachment set to XmATTACH_OPPOSITE_WIDGET

9 Manager Widgets 9.4 The Form Widget

210

XmATTACH_NONE specifies that the side of a widget is not attached to anything, which is the default value. This case
could be represented by a dangling hook that is not attached to anything. If the entire widget moves because another
side is attached to something, then this side gets dragged along with it so that the widget does not need resizing.
Unless a particular side of a widget is attached to something, that side of the widget is free−floating and moves
propor t iona l ly wi th the other par ts o f the widget . When the s ide of a widget is a t tached us ing
XmATTACH_POSITION, the side is anchored to a relative position in the Form. This value works by segmenting the
Form into a fixed number of equally−spaced horizontal and vertical positions, based on the value of the
XmN-fraction-Base resource. The position of the side must be specified using the appropriate resource from the
following list:

 XmNtopPosition
 XmNbottomPosition
 XmNleftPosition
 XmNrightPosition

See Section #sformpos for a complete discussion of position attachments. When an attachment is set to
XmATTACH_SELF, the side of the widget is attached to its initial position in the Form. You position the widget
initially by specifying its x,y location in the Form. After the widget has been placed in the Form, the attachment for
the side reverts to XmATTACH_POSITION, with the corresponding position resource set to the relative position of the
x,y coordinate in the Form. Now that we have explained the concept of Form attachments, we can reimplement the
four corners example from the previous section. Unlike in the previous version, we no longer need a resize procedure
to calculate the positions of the widgets. By specifying the correct attachments, as shown in the source code the
widgets are placed and managed correctly by the Form when it is resized. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* form_corners.c −− demonstrate form layout management. Just as
 * in corners.c, there are four widgets each labeled top−left,
 * top−right, bottom−left and bottom−right. Their positions in the
 * form correspond to their names. As opposed to the BulletinBoard
 * widget, the Form manages this layout management automatically by
 * specifying attachment types for each of the widgets.
 */
 #include <Xm/PushB.h>
 #include <Xm/Form.h>

 char *corners[] = {
 "Top Left", "Top Right", "Bottom Left", "Bottom Right",
 };

 main(argc, argv)
 char *argv[];
 {
 Widget toplevel, form;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 form = XtVaCreateManagedWidget ("form",
 xmFormWidgetClass, toplevel, NULL);

 /* Attach the edges of the widgets to the Form. Which edge of
 * the widget that's attached is relative to where the widget is
 * positioned in the Form. Edges not attached default to having
 * an attachment type of XmATTACH_NONE.

9 Manager Widgets 9.4 The Form Widget

211

 */
 XtVaCreateManagedWidget (corners[0],
 xmPushButtonWidgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 NULL);

 XtVaCreateManagedWidget (corners[1],
 xmPushButtonWidgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

 XtVaCreateManagedWidget (corners[2],
 xmPushButtonWidgetClass, form,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 NULL);

 XtVaCreateManagedWidget (corners[3],
 xmPushButtonWidgetClass, form,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

In this example, two sides of each widget are attached to the Form. It is not necessary to attach the other sides of the
widgets to anything else. If we attach the other sides to each other, the widgets would have to be resized so that they
could stretch to meet each other. With the specified attachments, the output of the program looks just like the output in
the figure.

A more complex example of Form attachments is shown in the source code This example implements the layout
shown in the figure. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4.

 /* attach.c −− demonstrate how attachments work in Form widgets. */

 #include <Xm/PushB.h>
 #include <Xm/Form.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, parent, one, two, three;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 parent = XtVaCreateManagedWidget ("form",
 xmFormWidgetClass, toplevel, NULL);
 one = XtVaCreateManagedWidget ("One",
 xmPushButtonWidgetClass, parent,

9 Manager Widgets 9.4 The Form Widget

212

 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 NULL);
 two = XtVaCreateManagedWidget ("Two",
 xmPushButtonWidgetClass, parent,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, one,
 /* attach top of widget to same y coordinate as top of "one" */
 XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,
 XmNtopWidget, one,
 NULL);
 three = XtVaCreateManagedWidget ("Three",
 xmPushButtonWidgetClass, parent,
 XmNtopAttachment, XmATTACH_WIDGET,
 XmNtopWidget, one,
 /* attach left of widget to same x coordinate as left side of "one" */
 XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,
 XmNleftWidget, one,
 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The example uses three PushButton gadgets inside of a Form widget. The output of the program is shown in the
figure.

Output of attach.c

You should notice that the widgets are packed together quite tightly, which might not be how you expected them to
appear. In order to space the widgets more reasonably, we need to specify some distance between them using
attachment offsets.

9.4.2 Attachment Offsets

Attachment offsets control the spacing between widgets and the objects to which they are attached. The following
resources represent the attachment offsets for the four sides of a widget:

 XmNleftOffset
 XmNrightOffset
 XmNtopOffset
 XmNbottomOffset

9 Manager Widgets 9.4.2 Attachment Offsets

213

the figure shows the graphic representation of attachment offsets.

By default, offsets are set to 0 (zero), which means that there is no offset, as shown in the output for the source code
To make the output more reasonable, we need only to set the left offset between widgets One and Two and the top
offset to between widgets One and Three. The resources values can be hard−coded in the application or set in a
resource file, using the following specification:

 *form.One.leftOffset: 10
 *form.One.topOffset: 10
 *form.Two.leftOffset: 10
 *form.Three.topOffset: 10

Attachment offsets

Our choice of the value 10 was arbitrary. The widgets are now spaced more appropriately, as shown in the figure.

Output of attach.c with offset resources set to 10

While the layout of the widgets can be improved by setting offset resources, it is also possible to disrupt the layout.
Consider the following resource specifications:

9 Manager Widgets 9.4.2 Attachment Offsets

214

 *form*leftOffset: 10
 *form*topOffset: 10

While it might seem that these resource values are simply a terser way to specify the offsets shown earlier, the figure
makes it clear that these specifications do not produce the desired effect.

Output of attach.c with inappropriate offset resources

An application should hard−code whatever resources may be necessary to prevent the user from setting values that
would make the application non−functional or aesthetically unappealing. Offset resource values can be tricky because
they apply individually to each side of each widget in a Form. The problem with the resource specifications used to
produce the figure is that the offsets are being applied to each side of every widget, when some of the alignments need
to be precise. In order to prevent this problem, we need to hard−code the offsets for particular attachments, as shown
in the following code fragment:

 two = XtVaCreateManagedWidget ("Two",
 xmPushButtonWidgetClass, parent,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, one,
 XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,
 XmNtopWidget, one,
 XmNtopOffset, 0,
 NULL);

 three = XtVaCreateManagedWidget ("Three",
 xmPushButtonWidgetClass, parent,
 XmNtopAttachment, XmATTACH_WIDGET,
 XmNtopWidget, one,
 XmNleftAttachment, XmATTACH_OPPOSITE_WIDGET,
 XmNleftWidget, one,
 XmNleftOffset, 0,
 NULL);

The use of zero−length offsets guarantees that the widgets they are associated with are aligned exactly with the
widgets to which they are attached, regardless of any resource specifications made by the user. A general rule of
thumb is that whenever you use XmATTACH_OPPOSITE_WIDGET, you should also set the appropriate offset to zero
so that the alignment remains consistent.

In some situations it is necessary to use negative offsets to properly arrange widgets in a Form. The most common
example of this situation occurs when using the XmATTACH_OPPOSITE_FORM attachment. Unless you use a
negative offset, as shown in the figure, the widgets are placed off the edge of the Form and are not visible.

9 Manager Widgets 9.4.2 Attachment Offsets

215

XmNleftAttachment set to XmATTACH_OPPOSITE_FORM with negative offset

9.4.3 Position Attachments

Form positions provide another way to position widgets within a Form. The concept is similar to the hook and rod
principle described earlier, but in this case the widgets are anchored on at positions that are based on imaginary
longitude and latitude lines that are used to segment the Form into equal pieces. The resource used to partition the
Form into segments is XmNfractionBase. Although the name of this resource may suggest complicated
calculations, you just need to know that the Form is divided horizontally and vertically into the number of partitions
represented by its value. For example, the figure shows how a Form is partitioned if XmNfractionBase is set to 5.

9 Manager Widgets 9.4.3 Position Attachments

216

Form with XmNfractionBase set to 5

As you can see, there are an equal number of horizontal and vertical partitions, but the size of the horizontal partitions
is not the same as the size of the vertical partitions. It is currently not possible to set the number of horizontal
partitions separately from the number of vertical ones, although it is possible to work around this shortcoming, as we
will describe shortly.

Widgets are placed at the coordinates that represent the partitions by specifying XmATTACH_POSITION for the
attachment resource and by specifying a coordinate value for the corresponding position resource. The position
r e s o u r c e s a r e X m N t o p P o s i t i o n , - - X m N - b o t t o m P o s i t i o n , X m N l e f t P o s i t i o n , a n d
XmNrightPosition. For example, if we wanted to attach the top and left sides of a PushButton to position 1, we
could use the following code fragment:

 XtVaCreateManagedWidget ("name",
 xmPushButtonWidgetClass, form,
 XmNtopAttachment, XmATTACH_POSITION,
 XmNtopPosition, 1,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 1,
 NULL);

The right and bottom attachments are left unspecified, so those edges of the widget are not explicitly positioned by the
Form. If attachments had been specified for these edges, the widget would have to be resized by the Form in order to
satisfy all the attachment constraints.

One obvious example of using position attachments is to create a tic−tac−toe board layout, as is done in the source

9 Manager Widgets 9.4.3 Position Attachments

217

code XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* tictactoe.c −− demonstrate how fractionBase and XmATTACH_POSITIONs
 * work in Form widgets.
 */
 #include <Xm/PushB.h>
 #include <Xm/Form.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, parent, w;
 int x, y;
 extern void pushed(); /* callback for each PushButton */

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 parent = XtVaCreateManagedWidget ("form",
 xmFormWidgetClass, toplevel,
 XmNfractionBase, 3,
 NULL);

 for (x = 0; x < 3; x++)
 for (y = 0; y < 3; y++) {
 w = XtVaCreateManagedWidget (" ",
 xmPushButtonWidgetClass, parent,
 XmNtopAttachment, XmATTACH_POSITION,
 XmNtopPosition, y,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, x,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, x+1,
 XmNbottomAttachment, XmATTACH_POSITION,
 XmNbottomPosition, y+1,
 NULL);
 XtAddCallback (w, XmNactivateCallback, pushed, NULL);
 }
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }
 void
 pushed(w, client_data, call_data)
 Widget w; /* The PushButton that got activated */
 XtPointer client_data; /* unused −− NULL was passed to XtAddCallback() */
 XtPointer call_data;
 {
 char buf[2];
 XmString str;
 XmPushButtonCallbackStruct *cbs =
 (XmPushButtonCallbackStruct *) call_data;

 /* Shift key gets an O. (xbutton and xkey happen to be similar) */
 if (cbs−>event−>xbutton.state & ShiftMask)

9 Manager Widgets 9.4.3 Position Attachments

218

 buf[0] = '0';
 else
 buf[0] = 'X';
 buf[1] = 0;
 str = XmStringCreateLocalized (buf);
 XtVaSetValues (w, XmNlabelString, str, NULL);
 XmStringFree (str);
 }

The output of this program is shown in the figure.

Output of tictactoe.c

As you can see, the children of the Form are equally sized because their attachment positions are segmented equally.
If the user resizes the Form, all of the children maintain their relationship to one another. The PushButtons simply
grow or shrink to fill the form.

One common use of positional attachments is to lay out a number of widgets that need to be of equal size and equal
spacing. For example, you might use this technique to arrange the buttons in the action area of a dialog. Chapter 7,
Custom Dialogs, provides a detailed discussion of how to arrange buttons in this manner.

There may be situations where you would like to attach widgets to horizontal positions that do not match up with how
you'd like to attach their vertical positions. Since the fraction base cannot be set differently for the horizontal and
vertical orientations, you have to use the least common multiple as the fraction base value. For example, say you want
to position the tops and bottoms of all of your widgets to the 2nd and 4th positions, as if the Form were segmented
vertically into 5 parts. But, you also want to position the left and right edges of those same widgets to the 3rd, 5th, 7th,
and 9th positions, as if it were segmented into 11 parts. You would have to apply some simple arithmetic and set the
value for -XmNfractionBase to 55 (5x11). The top and bottom edges would be set to the 22nd (2x11) and 44th
(4x11) positions and the left and right edges would be set to the 15th (3x5), 25th (5x5), 35th (7x5), and 45th (9x5)
positions.

9.4.4 Additional Resources

There are a few other useful Form resources that we have not covered so far. The XmN-horizontal-Spacing
resource can be used to specify the distance between horizontally adjacent widgets, while XmNverticalSpacing
specifies the distance between vertically adjacent widgets. These values only apply when the left and right offset
values are not -specified, so they are intended to be used as global offset values global for a Form. The following
resource specification:

 *horizontalSpacing: 10

is equivalent to:

9 Manager Widgets 9.4.4 Additional Resources

219

 *leftOffset: 10
 *rightOffset: 10

The XmNrubberPositioning resource specifies the default attachments for widgets in the Form. The default
value of False indicates that the top and left edges are attached to the form by default. If
XmNrubberPositioning is set to True, the top and left attachments are set to XmATTACH_POSITION by
default. If the XmNtopAttachment or XmN-left-Attachment resource is explicitly set for a widget, then the
default attachment has no effect.

The XmNresizable resource is another constraint resource that can be set on the children of a Form widget. This
resource indicates whether or not the Form tries to grant resize requests from the child.

9.4.5 Nested Forms

Some widget layouts are difficult to create using a single Form widget. Since a manager widget can contain other
managers, it is often possible to generate the desired layout by using a Form within a Form. One common problem is
that there are no Form attachments available to align two widgets horizontally if they have different heights. We need
a middle attachment resource, but one doesn't exist. For example, if you have a series of Labels and Text widgets that
you want to pair off and stack vertically, it would be nice to align each pair of widgets at their midsections.

To solve this problem, we can place each Label−Text widget pair in a separate Form. If the top and bottom edges of
the widgets are attached to the Form, the widgets are stretched to satisfy the constraints, which means that they are
aligned horizontally. All of these smaller Form widgets can be placed inside of a larger Form widget. the source code
shows an implementation of this idea. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

 /* text_form.c −− demonstrate how attachments work in Form widgets
 * by creating a text−entry form type application.
 */

 #include <Xm/LabelG.h>
 #include <Xm/Text.h>
 #include <Xm/Form.h>

 char *prompts[] = {
 "Name:", "Phone:", "Address:",
 "City:", "State:", "Zip Code:",
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, mainform, subform, label, text;
 XtAppContext app;
 char buf[32];
 int i;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 mainform = XtVaCreateWidget ("mainform",
 xmFormWidgetClass, toplevel,
 NULL);

9 Manager Widgets 9.4.5 Nested Forms

220

 for (i = 0; i < XtNumber (prompts); i++) {
 subform = XtVaCreateWidget ("subform",
 xmFormWidgetClass, mainform,
 /* first one should be attached for form */
 XmNtopAttachment, i ? XmATTACH_WIDGET : XmATTACH_FORM,
 /* others are attached to the previous subform */
 XmNtopWidget, subform,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);
 /* Note that the label here contains a colon from the prompts
 * array above. This makes it impossible for external resources
 * to be set on these widgets. Here, that is intentional, but
 * be careful in the general case.
 */
 label = XtVaCreateManagedWidget (prompts[i],
 xmLabelGadgetClass, subform,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNalignment, XmALIGNMENT_BEGINNING,
 NULL);
 sprintf (buf, "text_%d", i);
 text = XtVaCreateManagedWidget (buf,
 xmTextWidgetClass, subform,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, label,
 NULL);
 XtManageChild (subform);
 }
 /* Now that all the forms are added, manage the main form */
 XtManageChild (mainform);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output of the program is shown in the figure.

9 Manager Widgets 9.4.5 Nested Forms

221

Output of text_form.c

Notice that the Labels are centered vertically with respect to their corresponding Text widgets. This arrangement
happened because each Label was stretched vertically in order to attach it to the top and bottom of the respective
Form. Of course, if the Labels were higher than the Text widgets, the Text widgets would be stretched instead.

Later, we'll show another version of this program that gives better results. As you can imagine, there are many
different ways for a Form, or any other manager widget, to manage the geometry of its children to produce the same
layout. Later, when we discuss the RowColumn widget, we will show you another solution to the problem of
horizontal alignment. It is important to remember that there is no right or wrong way to create a layout, as long as it
works for your application. However, you should be very careful to experiment with resizing issues as well as with
resources that can be set by the user that might affect widget layout, such as fonts and strings.

9.4.6 Common Problems

With a Form widget, you can specify a virtually unlimited number of attachments for its children. The dependencies
inherent in these attachments can lead to various errors in the layout of the widgets. One common problem involves
circular dependencies. The following code fragment shows a very simple example of a circular dependency:

 w1 = XtVaCreateManagedWidget ("w1", xmLabelGadgetClass, form, NULL);
 w2 = XtVaCreateManagedWidget ("w2", xmLabelGadgetClass, form, NULL);

 XtVaSetValues (w1,
 XmNrightAttachment, XmATTACH_WIDGET,
 XmNrightWidget, w2,
 NULL);

XtVaSetValues (w2, XmNleftAttachment, XmATTACH_WIDGET, XmNleftWidget, w1, NULL); In this example,
the left widget is attached to the right widget and the right widget is attached to the left one. If you do mistakenly
specify a circular dependency, it is unlikely that it will be as obvious as this example. Fortunately, in most cases, the
Motif toolkit catches circular dependencies and displays an error message if one is found. When this situation occurs,
you need to reconsider your widget layout and try to arrange things such that the relationship between widgets is less
complex. One rule to remember is that adjacent widgets should only be attached in one direction.

9 Manager Widgets 9.4.6 Common Problems

222

When you attach the side of a widget to another widget in a Form, you need to be careful about how you specify the
attached widget. If you specify this widget in the application code, you need to make sure that the widget has been
created before you specify it as a resource value. With Motif 1.1, you cannot specify a widget ID in a resource file
unless you have installed your own widget−name−to−widget−ID converter. (See Volume Four, X Toolkit Intrinsics
Programming Manual, for information about resource converters.) In Motif 1.2, the toolkit provides a
name−to−widget converter, so you can specify widget IDs in a resource file.

Another common problem arises with certain Motif compound objects, such as ScrolledList and ScrolledText objects.
XmCreateScrolledText() and XmCreateScrolledList() return the corresponding Text or List widget,
but it is the parent of this widget that needs to be positioned within a Form. The following code fragment shows an
example of positioning a ScrolledList incorrectly:

 form = XmCreateForm (parent, "form", NULL, 0);

 list = XmCreateScrolledList (form, "scrolled_list", NULL, 0);

 XtVaSetValues(list, /* <− WRONG */
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 NULL);

Since the List is a child of the ScrolledWindow, not the Form, specifying attachments for the List has no effect on the
position of the List in the Form. The attachments need to be specified on the ScrolledWindow, as shown in the
following code fragment:

 XtVaSetValues (XtParent (list),
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 NULL);

If you specify attachments for two opposing sides of a widget, the Form resizes the widget as needed, so that the
default size of the widget is ignored. In most cases, the Form can resize the widget without a problem. However, one
particular case that can cause a problem is a List widget that has its XmNvisibleItemCount resource set. This
resource implies a specific size requirement, so that when the List is laid out in the Form widget, the negotiation
process between the Form and the List may not be resolved. See Chapter 12, The List Widget, for a complete
discussion of the List widget.

Attachments in Form widgets can be delicate specifications, which means that you must be specific and, above all,
complete in your descriptions of how widgets should be aligned and positioned. Since resources can be set from many
different places, the only way to guarantee that you get the layout you want is to hard−code these resource values
explicitly. Even though it is important to allow the user to specify as many resources as possible, you do not want to
compromise the integrity of your application. Attachments and attachment offsets are probably not in the set of
resources that should be user−definable.

Although attachments can be delicate, they are also provide a powerful, convenient, and flexible way to lay out
widgets within a Form, especially when the widgets are grouped together in some abstract way. Attachments make it
easy to chain widgets together, to bind them to the edge of a Form, and to allow them to be fixed on specific locations.
You do not need to use a single attachment type exclusively; it is perfectly reasonable, and in most cases necessary, to
use a variety of different types of attachments to achieve a particular layout. If you specify too few attachments, you
may end up with misplaced widgets or widgets that drift when the Form is resized, while too many attachments may
cause the Form to be too inflexible. In order to determine the best way to attach widgets to one another, you may find
it helpful to a draw picture first, with all of the hooks and offset values considered.

9 Manager Widgets 9.4.6 Common Problems

223

9.5 The RowColumn Widget

The RowColumn widget is a manager widget that, as its name implies, lays out its children in a row and/or column
format. The widget is also used internally by the Motif toolkit to implement a number of special objects, such as the
Motif menus, including PopupMenus, PulldownMenus, MenuBars, and OptionMenus. Many of the resources for the
RowColumn widget are used to control different aspects of these objects. The Motif convenience functions for
creating these objects set most of these resources automatically, so they are generally hidden from the programmer.
The resources are not useful when you are using the RowColumn as a simple manager widget anyway, so we do not
discuss them here.

The XmNrowColumnType resource controls how a particular instance of the RowColumn is used. The resource can
be set to the following values:

 XmWORK_AREA
 XmMENU_BAR
 XmPULLDOWN
 XmMENU_POPUP
 XmMENU_OPTION

The default value is XmWORK_AREA; this value is also the one that you should use whenever you want to use a
RowColumn widget as a manager. The rest of the values are for the different types of Motif menus. If you want to
create a particular menu object, you should use the appropriate convenience function, rather than try to create the
menu yourself using a RowColumn directly. We discuss menu creation in in Chapter 4, The Main Window, and
Chapter 15, Menus. The RowColumn widget is also used to implement RadioBoxes and CheckBoxes, which are
collections of ToggleButtons. See Chapter 11, Labels and Buttons, for more information on these objects.

The RowColumn is useful for generic geometry management because it requires less fine tuning than is necessary for
a Form or a BulletinBoard widget. Although the RowColumn has a number of resources, you can create a usable
layout without specifying any resources. In this case, the children of the RowColumn are automatically laid out
vertically. In the source code we create several PushButtons as children of a RowColumn, without specifying any
RowColumn resources. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4.

 /* rowcol.c −− demonstrate a simple RowColumn widget. Create one
 * with 3 pushbutton gadgets. Once created, resize the thing in
 * all sorts of contortions to get a feel for what RowColumns can
 * do with its children.
 */
 #include <Xm/PushB.h>
 #include <Xm/RowColumn.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel, NULL);

9 Manager Widgets 9.5 The RowColumn Widget

224

 (void) XtVaCreateManagedWidget ("One",
 xmPushButtonWidgetClass, rowcol, NULL);

 (void) XtVaCreateManagedWidget ("Two",
 xmPushButtonWidgetClass, rowcol, NULL);

 (void) XtVaCreateManagedWidget ("Three",
 xmPushButtonWidgetClass, rowcol, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

What makes the RowColumn widget unique is that it automates much of the process of widget layout and
management. If you display the application and resize it in a number of ways, you can get a better feel for how the
RowColumn works. the figure shows a few configurations of the application; the first configuration is the initial
layout of the application. As you can see, if the application is resized just so, the widgets are oriented horizontally
rather than vertically.

Output of rowcol.c

The orientation of the widgets in a RowColumn is controlled by the XmNorientation resource. The default value
of the resource is XmVERTICAL. If we want to arrange the widgets horizontally, we can set the resource to
XmHORIZONTAL. The orientation can be hard−coded in the application, or we can specify the value of the resource in
a resource file. The following resource specification sets the orientation to horizontal:

 *RowColumn.orientation: horizontal

Alternatively, we can specify the resource on the command line as follows:

 % rowcol −xrm "*orientation: horizontal"

the figure shows the output of the source code with a horizontal orientation. As before, the figure shows a few
different configurations of the application, with the first configuration being the initial one.

9 Manager Widgets 9.5 The RowColumn Widget

225

Output of rowcol.c with a horizontal orientation

If you use a RowColumn widget to manage more objects than can be arranged in a single row or column, you can
specify that the widgets should be arranged in both rows and columns. You can also specify whether the widgets
should be packed together tightly, so that the rows and columns are not necessarily the same size, or whether the
objects should be placed in identically−sized boxes. As with the Form and BulletinBoard widgets, objects can also be
placed at specific x, y locations in a RowColumn widget. The RowColumn widget does not provide a
three−dimensional border, so if you want to provide a visual border for the widget, you should create it as a child of a
Frame widget.

9.5.1 Rows and Columns

The RowColumn widget can be quite flexible in terms of how it lays out its children. The advantage of this flexibility
is that all of its child widgets are arranged in an organized fashion, regardless of their widget types. The widgets
remain organized when the RowColumn is resized and in spite of constraints imposed by other widgets or by
resources. One disadvantage of the flexibility is that sometimes the children need to be arranged in a specific layout so
that the user interface is intuitive.

the source code shows how to lay out widgets in a spreadsheet−style format using a RowColumn. This layout requires
that each of the widgets be the same size and be spaced equally in a predetermined number of rows and columns.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* spreadsheet.c −− This demo shows the most basic use of the RowColumn
 * It displays a table of widgets in a row−column format similar to a
 * spreadsheet. This is accomplished by setting the number ROWS and
 * COLS and setting the appropriate resources correctly.
 */
 #include <Xm/LabelG.h>
 #include <Xm/PushB.h>
 #include <Xm/RowColumn.h>

 #define ROWS 8
 #define COLS 10

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, parent;
 XtAppContext app;
 char buf[16];

9 Manager Widgets 9.5.1 Rows and Columns

226

 int i, j;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 parent = XtVaCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel,
 XmNpacking, XmPACK_COLUMN,
 XmNnumColumns, COLS,
 XmNorientation, XmVERTICAL,
 NULL);

 /* simply loop thru the strings creating a widget for each one */
 for (i = 0; i < COLS; i++)
 for (j = 0; j < ROWS; j++) {
 sprintf (buf, "%d−%d", i+1, j+1);
 if (i == 0 || j == 0)
 XtVaCreateManagedWidget (buf,
 xmLabelGadgetClass, parent, NULL);
 else
 XtVaCreateManagedWidget ("",
 xmPushButtonWidgetClass, parent, NULL);
 }

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output of this example is shown in the figure.

Output of spreadsheet.c

The number of rows is specified by the ROWS definition and the number of columns is specified by COLS. In order to
force the RowColumn to lay out its children in the spreadsheet format, we set the XmNpacking, XmNnumColumns,
and XmNorientation resources.

The value for XmNpacking is set to XmPACK_COLUMN, which specifies that each of the cells should be the same
size. The heights and widths of the widgets are evaluated and the largest height and width are used to determine the
size of the rows and columns. All of the widgets are resized to this size. If you are mixing different widget types in a

9 Manager Widgets 9.5.1 Rows and Columns

227

RowColumn, you may not want to use XmPACK_COLUMN because of size variations. XmPACK_COLUMN is typically
used when the widgets are exactly the same, or at least similar in nature. The default value of XmPACK_TIGHT for
XmNpacking allows each widget to keep its specified size and packs the widgets into rows and columns based on
the size of the RowColumn widget.

Since we are packing the widgets in a row/column format, we need to specify how many columns (or rows) we are
using by setting the value of XmNnumColumns to the number of columns. In this case, the program defines COLS to
be 10, which indicates that the RowColumn should pack its children such that there are 10 columns. The widget
creates as many rows as necessary to provide enough space for all of the child widgets.

Whether XmNnumColumns specifies the number of columns or the number of rows depends on the orientation of the
RowColumn. In this program, XmNorientation is set to XmVERTICAL to indicate that the value of
XmNnumColumns specifies the number of columns to use. If XmNorientation is set to XmHORIZONTAL,
XmNnumColumns indicates the number of rows. If we wanted to use a horizontal orientation in our example, we
would set XmNnumColumns to ROWS and XmNorientation to XmHORIZONTAL. The orientation also dictates
how children are added to the RowColumn; when the orientation is vertical, children are added vertically so that each
column is filled up before the next one is started. If you need to insert a child in the middle of an existing RowColumn
layout, you can use the XmNpositionIndex constraint resource to specify the position of the child. Since this
resource is used most often with menus, it is discussed in Chapter 15, Menus.

In our example, we explicitly set the value of XmNorientation to the default value of XmVERTICAL. If we do not
hard−code this resource, an external resource specification can reset it. Since the orientation and the value for
XmNnumColumns need to be consistent, you should always specify these resources together. Whether you choose to
hard−code the resources, to use the fallback mechanism, or to use a specification in a resource file, you should be sure
that both of the resources are specified in the same place.

In the spreadsheet example, we can use either a horizontal or vertical orientation. However, orientation may be
significant in other situations, since it affects how the RowColumn adds its children. For example, if we want to
implement the text−entry form from the source code using a RowColumn, the order of the widgets is important. In this
case, there are two columns and the number of rows depends on the number of text entry fields provided by the
application. We specify the orientation of the RowColumn as XmHORIZONTAL and set -XmNnumColumns to the
number of entries provided by the application, as shown in the source code XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* text_entry.c −− This demo shows how the RowColumn widget can be
 * configured to build a text entry form. It displays a table of
 * right−justified Labels and Text widgets that extend to the right
 * edge of the Form.
 */
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Text.h>

 char *text_labels[] = {
 "Name:", "Phone:", "Address:", "City:", "State:", "Zip Code:",
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol;
 XtAppContext app;
 char buf[8];

9 Manager Widgets 9.5.1 Rows and Columns

228

 int i;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel,
 XmNpacking, XmPACK_COLUMN,
 XmNnumColumns, XtNumber (text_labels),
 XmNorientation, XmHORIZONTAL,
 XmNisAligned, True,
 XmNentryAlignment, XmALIGNMENT_END,
 NULL);

 /* simply loop thru the strings creating a widget for each one */
 for (i = 0; i < XtNumber (text_labels); i++) {
 XtVaCreateManagedWidget (text_labels[i],
 xmLabelGadgetClass, rowcol,
 NULL);
 sprintf (buf, "text_%d", i);
 XtVaCreateManagedWidget (buf,
 xmTextWidgetClass, rowcol,
 NULL);
 }

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output of this example is shown in the figure.

Output of text_entry.c

9 Manager Widgets 9.5.1 Rows and Columns

229

The labels for the text fields are initialized by the text_labels string array. When the RowColumn is created, it is
set to a horizontal orientation and the number of rows is set to the number of items in text_labels. As you can
see, the output of this program is slightly different from the output for the text_form example.

The example uses the XmNisAligned and XmNentryAlignment resources to control the positioning of the
Labels in the RowColumn. These resources control the alignment of widgets that are subclasses of Label and
Labe lGadget . When XmNisA l igned i s True (the de fau l t) , the a l ignment i s taken f rom the
XmNentryAlignment resource. The possible alignment values are the same as those that can be set for the Label's
XmNalignment resource:

 XmALIGNMENT_BEGINNING
 XmALIGNMENT_CENTER
 XmALIGNMENT_END

By default, the text is left justified. While the alignment of the Labels could also be specified using the
XmNalignment resource for each widget, it is convenient to be able to set the alignment for the RowColumn and
have it propagate automatically to its children. In our example, we use XmALIGNMENT_END to right justify the
Labels so that they appear to be attached to the Text widgets.

In Motif 1.2, there is an addit ional resource for control l ing the al ignment of various children. The
XmNentryVerticalAlignment resource controls the vertical positioning of children that are subclasses of
Label, LabelGadget, and Text. The possible values for this resource are:

 XmALIGNMENT_BASELINE_BOTTOM
 XmALIGNMENT_BASELINE_TOP
 XmALIGNMENT_CENTER
 XmALIGNMENT_CONTENTS_BOTTOM
 XmALIGNMENT_CONTENTS_TOP

In the example, we do not specify this resource because the default value, XmALIGNMENT_CENTER, produces the
layout that we want.

9.5.2 Homogeneous Children

The RowColumn can be set up so that it only manages one particular type of widget or gadget. In many cases, this
feature facilitates layout and callback management. For example, a MenuBar consists entirely of CascadeButtons that
all act the same way and a RadioBox contains only ToggleButtons. The XmNisHomogeneous resource indicates
whether or not the RowColumn should only allow one type of widget child. The widget class that is allowed to be
managed is specified by the XmNentryClass resource. XmNisHomogeneous can be set at creation−time only.
Once a RowColumn is created, you cannot reset this resource, although you can always get its value. These resources
are useful for ensuring consistency; if you attempt to add a widget as a child of a RowColumn that does not permit
that widget class, an error message is printed and the widget is not accepted.

The Motif toolkit uses these mechanisms to ensure consistency in certain compound objects, to prevent you from
doing something like adding a List widget to a MenuBar, for example. In this case, the XmNentryClass is set to
xmCascadeButtonWidgetClass. As another example, when XmNradioBehavior is set, the RowColumn
only allows ToggleButton widgets and gadgets to be added. The XmCreateRadioBox() convenience function
creates a RowColumn widget with the appropriate resources set automatically. (See Chapter 11, Labels and Buttons.)

You probably do not need to use XmNisHomogeneous unless you are providing a mechanism that is exported to
other programmers. If you are writing an interactive user−interface builder or a program that creates widgets by
scanning text files, you may want to ensure that new widgets are of a particular type before they are added to a

9 Manager Widgets 9.5.2 Homogeneous Children

230

RowColumn widget. In such cases, you may want to use XmNisHomogeneous and XmNentryClass. Unless
there is some way for a user to to dynamically create widgets while an application is running, these resources are not
particularly useful.

9.5.3 Callbacks

The RowColumn does not provide any specific callback routines that react to user input. While there are no callbacks
for FocusIn and FocusOut events, the widget does have XmNmapCallback and XmNunmapCallback
callback resources. These callbacks are invoked when the window for the RowColumn is mapped and unmapped. The
callbacks are similar to those for the BulletinBoard, but since the RowColumn is not designed specifically to be a
child of a DialogShell, the routines are invoked regardless of whether the parent of the RowColumn is a DialogShell.

The XmNentryCallback is the only other callback that is associated specifically with the RowColumn widget.
This callback resource makes it possible to install a single callback function that acts as the activation callback for
each of the children of a RowColumn widget. The routine specified for the XmNentryCallback overrides the
XmNact i va teCa l lback func t ions fo r any PushBut ton o r CascadeBut ton ch i ld ren and the
XmNvalueChangedCallback functions for ToggleButtons. The XmNentryCallback is a convenience to the
programmer; if you use it, you don't have to install separate callbacks for each widget in the RowColumn.
XmNentryCallback functions must be installed before children are added to the RowColumn, so be sure you call
XtAddCallback() before you create any child widgets.

The callback procedure takes the standard form of an XtCallbackProc. The call_data parameter is an
XmRowColumnCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Widget widget;
 char *data;
 char *callbackstruct;
 } XmRowColumnCallbackStruct;

The reason field of this data structure is set to XmCR_ACTIVATE when the XmNentryCallback is invoked. The
event indicates the event that caused the notification. The entry callback function is called regardless of which
widget within the RowColumn was activated. Since an entry callback overrides any previously−set callback lists for
PushButtons, CascadeButtons, and ToggleButtons, the parameters that would have been passed to these callback
routines are provided in the RowColumn callback structure. The widget field specifies the child that was activated,
the widget−specific callback structure is placed in the callbackstruct field, and the client data that was set for
the widget is passed in the data field.

the source code shows the installation of an entry callback and demonstrates how the normal callback functions are
overridden. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* entry_cb.c −− demonstrate how the XmNentryCallback resource works
 * in RowColumn widgets. When a callback function is set for this
 * resource, all the callbacks for the RowColumn's children are reset
 * to point to this function. Their original functions are no longer
 * called had they been set in favor of the entry−callback function.
 */
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>

 char *strings[] = {
 "One", "Two", "Three", "Four", "Five",

9 Manager Widgets 9.5.3 Callbacks

231

 "Six", "Seven", "Eight", "Nine", "Ten",
 };

 void
 called(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmRowColumnCallbackStruct *cbs =
 (XmRowColumnCallbackStruct *) call_data;
 Widget pb = cbs−>widget;

 printf ("%s: %d0, XtName (pb), cbs−>data);
 }

 static void
 never_called(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 puts ("This function is never called");
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, parent, w;
 XtAppContext app;
 int i;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 parent = XtVaCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel,
 NULL);
 XtAddCallback (parent, XmNentryCallback, called, NULL);

 /* simply loop thru the strings creating a widget for each one */
 for (i = 0; i < XtNumber (strings); i++) {
 w = XtVaCreateManagedWidget (strings[i],
 xmPushButtonGadgetClass, parent, NULL);
 /* Call XtAddCallback() to install client_data only! */
 XtAddCallback (w, XmNactivateCallback, never_called, i+1);
 }

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The RowColumn is created and its XmNentryCallback is set to called(). This routine ignores the
client_data parameter, as none is provided. However, we do use the data field of the cbs because this is the
data that is specified in the call to XtAddCallback() for each of the children. We install the never_called()
routine for each PushButton and pass the position of the button in the RowColumn as the client_data. Even
though the entry callback overrides the activate callback, the client_data is preserved.

9 Manager Widgets 9.5.3 Callbacks

232

Our example is a bit contrived, so it may seem pointless to call XtAddCallback() for each PushButton and
specify an XmNentryCallback as well. The most compelling reason for using an entry callback is that you may
want to provide client data for the RowColumn as a whole, as well as for each child widget.

Remember that the RowColumn widget is also used for a number of objects implemented internally by the Motif
toolkit, such as the Motif menu system, RadioBoxes, and CheckBoxes. Many of the resources for the widget are
specific to these objects, so they are not discussed here. For more information on menus, see Chapter 4, The Main
Window, and Chapter 15, Menus; for information on RadioBoxes and CheckBoxes, see Chapter 11, Labels and
Buttons.

9.6 The Frame Widget

The Frame is a simple manager widget; the purpose of the Frame is to draw a three−dimensional border around its
child. In Motif 1.1, a Frame can contain only one child. With Motif 1.2, the widget can have two children: a work
area child and a title child. The Frame shrink wraps itself around its work area child, adding space for a title if one is
specified. The children are responsible for setting the size of the Frame.

The Frame is useful for grouping related control elements, so that they are separated visually from other elements in a
window. The Frame is commonly used as the parent of RadioBoxes and CheckBoxes, since the RowColumn widget
does not provide a three−dimensional border. the figure shows a portion of a dialog box that uses Frames to segregate
three groups of ToggleButtons.

Frame widgets used to provide borders around RowColumn widgets

To use Frame widgets in an application, you must include the file <Xm/Frame.h>. Creating a Frame widget is just like
creating any other manager widget, as shown in the following code fragment:

 Widget frame;

 frame = XtVaCreateManagedWidget ("name",
 xmFrameWidgetClass, parent,

9 Manager Widgets 9.6 The Frame Widget

233

resource−value−list,
 NULL);

Since the Frame performs only simple geometry management, you can create a Frame widget as managed using
XtVaCreateManagedWidget() and not worry about a performance loss. The Frame widget is an exception to
the guidelines about creating manager widgets that we presented earlier in the chapter.

The principal resource used by the Frame widget is XmNshadowType. This resource specifies the style of the
three−dimensional border that is placed around the work area child of the Frame. The value may be any of the
following:

 XmSHADOW_IN
 XmSHADOW_OUT
 XmSHADOW_ETCHED_IN
 XmSHADOW_ETCHED_OUT

If the parent of the Frame is a shell widget, the default value for XmNshadowType is set to XmSHADOW_OUT and the
value for XmNshadowThickness is set to 1. Otherwise, the default shadow type is XmSHADOW_ETCHED_IN and
the thickness is 2. Of course, these values may be overridden by the application or the user.

In Motif 1.2, the Frame provides some constraint resources that can be specified for its children. The
XmNchildType resource indicates whether the child is the work area or the title child for the Frame. The default
value is XmFRAME_WORKAREA_CHILD . To speci fy that a chi ld is the t i t le chi ld , use the value
XmFRAME_TITLE_CHILD.

The XmNchildHorizontalAlignment and XmNchildHorizontalSpacing resources control the
horizontal positioning of the title. The possible values for horizontal alignment are:

 XmALIGNMENT_BEGINNING
 XmALIGNMENT_END
 XmALIGNMENT_CENTER

The XmNchildVerticalAlignment resource specifies the vertical positioning of the title child relative to the
top shadow of the Frame. The possible values for this resource are:

 XmALIGNMENT_BASELINE_BOTTOM
 XmALIGNMENT_BASELINE_TOP
 XmALIGNMENT_CENTER
 XmALIGNMENT_WIDGET_TOP
 XmALIGNMENT_WIDGET_BOTTOM

the source code demonstrates many of the different shadow and alignment styles that are possible with the Frame
widget. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4. This
example also uses functionality that is new in Motif 1.2; to take advantage of this functionality, define the symbol
MOTIF_1_2 when you compile the program.

 /* frame.c −− demonstrate the Frame widget by creating
 * four Labels with Frame widget parents.
 */
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Frame.h>

 main(argc, argv)
 int argc;

9 Manager Widgets 9.6 The Frame Widget

234

 char *argv[];
 {
 Widget toplevel, rowcol, frame;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit and create TopLevel shell widget */
 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 /* Make a RowColumn to contain all the Frames */
 rowcol = XtVaCreateWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel,
 XmNspacing, 5,
 NULL);

 /* Create different Frames each containing a unique shadow type */
 XtVaCreateManagedWidget ("Frame Types:",
 xmLabelGadgetClass, rowcol, NULL);
 frame = XtVaCreateManagedWidget ("frame1",
 xmFrameWidgetClass, rowcol,
 XmNshadowType, XmSHADOW_IN,
 NULL);
 XtVaCreateManagedWidget ("XmSHADOW_IN",
 xmLabelGadgetClass, frame,
 NULL);
 #ifdef MOTIF_1_2
 XtVaCreateManagedWidget ("XmALIGNMENT_CENTER",
 xmLabelGadgetClass, frame,
 XmNchildType, XmFRAME_TITLE_CHILD,
 XmNchildVerticalAlignment, XmALIGNMENT_CENTER,
 NULL);
 #endif

 frame = XtVaCreateManagedWidget ("frame2",
 xmFrameWidgetClass, rowcol,
 XmNshadowType, XmSHADOW_OUT,
 NULL);
 XtVaCreateManagedWidget ("XmSHADOW_OUT",
 xmLabelGadgetClass, frame,
 NULL);
 #ifdef MOTIF_1_2
 XtVaCreateManagedWidget ("XmALIGNMENT_BASELINE_TOP",
 xmLabelGadgetClass, frame,
 XmNchildType, XmFRAME_TITLE_CHILD,
 XmNchildVerticalAlignment, XmALIGNMENT_BASELINE_TOP,
 NULL);
 #endif

 frame = XtVaCreateManagedWidget ("frame3",
 xmFrameWidgetClass, rowcol,
 XmNshadowType, XmSHADOW_ETCHED_IN,
 NULL);
 XtVaCreateManagedWidget ("XmSHADOW_ETCHED_IN",
 xmLabelGadgetClass, frame,
 NULL);
 #ifdef MOTIF_1_2
 XtVaCreateManagedWidget ("XmALIGNMENT_WIDGET_TOP",
 xmLabelGadgetClass, frame,
 XmNchildType, XmFRAME_TITLE_CHILD,

9 Manager Widgets 9.6 The Frame Widget

235

 XmNchildVerticalAlignment, XmALIGNMENT_WIDGET_TOP,
 NULL);
 #endif

 frame = XtVaCreateManagedWidget ("frame4",
 xmFrameWidgetClass, rowcol,
 XmNshadowType, XmSHADOW_ETCHED_OUT,
 NULL);
 XtVaCreateManagedWidget ("XmSHADOW_ETCHED_OUT",
 xmLabelGadgetClass, frame,
 NULL);
 #ifdef MOTIF_1_2
 XtVaCreateManagedWidget ("XmALIGNMENT_WIDGET_BOTTOM",
 xmLabelGadgetClass, frame,
 XmNchildType, XmFRAME_TITLE_CHILD,
 XmNchildVerticalAlignment, XmALIGNMENT_WIDGET_BOTTOM,
 NULL);
 #endif

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output of this example is shown in the figure.

Output of frame.c

The program creates four Frame widgets. Each Frame has two Label children, one for the work area and one for the
title. Each Frame uses a different value for the XmNshadowType and XmNchildVerticalPlacement
resources, where these values are indicated by the text of the Labels. Although we have used a Label as the work area
child of a Frame in this example, it is not a good idea to put a border around a Label. The shadow border implies
selectability, which can confuse the user.

9.7 The PanedWindow Widget

The PanedWindow widget lays out its children in a vertically−tiled format. The Motif Style Guide also provides for a

9 Manager Widgets 9.7 The PanedWindow Widget

236

horizontally−oriented paned window, but the Motif toolkit does not yet support it. The idea behind the PanedWindow
is that the user can adjust the individual panes to provide more or less space as needed on a per−child basis. For
example, if the user wants to see more text in a Text widget, he can use the control sashes (sometimes called grips) to
resize the area for the Text widget. When the user moves the sash, the widget above or below the one being resized is
resized smaller to compensate for the size change.

The width of the widget expands to that of its widest managed child and all of the other children are resized to match
that width. The height of the PanedWindow is set to the sum of the heights of all of its children, plus the spacing
between them and the size of the top and bottom margins. In Motif 1.1, widgets are placed in a PanedWindow in the
order that you create them, with the first child being placed at the top of the PanedWindow. With Motif 1.2, you can
set the XmNpositionIndex constraint resource to control the position of a child in a PanedWindow if you do not
want to use the default order.

An application that wants to use the PanedWindow must include the file <Xm/PanedW.h>. An instance of the widget
may be created as usual for manager widgets, as shown in the following code fragment:

 Widget paned_w;

 paned_w = XtVaCreateWidget ("name",
 xmPanedWindowWidgetClass, parent,

resource−value−list,
 NULL);
 ...
 XtManageChild (paned_w);

The PanedWindow widget provides constraint resources that allow its children to indicate their preferred maximum
and minimum sizes. the source code shows three widgets that are set in a PanedWindow. XtSetLanguageProc()
is only available in X11R5; there is no corresponding function in X11R4.

 /* paned_wind1.c −−there are two Label widgets that are positioned
 * above and below a Text widget. The Labels' minimum and maximum
 * sizes are set to 25 and 45 respectively, preventing those
 * panes from growing beyond those bounds. The Text widget has its
 * minimum size set to 35 preventing it from becoming so small that
 * its text cannot be read.
 */
 #include <Xm/Label.h>
 #include <Xm/PanedW.h>
 #include <Xm/Text.h>

 main(argc, argv)
 char *argv[];
 {
 Widget toplevel, pane;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 pane = XtVaCreateWidget ("pane",
 xmPanedWindowWidgetClass, toplevel,
 NULL);

 XtVaCreateManagedWidget ("Hello", xmLabelWidgetClass, pane,
 XmNpaneMinimum, 25,

9 Manager Widgets 9.7 The PanedWindow Widget

237

 XmNpaneMaximum, 45,
 NULL);

 XtVaCreateManagedWidget ("text", xmTextWidgetClass, pane,
 XmNrows, 5,
 XmNcolumns, 80,
 XmNpaneMinimum, 35,
 XmNeditMode, XmMULTI_LINE_EDIT,
 XmNvalue, "This is a test of the paned window widget.",
 NULL);

 XtVaCreateManagedWidget ("Goodbye", xmLabelWidgetClass, pane,
 XmNpaneMinimum, 25,
 XmNpaneMaximum, 45,
 NULL);

 XtManageChild (pane);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The two Label widgets are positioned above and below a Text widget in a PanedWindow. The minimum and
maximum sizes of the Labels are set to 25 and 45 pixels respectively, using the resources XmNpaneMinimum and
XmNpaneMaximum. No matter how the PanedWindow or any of the other widgets are resized, the two Labels cannot
grow or shrink beyond these bounds. The Text widget, however, only has a minimum size restriction, so it may be
resized as large or as small as the user prefers, provided that it does not get smaller than the 35−pixel minimum. the
figure shows two configurations of this application.

9 Manager Widgets 9.7 The PanedWindow Widget

238

Output of paned_win1.c

9.7.1 Pane Constraints

One problem with setting the maximum and minimum resources for a widget involves determining exactly what those
extents should be. The maximum size of 45 for the Label widgets in the source code is an arbitrary value that was
selected for demonstration purposes only. If other resources had been set on one of the Labels such that the widget
needed to be larger, the application would definitely look unbalanced. For example, an extremely high resolution
monitor might require the use of unusually large fonts in order for text to appear normal. There are two choices
available at this point. One is to specify the maximum and minimum values in a resolution−independent way and the
other is to ask the Label widget itself what height it wants to be.

Specifying resolution−independent dimensions requires you to carefully consider the type of application you are
creating. When you specify resolution−independent values, you must specify the values in either millimeters, inches,
points, or font units. The value of the XmN-unit-Type Manager resource controls the type of units that are used.
the source code demonstrates the use of resolution−independent dimensions. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* unit_types.c −−the same as paned_win1.c except that the
 * Labels' minimum and maximum sizes are set to 1/4 inch and
 * 1/2 inch respectively. These measurements are retained
 * regardless of the pixels−per−inch resolution of the user's
 * display.
 */
 #include <Xm/Label.h>
 #include <Xm/PanedW.h>
 #include <Xm/Text.h>

 main(argc, argv)
 char *argv[];
 {
 Widget toplevel, pane;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 pane = XtVaCreateWidget ("pane",
 xmPanedWindowWidgetClass, toplevel,
 XmNunitType, Xm1000TH_INCHES,
 NULL);

 XtVaCreateManagedWidget ("Hello", xmLabelWidgetClass, pane,
 XmNpaneMinimum, 250, /* quarter inch */
 XmNpaneMaximum, 500, /* half inch */
 NULL);

 XtVaCreateManagedWidget ("text", xmTextWidgetClass, pane,
 XmNrows, 5,
 XmNcolumns, 80,
 XmNpaneMinimum, 250,
 XmNeditMode, XmMULTI_LINE_EDIT,
 XmNvalue, "This is a test of the paned window widget.",

9 Manager Widgets 9.7.1 Pane Constraints

239

 NULL);

 XtVaCreateManagedWidget ("Goodbye", xmLabelWidgetClass, pane,
 XmNpaneMinimum, 250, /* quarter inch */
 XmNpaneMaximum, 500, /* half inch */
 NULL);

 XtManageChild (pane);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The second technique that we can use is to query the Label widgets about their heights. This technique requires the
use of the Xt function XtQueryGeometry(), as shown in the source code XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* paned_wind2.c −−there are two label widgets that are positioned
 * above and below a Text widget. The labels' desired heights are
 * queried using XtQueryGeometry() and their corresponding maximum
 * and minimum sizes are set to the same value. This effectively
 * prevents those panes from being resized. The Text widget has its
 * minimum size set to 35 preventing it from becoming so small that
 * its text cannot be read.
 */
 #include <Xm/Label.h>
 #include <Xm/PanedW.h>
 #include <Xm/Text.h>

 main(argc, argv)
 char *argv[];
 {
 Widget toplevel, pane, label;
 XtWidgetGeometry size;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 pane = XtVaCreateWidget ("pane",
 xmPanedWindowWidgetClass, toplevel, NULL);

 label = XtVaCreateManagedWidget ("Hello",
 xmLabelWidgetClass, pane, NULL);
 size.request_mode = CWHeight;
 XtQueryGeometry (label, NULL, &size);
 XtVaSetValues (label,
 XmNpaneMaximum, size.height,
 XmNpaneMinimum, size.height,
 NULL);
 printf ("hello's height: %d0, size.height);

 XtVaCreateManagedWidget ("text", xmTextWidgetClass, pane,
 XmNrows, 5,
 XmNcolumns, 80,
 XmNresizeWidth, False,
 XmNresizeHeight, False,
 XmNpaneMinimum, 35,

9 Manager Widgets 9.7.1 Pane Constraints

240

 XmNeditMode, XmMULTI_LINE_EDIT,
 XmNvalue, "This is a test of the paned window widget.",
 NULL);

 label = XtVaCreateManagedWidget ("Goodbye",
 xmLabelWidgetClass, pane, NULL);
 size.request_mode = CWHeight;
 XtQueryGeometry (label, NULL, &size);
 XtVaSetValues (label,
 XmNpaneMaximum, size.height,
 XmNpaneMinimum, size.height,
 NULL);
 printf ("goodbye's height: %d0, size.height);

 XtManageChild (pane);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

XtQueryGeometry() asks a widget what size it would like to be. This routine takes the following form:

 XtGeometryResult
 XtQueryGeometry(widget, intended, preferred_return)
 Widget widget;
 XtWidgetGeometry *intended;
 XtWidgetGeometry *preferred_return;

Since we do not want to resize the widget, we pass NULL for the intended parameter. We are not interested in the
return value of the function, since the information that we want is returned in the preferred_return parameter.
This parameter is of type XtWidgetGeometry, which is defined as follows:

 typedef struct {
 XtGeometryMask request_mode;
 Position x, y;
 Dimension width, height, border_width;
 Widget sibling;
 int stack_mode;
 } XtWidgetGeometry;

We tell the widget what we want to know by setting the request_mode field of the size variable that we pass to
the routine. The request_mode field is checked by the query_geometry function within the called widget.
Depending on which bits that are specified, the appropriate fields are set within the returned data structure. In the
source code we set request_mode to CWHeight, which tells the Label widget's query_geometry method to
return the desired height in the height field of the data structure. If we had wanted to know the width as well, we
could have set request_mode as follows:

 size.request_mode = (CWHeight | CWWidth);

In this case, the width and height fields would be filled in by the Label widget.

Once we have the Label's desired height, we can set the constraint resources XmNpaneMaximum and
XmNpaneMinimum to the height of the Label. By making these two values the same, the pane associated with the
Label cannot be resized. In most cases, the XtQueryGeometry() method can be used reliably to determine proper
values for minimum and maximum pane extents. In Motif 1.1, many of the Motif widgets do not have
query_geometry methods, so they do not return sensible values when XtQueryGeometry() is called. In Motif

9 Manager Widgets 9.7.1 Pane Constraints

241

1.2, the query_geometry method has been implemented for all Motif widgets. Setting extents is useful, since
without them, the user can adjust a PanedWindow so that the size of a widget is unreasonable or unaesthetic. If you
are setting the extents for a scrolled object (ScrolledText or ScrolledList), you do not need to be as concerned about
the maximum extent, since these objects handle larger sizes appropriately. Minimum states are certainly legitimate
though. For example, you could use the height of a font as a minimum extent for Text or a List.

The PanedWindow widget can be useful for building your own dialogs because you can control the size of the action
area. The action area is always at the bottom of the dialog and its size should never be changed. See Chapter 7,
Custom Dialogs, for a complete discussion of how a PanedWindow can be used in in this manner.

9.7.2 Sashes

The Sashes in a PanedWindow widget are in fact widgets, even though they are not described or defined publicly.
While the Motif Style Guide says that the Sash is part of the PanedWindow widget, the Motif toolkit defines the object
privately, which means that technically the Sash is not supported and it may change in the future. However, it is
possible to get a handle to a Sash if you absolutely need one. In order to retrieve a Sash, you need to include the
header file <Xm/SashP.h>. The fact that the file ends in an uppercase P indicates that it is a private header file, which
means that an application program should not include it. However, there is no public header file for the Sash widget,
so unless you include the private header file, you cannot access the Sashes in a PanedWindow.

If you retrieve all of the children from a PanedWindow using XtVaGetValues() on the XmNchildren resource,
you can use the XmIsSash() macro to locate the Sash children. This macro is defined as follows:

 #define XmIsSash(w) XtIsSubclass(w, xmSashWidgetClass)

Although XtIsSubclass() is a public function, xmSashWidgetClass is not declared publicly. One reason that
you might want to get handles to the Sashes in a PanedWindow is to turn off keyboard traversal to the Sashes, as
described in the next section.

9.8 Keyboard Traversal

The Motif Style Guide specifies methods by which the user can interact with an application without using the mouse.
These methods provide a way for the user to navigate through an application and activate user−interface elements on
the desktop using only the keyboard. Such activity is known as keyboard traversal and is based on the Common User
Access (CUA) interface specifications from Microsoft Windows and Presentation Manager.

These specifications make heavy use of the TAB key to move between elements in a user interface; related interface
controls are grouped into what are called tab groups. Some examples of tab groups are a set of ToggleButtons or a
collection of PushButtons. Just as only one shell on the screen can have the keyboard focus, only one widget at a time
can have the input focus. When keyboard activity occurs in a window, the toolkit knows which tab group is current
and directs the input focus to the active item within that group.

The user can move from one item to the next within a tab group using the arrow keys. The user can move from one tab
group to the next using the TAB key. To traverse the tab groups in the reverse direction, the user can use
SHIFT−TAB. The CTRL key can be used with the TAB key in a Text widget to differentiate between a traversal
operation and the use of the TAB key for input. The SPACEBAR activates the item that has the keyboard focus.

To illustrate the keyboard traversal mechanisms, let's examine tictactoe.c from the source code This program contains
one tab group, the Form widget. Because the PushButtons inside of it are elements in the tab group, the user can move
between the items in the tic−tac−toe board using the arrow keys on the keyboard, as illustrated in the figure.

9 Manager Widgets 9.7.2 Sashes

242

Keyboard traversal for tictactoe.c

Pressing the TAB key causes the input focus to be directed to the next tab group and set to the first item in the group,
which is known as the home element. Since there is only one tab group in this application, the traversal mechanism
moves the input focus to the first element in the same group. Thus, pressing the TAB key in this program always
causes the home item to become the current input item.

The conceptual model of the tab group mechanism corresponds to the user's view of an application. With tab groups,
the widget tree is flattened out into two simple layers: the first layer contains tab groups and the second layer contains
the elements of those groups. In this model, there is no concept of managers and children or any sort of widget
hierarchy. But as you know, an application is based on a very structured widget hierarchy. The implementation of tab
groups is based on lists of widget pointers that refer to existing widgets in the widget tree. These lists, known as
navigation groups, are maintained by the VendorShell and MenuShell widgets and are accessed by the input−handling
mechanisms of the Motif toolkit.

Each widget class in the Motif toolkit is initialized either as a tab group itself or as a member of a tab group. Manager
widgets, Lists, and Text widgets are usually tagged as tab groups, since they typically contain subelements that can be
traversed. For example, the elements in a List can be traversed using the arrow keys on the keyboard; the up arrow
moves the selection to the previous element in the List widget. In a Text widget, the arrow keys move the insertion
cursor. The other primitive widgets, such as PushButtons and ToggleButtons, are usually tagged as tab group
members. Output−only widgets are not tagged at all and are excluded from the tab group mechanism, since you
cannot traverse to an output−only widget. These default settings are not permanent. For example, a PushButton or a
ToggleButton can be a tab group, although this setting is uncommon and should only be done when you have a special
reason for forcing the widget to be recognized as a separate tab group.

When the TAB key is pressed, the next tab group in the list of tab groups becomes the current tab group. Since
manager widgets are normally tab groups, the order of tab group traversal is typically based on the order in which the
manager widgets are created. This entire process is automated by the Motif toolkit, so an application does not have to
do anything unless it wants to use a different system of tab groups for some reason. In order to maintain Motif
compliance, we recommend that you avoid interfering with the default behavior.

We are discussing keyboard traversal in the chapter on manager widgets because managers play the most visible role
in keyboard traversal from the application programmer's perspective. Managers, by their nature, contain other widgets,

9 Manager Widgets 9.7.2 Sashes

243

which are typically primitive widgets that act as tab group members. Furthermore, manager widgets must handle all of
the input events for gadgets, so there is a great deal of functionality that supports keyboard traversal written into the
Manager widget class.

Before we discuss the details of dealing with tab groups, there are a few things we should mention. The
implementation of tab groups has changed from earlier versions of the toolkit; to maintain backwards compatibility,
remnants of the older implementation are still resident in the current implementation, which may cause some
confusion in the current API. The technology of keyboard traversal is still being improved. Although later
implementations may not change the existing API, new versions of the toolkit may optimize the process substantially.
Since the current implementation of tab groups is not perfect, some people want to change the default behavior and
control it entirely on their own. We do not recommend this approach. You should avoid interfering with the keyboard
traversal mechanisms, as it will make it easier to maintain compatibility with other Motif applications and it won't
require any changes for new versions of the toolkit. If you are going to modify the operation of keyboard traversal,
you should be careful and test your changes thoroughly.

9.8.1 Turning Traversal Off

You can prevent a widget from participating in keyboard traversal by removing the widget from the traversal list. To
remove a widget from the traversal list, set its XmNtraversalOn resource to False. If the widget is a member of a
tab group, it is simply removed from the list and the user cannot traverse to it. If the widget is a tab group, it is
removed and all of its elements are also all removed.

Let's experiment with tab group members by modifying tictactoe.c. We can modify the pushed() callback routine
to remove the selected PushButton from the traversal list when it is selected. If the keyboard is used to traverse and
select the items on the tic−tac−toe board, the toolkit automatically skips over those that have already been selected.
The new callback routine is shown in the source code XtSetLanguageProc() is only available in X11R5; there is
no corresponding function in X11R4.

 void
 pushed(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char buf[2];
 XmString str;
 int letter;
 XmPushButtonCallbackStruct *cbs =
 (XmPushButtonCallbackStruct *) call_data;

 XtVaGetValues (w, XmNuserData, &letter, NULL);
 if (letter) {
 XBell (XtDisplayOfObject (w), 50);
 return;
 }
 /* Shift key gets an O. (xbutton and xkey happen to be similar) */
 if (cbs−>event−>xbutton.state & ShiftMask)
 letter = buf[0] = '0';
 else
 letter = buf[0] = 'X';
 buf[1] = 0;
 str = XmStringCreateLocalized (buf);
 XtVaSetValues (w,
 XmNlabelString, str,
 XmNuserData, letter,

9 Manager Widgets 9.8.1 Turning Traversal Off

244

 XmNshadowThickness, 0,
 XmNtraversalOn, False,
 NULL);
 XmStringFree (str);
 }

The user can still click on a previously−selected item with the mouse button, but the routine causes an error bell to
sound in this situation.

Output−only widgets, like Labels and Separators, always have their XmNtraversalOn resource initialized to
False. In most cases, setting the value to True would be annoying to the user, since these objects cannot respond to
keyboard input anyway. The user would have to traverse many unimportant widgets to get to a desired item. However,
it is commonly overlooked that a Label can have a XmNhelpCallback routine associated with it. If the keyboard
traversal mechanism allows the user to traverse to Labels, he could get help on them by pressing the HELP or F1 keys.
It may be considered a design flaw in Motif that a non−mouse−driven interface is not supported for getting help for
these objects. However, this situation is not generally a problem, since most people do not try to get help on Labels
and most programmers do not install help for them.

A general problem that people tend to have with the PanedWindow widget is that the Sashes are included in the
traversal list. Since the PanedWindow is a manager widget, it is a tab group, which means that all of its children are
members of the tab group. If you run the program from the source code and use the TAB key to move from one
widget to the next, you'll find that the traversal also includes the Sash widgets. Many users find it annoying to traverse
to Sashes, since it is more likely that they want to skip the Sashes when using keyboard traversal, rather than use them
to resize any of the panes. While it is common to resize panes, people usually do so using the mouse, not the
keyboard.

As of Motif 1.2, it is possible to turn off Sash traversal using the following resource specification in a resource file:

 *XmSash.traversalOn: False

Prior to this release, the PanedWindow and its Sashes were created in such a way that you could not override the
traversability of the Sashes using hard−coded values in the widget creation call or using a resource specification in a
resource file. In fact, the internals of the PanedWindow widget hard−coded its Sash widgets' XmNtraversalOn
resources to True as they were created, thus eliminating the possibility of turning traversal off using resources. The
only way to turn off traversal for Sashes in this case was to reset the resource values after all of the Sashes were
created. the source code demonstrates a routine that handles this task.

 #include <Xm/SashP.h>

 void
 TurnOffSashTraversal (panedw)
 Widget panedw;
 {
 Widget *children;
 int num_children;

 XtVaGetValues (panedw,
 XmNchildren, &children,
 XmNnumChildren, &num_children,
 NULL);
 while (num_children−− > 0)
 if (XmIsSash (children[num_children]))
 XtVaSetValues (children[num_children],
 XmNtraversalOn, False,
 NULL);

9 Manager Widgets 9.8.1 Turning Traversal Off

245

 }

There are some applications that might actually have to be used without a mouse, just as there are some users who
prefer to use the keyboard, so you should be careful about turning off keyboard traversal for the Sashes in a
PanedWindow widget. If you do turn off Sash traversal, we recommend that you document the behavior and provide a
way for the user to control this behavior. For example, you could provide an application−specific resource that
controls whether or not Sashes can be traversed using the keyboard.

As noted earlier, XmNtraversalOn can be set on tab groups (which tend to be manager widgets) as well as tab
group members. If traversal is off for a tab group, none of its members can be traversed. If keyboard traversal is
something that you need to modify in your application, you should probably hard−code XmNtraversalOn values
directly into individual widgets as you create them. Turning off traversal is typically not something that is done on a
per−widget−class basis. When you turn traversal off in application code, be careful to make sure that there is no
reason that a user would want to traverse to the particular widgets because once you hard−code the resource values,
they cannot be modified by the user in a resource file.

9.8.2 Modifying Tab Groups

The XmNnavigationType resource controls whether a widget is a tab group itself or is a member of a tab group.
When this resource is set to XmNONE, the widget is not a tab group, so it defaults to being a member of one. As a
member, its XmNtraversalOn resource indicates whether or not the user can direct the input focus to the widget
using the keyboard. This value is the default for most primitive widgets. When the resource is set to XmTAB_GROUP,
the widget is a tab group itself, so it is included in keyboard navigation. This value is the default for managers, Lists,
and Text widgets. By modifying the default value of the XmNnavigationType resource for a widget, you can
specify that a primitive widget is a tab group. As a result, the user traverses to the widget using the TAB key rather
than one of the arrow keys. For example, you can modify tictactoe.c by setting the XmNnavigationType to
XmTAB_GROUP for each PushButton.

There are two other values for XmNnavigationType that are used for backwards compatibility with older versions
of the toolkit. They are not generally used unless you are porting programs from Motif 1.0. In this version of the
toolkit, there is an application called XmAddTabGroup() to make a widget a tab group. With Motif 1.0, the
programmer was required to specify precisely which widgets were tab groups, which were members of a tab group,
and which were not traversable. As a result, XmAddTabGroup() had to be called for all manager widgets. To
maintain backwards compatibility, whenever XmAddTabGroup() is called, the toolkit assumes the programmer is
using the old Motif 1.0 specifications and disables the new, automatic behavior. Unless your application is currently
using the old API, you can probably skip to the next section.

Calling XmAddTabGroup() is equivalent to setting XmNnavigationType to XmEXCLUSIVE_TAB_GROUP. If
this value is set on a widget or if XmAddTabGroup() is called, new widgets are no longer added as tab groups
automatically. Basically, the toolkit reverts to the old behavior. An exclusive tab group is much the same as a normal
tab group, but Motif recognizes this special value and ignores all widgets that have the newer XmTAB_GROUP value
set. You can think of this value as setting exclusivity on the tab group behavior.

The value XmSTICKY_TAB_GROUP can also be used for XmNnavigationType in Motif 1.0. If this value is used
on a widget, the widget is included automatically in keyboard traversal, even if another widget has its navigation type
set to XmEXCLUSIVE_TAB_GROUP or if XmAddTabGroup() has been called. This value provides a partial
workaround for the new behavior, but not exactly. You can set a widget to be a sticky tab group without completely
eliminating the old behavior and without interfering with the new behavior.

You can ignore these two values for all intents and purposes. If you need to port an old application to a newer version
of the Motif toolkit, you should consider removing all of the calls to XmAddTabGroup() and just going with the

9 Manager Widgets 9.8.2 Modifying Tab Groups

246

new behavior. If you need to change the default behavior, you should use XmNONE and XmTAB_GROUP to control
whether or not a widget is a tab group or a member of one. To control whether the widget is part of the whole
keyboard traversal mechanism, use the XmNtraversalOn resource.

9.8.3 Handling Event Translations

In order for manager widgets to implement keyboard traversal, they have their own event translation tables that
specify what happens when certain events occur. As discussed in Chapter 2, The Motif Programming Model, a
translation table specifies a series of one or more events and an action that is invoked if the event occurs. The X
Toolkit Intrinsics handles event translations automatically; when the user presses the TAB key, Xt looks up the event
<Key>Tab in the table and invokes the corresponding action procedure. In this case, the procedure changes the input
focus from the current tab group to the next one on the list.

This mechanism is dependent on the window hierarchy of the widget tree. Events are first delivered to the widget
associated with the window where the event took place. If that widget (or its window) does not handle the type of
event delivered, it passes the event up the window tree to its parent, which then has the option of dealing with the
event. Assuming that the parent is a manager widget of some kind, it now has the option to process the event. If the
event is a keyboard traversal event, the appropriate action routine moves the input focus. The default event
translations that manager widgets use to handle keyboard traversal are currently specified as follows:

 <Key>osfBeginLine: ManagerGadgetTraverseHome()
 <Key>osfUp: ManagerGadgetTraverseUp()
 <Key>osfDown: ManagerGadgetTraverseDown()
 <Key>osfLeft: ManagerGadgetTraverseLeft()
 <Key>osfRight: ManagerGadgetTraverseRight()
 Shift ~Meta ~Alt <Key>Tab: ManagerGadgetPrevTabGroup()
 ~Meta ~Alt <Key>Tab: ManagerGadgetNextTabGroup()
 <EnterWindow>: ManagerEnter()
 <LeaveWindow>: ManagerLeave()
 <FocusOut>: ManagerFocusOut()
 <FocusIn>: ManagerFocusIn()

The OSF−specific keysyms are vendor−defined, which means that the directional arrows must be defined by the user's
system at run−time. Values like <Key>osfUp and <Key>osfDown may not be the same as <Key>Up and
<Key>Down.

The routines that handle keyboard traversal are prefixed by ManagerGadget. Despite their names, these functions
are not specific to gadgets; they are used to handle keyboard traversal for all of the children in the manager. If a
primitive widget inside of a manager widget specifies an event translation that conflicts with one of the manager's
translations, the primitive widget can interfere with keyboard traversal. If the primitive widget has the input focus, the
user cannot use the specified event to move the input focus with the keyboard. The following code fragment shows
how the translation table for a PushButton can interfere with the keyboard traversal mechanism in its parent:

 Widget pb;
 XtActionRec action;
 extern void do_tab();

 actions.string = "do_tab";
 actions.proc = do_tab;
 XtAddActions (&actions, 1);

 pb = XtVaCreateManagedWidget ("name",
 xmPushButtonWidgetClass, parent,

resource−value−list,

9 Manager Widgets 9.8.3 Handling Event Translations

247

 NULL);
 XtOverrideTranslations (pb, XtParseTranslationTable ("<Key>Tab: do_tab"));

The translation table is merged into the existing translations for the PushButton widget. This translation table does not
interfere with the translation table in the manager widget, but it does interfere with event propagation to the manager.
When the TAB key is pressed, the action routine do_tab() is called and the event is consumed by the PushButton
widget. The event is not propagated up to the manager widget so that it can perform the appropriate keyboard traversal
action. The workaround for this problem is to have do_tab() process the keyboard traversal action on its own, in
addition to performing its own action. This technique is discussed in the next section.

Since a manager can also contain gadgets, the manager widget must also handle input that is destined for gadgets.
Since gadgets do not have windows, they cannot receive events. Only the manager widget that is the parent of a
gadget can receive events for the gadget. The manager widget has the following additional translations to handle input
on behalf of gadgets:

 <Key>osfActivate: ManagerParentActivate()
 <Key>osfCancel: ManagerParentCancel()
 <Key>osfSelect: ManagerGadgetSelect()
 <Key>osfHelp: ManagerGadgetHelp()
 ~Shift ~Meta ~Alt <Key>Return: ManagerParentActivate()
 ~Shift ~Meta ~Alt <Key>space: ManagerGadgetSelect()
 <Key>: ManagerGadgetKeyInput()
 <BtnMotion>: ManagerGadgetButtonMotion()
 <Btn1Down>: ManagerGadgetArm()
 <Btn1Down>,<Btn1Up>: ManagerGadgetActivate()
 <Btn1Up>: ManagerGadgetActivate()
 <Btn1Down>(2+): ManagerGadgetMultiArm()
 <Btn1Up>(2+): ManagerGadgetMultiActivate()
 <Btn2Down>: ManagerGadgetDrag()

Unlike with keyboard traversal translations, widget translations cannot interfere with the manager translations that
handle events destined for gadgets. If a widget had the input focus, the user's actions cannot be destined for a gadget,
since the user would have to traverse to the gadget first, in which case the manager would really have the input focus.

In Chapter 10, The DrawingArea Widget, we discuss the problems involved in handling input events on the
DrawingArea widget. The problems arise because the widget can be used for interactive drawing, as well as serve as a
manager. There may be events that you want to process in your application, but they could also be processed by the
DrawingArea itself. The problem is really a semantic one, as there is no way to determine which action procedure
should be invoked for each event if the DrawingArea has a manager−based action and the application defines its own
action. For more information on translation tables and action routines, see Chapter 2, The Motif Programming Model,
and Volume Four, X Toolkit Intrinsics Programming Manual.

9.8.4 Processing Traversal Manually

At times, an application may want to move the input focus as a result of something that the user has done. For
example, you might have an action area where each PushButton invokes a callback function and then sets the input
focus to the home item in the tab group, presumably to protect the user from inadvertently selecting the same item
twice. the source code demonstrates how this operation can be accomplished.

 /* proc_traverse.c −− demonstrate how to process keyboard traversal
 * from a PushButton's callback routine. This simple demo contains
 * a RowColumn (a tab group) and three PushButtons. If any of the
 * PushButtons are activated (selected), the input focus traverses
 * to the "home" item.

9 Manager Widgets 9.8.4 Processing Traversal Manually

248

 */
 #include <Xm/PushB.h>
 #include <Xm/RowColumn.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, pb;
 XtAppContext app;
 void do_it();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 (void) XtVaCreateManagedWidget ("OK",
 xmPushButtonWidgetClass, rowcol, NULL);

 pb = XtVaCreateManagedWidget ("Cancel",
 xmPushButtonWidgetClass, rowcol, NULL);
 XtAddCallback (pb, XmNactivateCallback, do_it, NULL);

 pb = XtVaCreateManagedWidget ("Help",
 xmPushButtonWidgetClass, rowcol, NULL);
 XtAddCallback (pb, XmNactivateCallback, do_it, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback for pushbuttons */
 void
 do_it(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 /* do stuff here for PushButton widget */
 (void) XmProcessTraversal(widget, XmTRAVERSE_HOME);
 }

The three frames in the figure show the movement of keyboard focus in the program. In the figure, the current input
focus is on the Cancel button; when it is selected, the input focus is changed to the OK button.

9 Manager Widgets 9.8.4 Processing Traversal Manually

249

Output of proc_traversal.c

The ca l lback rou t ine assoc ia ted w i th the PushBut tons does whatever i t needs and then ca l l s
XmProcessTraversal() to change the input item to the home item, which happens to be the OK button. This
function can be used when an application needs to set the current item in the tab group to another widget or gadget or
it can be used to traverse to a new tab group. The function takes the following form:

 Boolean
 XmProcessTraversal(widget, direction)
 Widget widget;
 int direction;

The function returns False if the VendorShell associated with the widget has no tab groups, the input focus policy
doesn't make sense, or if there are other extenuating circumstances that would be considered unusual. It is unlikely
that you'll ever have this problem.

The direction parameter specifies where the input focus should be moved. This parameter can take any of the
following values:

 XmTRAVERSE_CURRENT
 XmTRAVERSE_NEXT
 XmTRAVERSE_PREV
 XmTRAVERSE_HOME
 XmTRAVERSE_UP
 XmTRAVERSE_DOWN
 XmTRAVERSE_LEFT
 XmTRAVERSE_RIGHT
 XmTRAVERSE_NEXT_TAB_GROUP
 XmTRAVERSE_PREV_TAB_GROUP

All but the last two values are for traversing to items within the current tab group; the last two are for traversing to the
next or previous tab group relative to the current one. In the case of the source code the call to
XmProcessTraversal() forces the home element to be the current item in the current tab group. For a more
sophisticated example of manipulating the input focus, see Section #stextcbs in Chapter 14, Text Widgets. One
problem with XmProcessTraversal() is that you can only move in a relative direction from the item that has the
input focus. This functionality is sufficient in most cases, since the logic of your application should not rely on the
user following any particular input sequence. If you need to traverse to a specific widget regardless of the current
item, in most cases you can make the following call:

 XmProcessTraversal (desired_widget, XmTRAVERSE_CURRENT);

This calling sequence specifies that the desired_widget takes the input focus, but only if the shell that contains
the widget already has the keyboard focus. If the shell does not have the focus, nothing happens until the shell obtains
the keyboard focus. When it does, the desired_widget should have the input focus.

Under certain conditions, this function may appear not to work. For example, if you create a dialog and want to set the
input focus to one of its subwidgets, you may or may not get this to happen, depending on whether or not the dialog
has been realized and mapped to the screen and whether or not keyboard focus has been accepted. Unfortunately, there
is no general solution to this problem because the Motif toolkit isn't very robust about the programmer changing input
focus out from under it. You cannot call generic X functions like XSetInputFocus() to force a widget to take
input focus or you will undermine Motif's attempt at monitoring and controlling the input policy on its own.

In Motif 1.2, there are some new functions that make it easier for an application to control keyboard traversal. The

9 Manager Widgets 9.8.4 Processing Traversal Manually

250

XmGetFocusWidget() routine returns the widget that has the input focus, while XmGetTabGroup() returns the
widget that is the tab group for the specified widget. You can also call XmIsTraversable() to determine whether
or not a particular widget is eligible to receive the input focus. With Motif 1.1, you often cannot determine which
widget has the input focus or where a particular widget is in the widget tree relative to the current input item.

9.9 Summary

Manager widgets are the backbone of an application. Without them, primitive widgets have no way of controlling
their size, layout, and input focus. While the Motif toolkit provides many different manager widget classes, you may
find that there are some things that you cannot do with them. Experienced toolkit programmers have found that it is
possible to port Constraint class widgets from other toolkits to the Motif toolkit, by subclassing them from the generic
Manager widget class. This topic is beyond the scope of this book.

This chapter introduces the Motif manager widgets, but it does not discuss in detail some of the basic issues of
geometry management. If the basic concepts presented in this chapter are still somewhat foreign to you, see
Volume Four, X Toolkit Intrinsics Programming Manual, for a more in−depth discussion of composite widgets and
geometry management.

9 Manager Widgets 9.9 Summary

251

10 ScrolledWindows and ScrollBars

This chapter describes the ins and outs of scrolling. It pays particular attention to application−defined scrolling, which
is often required when the simple scrolling provided by the ScrolledWindow widget is insufficient.

The ScrolledWindow widget provides a viewing area into another, usually larger, visual object. The viewport may be
adjusted by the user through the use of ScrollBars that are attached to the ScrolledWindow. The Motif MainWindow,
ScrolledList, and ScrolledText objects use ScrolledWindows to implement scrolling for their respective contents. The
ScrolledWindow can also be used independently to provide a viewport into another large object, such as a
DrawingArea or a manager widget that contains a large group of widgets. All of these scenarios are explored in this
chapter.

10.1 The ScrolledWindow Design Model

The user always interacts with a ScrolledWindow through ScrollBars. Internally, however, there are several ways to
implement what the user sees. These methods are based on two different scrolling models: automatic scrolling and
application−defined scrolling. In either case, the application gives the ScrolledWindow a work window that contains
the visual data to be viewed. Although the two models are different, they share many of the same concepts and
features.

In automatic scrolling mode, the ScrolledWindow operates entirely on its own, adjusting the viewport as necessary in
response to ScrollBar activity. The application simply creates the desired data, such as a Label widget that contains a
large pixmap, and makes that widget the work window for the ScrolledWindow. When the user operates the
ScrollBars to change the visible area, the ScrolledWindow adjusts the Label so that the appropriate portion is visible.
This design is demonstrated in Chapter 4, The Main Window, and Chapter 10, The DrawingArea Widget.

With application−defined scrolling, the ScrolledWindow operates under the assumption that the work window is not
complete. The widget assumes that another entity, such as the application or the internals of another widget, controls
the data within the work window and that the data may change dynamically as the user scrolls. In order to control
scrolling, the application must control all aspects of the ScrollBars. This level of control is necessary when it is
impossible or impractical for an application to provide the ScrolledWindow with a sufficiently large work window (or
the data for it) at any one time.

10.1.1 The Automatic Scrolling Model

Most of the time, the ScrolledWindow widget is used in automatic scrolling mode. When it is used in this mode, the
ScrolledWindow contains at most three internal widgets: two ScrollBars and a clip window. The clip window is
implemented as a DrawingArea widget. The ScrolledWindow creates these widgets automatically. The work area is an
external widget (specified by the XmNworkWindow resource) that is clipped by the clip window. This work window
is a child of the ScrolledWindow that is provided by the application; it is not created automatically by the
ScrolledWindow. When the user interacts with the ScrollBars, the work window is adjusted so that the appropriate
part is visible through the clip window. The general design of the ScrolledWindow in automatic scrolling mode is
illustrated in the figure.

252

Design of an automatic ScrolledWindow

The work window can be almost any widget, but there can be only one work window per ScrolledWindow. If you
want to have more than one widget inside of a ScrolledWindow, you can place all of the widgets in a manager widget
and make that manager the work window. The clip window is always the size of the viewport portion of the
ScrolledWindow, which is the size of the ScrolledWindow minus the size of the ScrollBars and any borders and
margins. The clip window is not adjusted in size unless the ScrolledWindow is resized. The clip window is always
positioned at the origin, which means that you cannot use XtMoveWidget() or change its XmNx and XmNy
resources to reposition it in the ScrolledWindow. The internals of the ScrolledWindow are solely responsible for
changing the view in the clip window, although you can affect this behavior. While you can get a handle to the clip
window, you cannot remove it or replace it with another window.

10.1.2 The Application−defined Scrolling Model

In the application−defined scrolling model, which is the default model, the ScrolledWindow always makes itself the
same size as the work window. Just as for automatic scrolling, the application must provide the work window as a
child of the ScrolledWindow. The main reason to use application−defined scrolling is if the work window contains
more data than can possibly be loaded in the automatic scrolling mode. An application may also require different
scrolling behavior than the default pixel−by−pixel increments provided by the automatic scrolling mode.
Application−defined scrolling is also the best option when the contents of the work window changes dynamically and
the application does not want to rely on the ScrolledWindow to scroll new data into view.

The disadvantage of application−defined scrolling is that the application, not the ScrolledWindow, is responsible for
the ScrollBars. The application must create and manage the ScrollBars, as well as respond to the scrolling actions
initiated by the user. Since what is displayed in the clip window and the work window are identical, the
ScrolledWindow widget does not bother to create a clip window. However, there are still some limitations as to what

10 ScrolledWindows and ScrollBars10.1.2 The Application−defined Scrolling Model

253

the ScrolledWindow can support. It is important that you understand the limitations before designing your application,
so let's look at two examples.

A Text widget that displays the contents of an arbitrarily large file provides a classic example of application−defined
scrolling. Under the automatic scrolling model, the application might have to provide the ScrolledWindow with a
work window that is large enough to render thousands of lines of text, so that all of the text is immediately available to
the user. An object of such proportions is prohibitive for reasonable performance and resource consumption. Since the
work window cannot be as large as it would need to be for automatic scrolling, it might as well be as small as
possible, which is the size of the clip window. When the Text widget is a child of a ScrolledWindow, the Text widget
creates its own ScrollBars and attaches callback routines to them so that it can be notified of scrolling actions. When
the user scrolls, the Text widget changes the text in the work window to the text that corresponds to the new region
that just scrolled into view. The user has the illusion that scrolling is taking place, but in reality, the data in the work
window has simply changed, thereby saving a great deal of overhead in system and server resources. The List widget
uses the same method when it is the child of a ScrolledWindow. The Text and List widgets are the only examples of
application−defined scrolling that are supported by the current implementation of the ScrolledWindow.

There is another scenario in which a large amount of data is retrieved dynamically and is not all available at the same
time. Even though the ScrolledWindow does not really support this scenario, you should be familiar with the situation,
since it may come up in a large application. There are some possible workarounds that we'll discuss later in the
chapter. Let's say that the Pacific Gas and Electric Company has an online database that contains all of the pipeline
information for California and that an operator wants to view the data for San Francisco county. To display this
information, the application must read the data from the database and convert that data into an image that can be
presented in a ScrolledWindow.

Although the database cannot get all the information for the whole county all at once, it can get more information than
the window can display. Let's say that the window can display 10% of the county and the database can return
information on 20% of the county in a reasonable amount of t ime. The application needs to use the
application−defined mechanisms because 100% of the data is not available for automatic scrolling. The fact that more
than what can be displayed is available just means that the application could optimize performance by avoiding
unnecessary retrieval of data from the database whenever scrolling takes place. The application could reuse the
existing work window as a cache, so that if the user scrolls by an amount that is small enough, the work window is
redisplayed in a way similar to the automatic scrolling mechanism. The application would still have to control this
behavior manually, though.

Unfortunately, the ScrolledWindow does not support this type of behavior. The ScrolledWindow always expands to
the size of its work window in application−defined scrolling mode. In other words, you cannot have a work window
that is a different size from the clip window. This situation leaves you with several design decisions. You could reduce
the amount of data obtained from a database query, throw away excess information not used in your display, or make
the viewport of an automatic ScrolledWindow large enough for each query. In any case, the best approach is to use
some method that makes the size of the work window the same as the clip window. While this requirement may
present some logistical problems with the design of your application, we'll discuss some workarounds for the situation
later in the chapter.

In the two preceding examples, we have defined two fundamentally similar methods of scrolling: semi−automatic
scrolling and true application−defined scrolling. In the first case, Text and List widgets handle their own scrolling
internally through special−case routines attached to the ScrollBars. We call this method semi−automatic scrolling,
since the application programmer is not responsible for the scrolling of these widgets. Nevertheless, the
ScrolledWindow is in the application−defined scrolling mode. This situation is in contrast to true application−defined
scrolling, where you must handle the ScrollBars and the associated scrolling actions entirely on your own. This
method is more intricate and requires a significant amount of code to be implemented properly.

10 ScrolledWindows and ScrollBars10.1.2 The Application−defined Scrolling Model

254

Obviously, the automatic scrolling mechanism provided by the ScrolledWindow is much simpler than the
application−defined mechanism and it requires much less application intervention. However, there are some
drawbacks in the implementation of automatic scrolling. Automatic ScrolledWindows only scroll in single−pixel
increments. If other scrolling behavior is required, you must use application−defined scrolling. And while
application−defined scrolling is far more complicated, the advantage is that it provides more flexibility in the ways
that the object is scrolled.

10.2 Creating a ScrolledWindow

Creating a ScrolledWindow is no different from creating other kinds of Motif widgets. Applications that wish to use
ScrolledWindows must include the header file <Xm/ScrolledW.h>. The process of creating a ScrolledWindow is
shown in the following code fragment:

 Widget scrollw;

 scrollw = XtVaCreateManagedWidget ("name",
 xmScrolledWindowWidgetClass, parent,

resource−value−list,
 NULL);

The parent can be a Shell or any manager widget. The ScrolledWindow can be created as a managed widget, since
the addition of its child does not cause it to renegotiate its size. (See Chapter 8, Manager Widgets, for a discussion of
when manager widgets should be created as managed or unmanaged widgets.) The resource−value pairs control the
behavior of the ScrolledWindow, as well as its visual effects. The most important resources are
XmN-scrollingPolicy, XmN-visualPolicy, and XmN-scrollBarDisplayPolicy. The value for
XmNscrollingPolicy can be set to either XmAUTOMATIC or XmAPPLICATION_DEFINED, depending on
which scrolling method you want to use. The use of other ScrolledWindow resources varies depending on the
scrolling behavior that is specified.

10.2.1 Automatic Scrolling

In automatic scrolling mode, the ScrolledWindow assumes that all of the data is already available in the work window
and that the size of the work window represents the entire size of the viewable data. Even if the data changes and the
size of work window is modified, the ScrolledWindow can still manage its display automatically. The
ScrolledWindow should never resize itself due to changes in the work windows, so XmNvisualPolicy is typically
set to XmCONSTANT. This value tells the ScrolledWindow not to resize itself when the work window grows or
shrinks. If XmNvisualPolicy is set to XmVARIABLE, the ScrolledWindow always sizes itself to contain the entire
work window, which nullifies the need for an automatic ScrolledWindow. Like any other widget, the only time that a
ScrolledWindow should change size is when the parent resizes it, presumably for one of the following reasons:

The shell has been resized.•
The ScrolledWindow is a child of a PanedWindow that the user has resized.•
Adjacent, sibling widgets have been resized, added, removed, etc.•
Application−controlled changes in widget size have been made.•

The default size of the ScrolledWindow is never the same size as the work area, unless it's a coincidence. The
internals to the ScrolledWindow widget happen to set the width and height to 100 pixels, although this fact is not
officially documented by OSF. The default size is not very useful, so you should probably specify the XmNwidth and
XmNheight resources for a ScrolledWindow. A problem arises if you want the ScrolledWindow to initialize itself to
the size of the work window and have it be in automatic scrolling mode. To make the ScrolledWindow the same size
as the work window, you must use application−defined scrolling.

10 ScrolledWindows and ScrollBars 10.2 Creating a ScrolledWindow

255

For automatic scrolling, the only thing left to decide is how you want the ScrollBars to be displayed if the work
window dynamically grows or shrinks. There may be situations where the work window is the same size as or smaller
than the clip window. In this case, you may not want to display the ScrollBars, since they are not needed. If so, you
can set XmN-scrollBarDisplayPolicy to XmAS_NEEDED. If you always want the ScrollBars to be visible,
whether or not they are needed, you can set the resource to XmSTATIC. Some people prefer static ScrollBars, so that
consistency is maintained in the interface; having ScrollBars appear and disappear frequently may be confusing.
Perhaps the best thing to do is to allow the user to specify the XmNscrollBarDisplayPolicy. You can always
set your preference in the application defaults file, as shown below:

 *XmScrolledWindow.scrollBarDisplayPolicy: static

10.2.2 Application−defined Scrolling

In the application−defined scrolling mode, XmNscrollingPolicy is set to XmAPPLICATION_DEFINED. In this
case, the work window must be the same size as the clip window, so the size of the work window is set by the toolkit.
As a result, the XmNvisualPolicy resource has the value of XmVARIABLE, which indicates that the work window
grows and shrinks with the ScrolledWindow. Since the two windows are the same size, the ScrolledWindow doesn't
need to have a clip window, so it doesn't create one.

Because application−defined scrolling implies that you are responsible for the creation and management of the
ScrollBars, the toolkit forces the XmNscrollBarDisplayPolicy to XmSTATIC. which means that the
ScrolledWindow always displays the ScrollBars if they are managed. Since the ScrolledWindow cannot know the size
of the entire data, it cannot automate the visibility of the ScrollBars. If you want your application to emulate the
XmAS_NEEDED behavior, you must monitor the size of the ScrolledWindow and the work area and manage the
ScrollBars manually.

10.2.3 Additional Resources

Another ScrolledWindow resource is the XmNworkWindow, which is used to identify the widget that acts as the
ScrolledWindow's work window. A ScrolledWindow can have only one work window and a work window can be
associated with only one ScrolledWindow. In other words, you cannot assign the same widget ID to multiple
ScrolledWindows to get multiple views into the same object. There are ways of achieving this effect, though, that will
become apparent as we go through the chapter.

The XmNclipWindow resource specifies the widget ID for the clip window. This resource is read−only, so it is
illegal to set the clip window manually or to reset it to NULL. For practical purposes, this resource should be left
alone. The XmNverticalScrollBar and XmNhorizontalScrollBar resources specify the widget IDs of the
ScrollBars in the ScrolledWindow. These resources allow you to set and retrieve the ScrollBars, which is useful for
monitoring scrolling actions and setting up application−defined scrolling. Like any other manager, the
ScrolledWindow also has resources that control the margin height and width and other visual attributes.

10.2.4 An Automatic ScrolledWindow Example

Automatic scrolling is the simpler of the two types of scrolling policies available. Fortunately, it is also the more
common of the two. You shouldn't let this simplicity sway you too much, though, as it is a common design error for
programmers to use the automatic scrolling mechanisms for designs that are better suited to the application−defined
model. On the other hand, if you merely want to monitor scrolling without necessarily controlling it, you can install
your own callback routines on the ScrollBars in an automatic ScrolledWindow, as we'll describe in the next section

In automatic mode, a ScrolledWindow automatically creates its own ScrollBars and handles their callback procedures

10 ScrolledWindows and ScrollBars10.2.2 Application−defined Scrolling

256

to position the work window in the clip window. All of the examples that use ScrolledWindows in the rest of the
chapters in this book (such as those in Chapter 4, The Main Window, and Chapter 10, The DrawingArea Widget) use
the automatic scrolling mode. The only exceptions are the ScrolledList and ScrolledText objects, but the List and Text
widgets handle application−defined scrolling internally.

the source code shows a large panel of Labels, ToggleButtons, and Text widgets that are arranged in a collection of
Form and RowColumn widgets and managed by a ScrolledWindow widget. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* getusers.c −− demonstrate a simple ScrolledWindow by showing
 * how it can manage a RowColumn that contains a vertical stack of
 * Form widgets, each of which contains a Toggle, two Labels and
 * a Text widget. The program fills the values of the widgets
 * using various pieces of information from the password file.
 * Note: there are no callback routines associated with any of the
 * widgets created here −− this is for demonstration purposes only.
 */
 #include <Xm/PushBG.h>
 #include <Xm/LabelG.h>
 #include <Xm/ToggleB.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Form.h>
 #include <Xm/Text.h>
 #include <pwd.h>

 typedef struct {
 String login;
 int uid;
 String name;
 String homedir;
 } UserInfo;

 /* use getpwent() to read data in the password file to store
 * information about all the users on the system. The list is
 * a dynamically grown array, the last of which has a NULL login.
 */
 UserInfo *
 getusers()
 {
 /* extern struct *passwd getpwent(); */
 extern char *strcpy();
 struct passwd *pw;
 UserInfo *users = NULL;
 int n;

 setpwent();

 /* getpwent() returns NULL when there are no more users */
 for (n = 0; pw = getpwent(); n++) {
 /* reallocate the pointer to contain one more entry. You may choose
 * to optimize by adding 10 entries at a time, or perhaps more?
 */
 users = (UserInfo *) XtRealloc (users, (n+1) * sizeof (UserInfo));
 users[n].login = strcpy (XtMalloc
 (strlen (pw−>pw_name)+1), pw−>pw_name);
 users[n].name = strcpy (XtMalloc
 (strlen (pw−>pw_gecos)+1), pw−>pw_gecos);
 users[n].homedir = strcpy (XtMalloc

10 ScrolledWindows and ScrollBars10.2.2 Application−defined Scrolling

257

 (strlen (pw−>pw_dir)+1), pw−>pw_dir);
 users[n].uid = pw−>pw_uid;
 }
 /* allocate one more item and set its login string to NULL */
 users = (UserInfo *) XtRealloc (users, (n+1) * sizeof (UserInfo));
 users[n].login = NULL;
 endpwent();
 return users; /* return new array */
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, sw, main_rc, form, toggle;
 XtAppContext app;
 UserInfo *users;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a 500x300 scrolled window. This value is arbitrary,
 * but happens to look good initially. It is resizable by the user.
 */
 sw = XtVaCreateManagedWidget ("scrolled_w",
 xmScrolledWindowWidgetClass, toplevel,
 XmNwidth, 500,
 XmNheight, 300,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 /* RowColumn is the work window for the widget */
 main_rc = XtVaCreateWidget ("main_rc", xmRowColumnWidgetClass, sw, NULL);
 /* load the users from the passwd file */
 if (!(users = getusers())) {
 perror ("Can't read user data info");
 exit (1);
 }
 /* for each login entry found in the password file, create a
 * form containing a toggle button, two labels and a text widget.
 */
 while (users−>login) { /* NULL login terminates list */
 char uid[8];
 form = XtVaCreateWidget (NULL, xmFormWidgetClass, main_rc, NULL);
 XtVaCreateManagedWidget (users−>login, xmToggleButtonWidgetClass, form,
 XmNalignment, XmALIGNMENT_BEGINNING,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 15,
 NULL);
 sprintf (uid, "%d", users−>uid);
 XtVaCreateManagedWidget (uid, xmLabelGadgetClass, form,
 XmNalignment, XmALIGNMENT_END,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 15,

10 ScrolledWindows and ScrollBars10.2.2 Application−defined Scrolling

258

 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 20,
 NULL);
 XtVaCreateManagedWidget (users−>name, xmLabelGadgetClass, form,
 XmNalignment, XmALIGNMENT_BEGINNING,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 20,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 50,
 NULL);
 /* Although the home directory is readonly, it may be longer
 * than expected, so don't use a Label widget. Use a Text widget
 * so that left−right scrolling can take place.
 */
 XtVaCreateManagedWidget (users−>homedir, xmTextWidgetClass, form,
 XmNeditable, False,
 XmNcursorPositionVisible, False,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 50,
 XmNrightAttachment, XmATTACH_FORM,
 XmNvalue, users−>homedir,
 NULL);
 XtManageChild (form);
 users++;
 }
 XtManageChild (main_rc);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

Those of you who are familiar with UNIX programming techniques should find the use of getpwent() and
endpwent() quite familiar. If you are not aware of these functions, you should consult the documentation for your
UNIX system. In short, they can be used to return information about the contents of the password file (typically
/etc/passwd), which contains information about all of the users on the system. The first call to getpwent() opens
the password file and returns a data structure describing the first entry. Subsequent calls return consecutive entries.
When the entries have been exhausted, getpwent() returns NULL and endpwent() closes the password file. In
the source code the information from the password file is represented using ToggleButtons, Labels, and Text widgets,
as shown in the figure.

10 ScrolledWindows and ScrollBars10.2.2 Application−defined Scrolling

259

Output of getusers.c

The components in the program do not have any functionality; the program is used solely to demonstrate how panels
of arbitrary widgets can be displayed in a ScrolledWindow. The widget hierarchy is irrelevant to the operation of the
ScrolledWindow. In this particular case, the ScrolledWindow is a child of the top−level shell. We could have used a
MainWindow widget in place of a ScrolledWindow; these two components are interchangeable because the
MainWindow is subclassed from the ScrolledWindow. See Chapter 4, The Main Window, for more details on how
the MainWindow widget fits into the design of an application.

We used arbitrary values for the width and height of the ScrolledWindow; they were chosen because they seemed to
work best. If you are using a ScrolledWindow with a number of other widgets in an interface, you do not need to
specify an initial size for the ScrolledWindow. Since the ScrolledWindow is extremely flexible, you can allow its
parent or its siblings to control its size. ScrolledWindows work well with PanedWindows because they can be
adjusted easily. However, the ScrolledWindow does not have a sensible default size, so you should provide an initial
geometry if the ScrolledWindow is going to control its own size. In this case, the size that you choose for the widget
should be based on the aesthetics of the data that is being displayed.

In the example, the child of the ScrolledWindow is the main_rc widget, which is a RowColumn that contains all of
the children that represent the password file information. After getusers() is called, the program loops through
each item in the array of UserInfo structures and creates a Form widget that contains a ToggleButton, two Labels,
and a Text widget. All of the Forms are stacked vertically on top of one another in the RowColumn. Once complete,
the user can scroll around and access any of the elements without the application having to support any of the
scrolling mechanisms because they are completely automated by the toolkit. In most cases, an application does not
need to do anything other than what we described in this section to take advantage of automatic scrolling.

10.3 Working Directly With ScrollBars

The ScrollBar is the backbone of the ScrolledWindow. Although the ScrollBar is a stand-alone widget that can be
created and manipulated without being the child of a ScrolledWindow, we are not going to discuss this usage because

10 ScrolledWindows and ScrollBars10.3 Working Directly With ScrollBars

260

it is not consistent with the Motif Style Guide. The kinds of things that you can do with a ScrollBar individually are no
more interesting than the sorts of things that you can do with them as children of ScrolledWindows, anyway. We are
going to discuss how to control a ScrollBar directly from an application in the context of a ScrolledWindow widget.
This information is useful if you want to monitor scrolling, if you want to fine−tune the way that automatic scrolling is
handled, or if you want to implement application−defined scrolling.

Before we begin, it is important to understand that the ScrollBar does not handle scrolling itself. The widget merely
reports scrolling actions through its callback routines. It is up to the internals of an application or a widget to install
callback procedures on the ScrollBar that adjust the work window appropriately. The ScrollBar manages its own
display in accordance with scrolling actions, so you do not need to update the ScrollBar's display unless the
underlying data of the object being scrolled changes. To change the display, you can set resources that are associated
with the different elements of the ScrollBar. the figure illustrates the design of a ScrollBar and identifies its elements.
This figure represents a vertical ScrollBar; a ScrollBar can also be oriented horizontally.

Elements of a ScrollBar

The appearance and behavior of a ScrollBar is directly related to the object that it scrolls. The relationship between the
ScrollBar and the object it scrolls is proportional, so that the size of the slider in the ScrollBar represents how much of
the object that is being scrolled is visible in the clip window. The size of the object being scrolled is broken down into
equally sized units; the size of the units is called the unit length. When the user clicks on one of the incremental
arrows (also called directional arrows), the ScrollBar scrolls in the direction indicated by the arrow in unit increments.
It is important to realize that the unit length is stored and interpreted internally by the object being scrolled; it is of no
interest to the ScrollBar itself, since it does not affect the display of the ScrollBar. While this value is not set on the
ScrollBar itself, it plays a key role in understanding how ScrollBars work.

All of the other resource values for the ScrollBar are measured in terms of the unit length. A Text widget might set its
unit length for the vertical ScrollBar to the height of the tallest character in the widget's font set, plus some margin for
whitespace on the top and bottom of the character. As a result, vertical scrolling adjusts the window so that the text is
always displayed without lines being partially obscured. However, it is the Text widget's responsibility to know the
unit length value. The unit length for the horizontal ScrollBar unit length might be the average width of the characters
in the font that is being used.

The value of a ScrollBar is the offset, measured in unit lengths, of the data in the clip window from the object's origin.
For example, if the top of the clip window displays the fourth line of text in a Text widget, the ScrollBar is said to
have a value of 3, since it is offset from 0. Clicking and dragging the slider directly changes the ScrollBar's value to

10 ScrolledWindows and ScrollBars10.3 Working Directly With ScrollBars

261

an absolute number; clicking on either of the directional arrows changes the ScrollBar's value incrementally; clicking
in the scrolling region, but not on the slider itself changes the ScrollBar's value by page lengths. The value is
measured in units, not pixels.

The view length is the size of the viewable area (clip window), as measured in unit lengths. The vertical ScrollBar for
a Text widget that is displaying 15 lines of text would have a view length of 15. The horizontal ScrollBar's view
length would be the number of columns that the clip window can display.

The page length is measured in unit lengths and is usually one less than the view length. If the user scrolls the window
by a page increment, the first line from the old view is retained as the last line in the new view for visual reference
because otherwise, the user might lose her orientation.

10.3.1 Resources

the figure illustrates the relationship between the elements listed above and introduces the ScrollBar resources that
correspond to these values.

Conceptual relationship between a ScrollBar and the object it scrolls

The XmNincrement resource represents the number of units that the ScrollBar reports having scrolled when the user
clicks on its incremental arrows. The value for XmNincrement in the figure is 1 because each incremental scroll on
the vertical ScrollBar should scroll the text one line. Internally, the Text widget knows that the number of pixels
associated with XmNincrement is the height of a line. For an automatic ScrolledWindow, it is rare to set the
resource to any value other than 1.

10 ScrolledWindows and ScrollBars 10.3.1 Resources

262

The XmNpageIncrement resource specifies the number of units that the ScrollBar should report having scrolled
when the user moves the ScrollBar by a page. Again, the ScrollBar doesn't actually perform the scrolling, it just
reports the scrolling action. However, the ScrollBar does use this value to calculate the new visual position for the
slider within the scrolling area and to update its display. The application can use this value, multiplied by
pixels−per−unit, to determine the new data to display in the work window.

The XmNmaximum resource is the largest size, measured in unit increments, that the object can have. For the Text
widget shown above, the value for XmNmaximum is 9. The Motif Text widget sets its horizontal ScrollBar's
XmNmaximum to the number of characters in its widest visible line, rather than the widest of all of its lines. The
XmN-minimum resource is the smallest size, measured in unit increments, that the object will ever have. The
XmNsliderSize resource corresponds to the view length. The resource specifies the size of the clip window in unit
lengths. For example, in the figure, the clip window can display five lines, so XmNsliderSize is 5.

The XmNvalue is the number of units that the data in the clip window is offset from the beginning of the work
window. For example, if the Text widget has been scrolled down by four lines from the top, the value of the vertical
ScrollBar's XmNvalue resource would be 4.

the source code demonstrates how the vertical ScrollBar resources get their values from a typical ScrolledText object.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* simple_sb.c −− demonstrate the Scrollbar resource values from
 * a ScrolledText object. This is used as an introductory examination
 * of the resources used by Scrollbars.
 */
 #include <Xm/ScrolledW.h>
 #include <Xm/RowColumn.h>
 #include <Xm/PushBG.h>
 #include <Xm/Text.h>

 /* print the "interesting" resource values of a scrollbar */
 void
 get_sb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget scrollbar = (Widget) client_data;
 int increment=0, maximum=0, minimum=0;
 int page_incr=0, slider_size=0, value=0;

 XtVaGetValues (scrollbar,
 XmNincrement, &increment,
 XmNmaximum, &maximum,
 XmNminimum, &minimum,
 XmNpageIncrement, &page_incr,
 XmNsliderSize, &slider_size,
 XmNvalue, &value,
 NULL);
 printf ("increment=%d, max=%d, min=%d, page=%d, slider=%d, value=%d0,
 increment, maximum, minimum, page_incr, slider_size, value);
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, text_w, pb, sb;

10 ScrolledWindows and ScrollBars 10.3.1 Resources

263

 XtAppContext app;
 Arg args[10];
 int n = 0;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 /* RowColumn contains ScrolledText and PushButton */
 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel, NULL);

 XtSetArg (args[n], XmNrows, 10); n++;
 XtSetArg (args[n], XmNcolumns, 80); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNscrollHorizontal, False); n++;
 XtSetArg (args[n], XmNwordWrap, True); n++;
 text_w = XmCreateScrolledText (rowcol, "text_w", args, n);
 XtManageChild (text_w);

 /* get the scrollbar from ScrolledWindow associated with Text widget */
 XtVaGetValues (XtParent (text_w), XmNverticalScrollBar, &sb, NULL);

 /* provide a pushbutton to obtain the scrollbar's resource values */
 pb = XtVaCreateManagedWidget ("Print ScrollBar Values",
 xmPushButtonGadgetClass, rowcol, NULL);
 XtAddCallback (pb, XmNactivateCallback, get_sb, sb);

 XtManageChild (rowcol);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

This program simply displays a ScrolledText object and a PushButton. The ScrolledText object does not contain any
text by default; you can cut and paste some text into the object. The graphical output of the program is displayed in the
figure.

Output of simple_sb.c

10 ScrolledWindows and ScrollBars 10.3.1 Resources

264

When the PushButton is activated, it retrieves some resource values from the vertical ScrollBar of the Text widget's
ScrolledWindow. These values are output to stdout. The following output shows some possible values for the different
resources:

 increment=1, max=12, min=0, page=9, slider=10, value=0
 increment=1, max=12, min=0, page=9, slider=10, value=1
 increment=1, max=25, min=0, page=9, slider=10, value=6
 increment=1, max=25, min=0, page=9, slider=10, value=12
 increment=1, max=25, min=0, page=9, slider=10, value=15

The value for XmNincrement is always 1, which indicates that the incremental arrow buttons scroll the text by one
unit in either direction. The value for XmNmaximum changes according to the number of lines of text that there are in
the window. The value of XmN-minimum is always 0 because this object can have as few as zero lines of text.

The values for XmNsliderSize and XmNpageIncrement are 10 and 9, respectively. The values never changed
because the ScrolledWindow was not resized. If it had been, the slider size and page increment values would have
changed to match the new number of lines displayed in the window. The page increment is one less than the number
of lines that can be displayed in the clip window, so that if the user scrolls by a page, the new view contains at least
one of the previously−viewed lines for reference.

The value for XmNvalue varies depending on the line that is displayed at the top of the clip window. If the beginning
of the text is displayed, XmNvalue is 0. As the user scrolls through the text, the value for XmNvalue increases or
decreases, but it is always a positive value.

Incidentally, you can adjust these resource values to get some different results. For example, you could set the
XmNincrement resource to 2 in order to modify the number of lines that are scrolled when the user selects the
incremental arrows. However, you should not change these resources arbitrarily, as you could really confuse the user.

As mentioned at the beginning of this section, the most important thing to remember about the ScrollBar widget is that
it does not cause any actual scrolling of the object in the work window. The widget merely reports scrolling activity
through its callback routines. When scrolling occurs, it is the callback routines that are responsible for modifying the
data in the work window, by adjusting elements or redrawing the image. The ScrollBar updates its own display
according to the scrolling action. If the widget or the application that owns the callback routines fails to modify the
display, the user will see an inconsistency between the ScrollBar display and the data in the clip window.

10.3.2 Orientation

Two ScrollBar resources that are closely related are XmNorientation and XmN-processingDirection.
These resources specify the horizontal or vertical orientation of the ScrollBar and its normal processing direction. The
value for XmNorientation can be either XmHORIZONTAL or XmVERTICAL. When a ScrollBar is oriented
horizontally, the normal processing direction for it is such that the minimum value is on the left and the maximum is
on the right. When the orientation is vertical, the minimum is on the bottom and the maximum is on the top. You can
change the processing direction using the XmN-processingDirection resource. This resource can have the
following values:

 XmMAX_ON_LEFT
 XmMAX_ON_RIGHT
 XmMAX_ON_TOP
 XmMAX_ON_BOTTOM

These values only need to be changed when the user's environment is such that the natural language for the locale is
read from right−to−left. In this case, The XmNscrollBarPlacement resource for the ScrolledWindow needs to be

10 ScrolledWindows and ScrollBars 10.3.2 Orientation

265

changed to match the processing direction. This resource can have the following values:

 XmTOP_LEFT
 XmTOP_RIGHT
 XmBOTTOM_LEFT
 XmBOTTOM_RIGHT

10.3.3 Callback Routines

The callback routines associated with the ScrollBar are its only links into the internal mechanisms that actually scroll
the data. You can use these callback routines in various contexts, depending on what you want to accomplish. For
example, you can monitor scrolling in an automatic or semi−automatic ScrolledWindow, such as a ScrolledText or
ScrolledList object. These two activities are identical when it comes to the implementation of what we are about to
describe. You can also implement application−defined scrolling, which requires intimate knowledge of the internals of
the object being scrolled.

There are different parts of a ScrollBar that the user can manipulate to cause a scrolling action. In fact, each part of the
ScrollBar has a separate callback routine associated with it. These callback routines are used both to monitor
automatic (or semi−automatic) scrolling and to implement application−defined scrolling. As with all Motif callbacks,
the callback routines take the form of an XtCallbackProc. All of the ScrollBar callbacks pass a structure of type
XmScrollBarCallbackStruct for the third parameter. This structure takes the following form:

 typedef struct {
 int reason;
 XEvent *event;
 int value;
 int pixel;
 } XmScrollBarCallbackStruct;

The reason field specifies the scrolling action performed by the user. Each callback has a corresponding reason that
indicates the action. lists the callback name, reason, and scrolling action for each ScrollBar callback resource. tab(@),
linesize(2); l | l | l lp9fCW | lp9fCW | lw(1.7i). Resource Name@Reason@Action
_
XmNincrementCallback@XmCR_INCREMENT@T{ Top or right directional arrow clicked T}
XmNdecrementCallback@XmCR_DECREMENT@T{ Bottom or left directional arrow clicked T}
XmNpageIncrementCallback@XmCR_PAGE_INCREMENT@T{ Area above or right of slider clicked T}
XmNpageDecrementCallback@XmCR_PAGE_DECREMENT@T{ Area below or left of slider clicked T}
XmNtoTopCallback@XmCR_TO_TOP@T{ Top or right directional arrow CTRL−clicked T}
XmNtoBottomCallback@XmCR_TO_BOTTOM@T{ Bottom or left directional arrow CTRL−clicked T}
XmNdragCallback@XmCR_DRAG@T{ Slider dragged T}
XmNvalueChangedCallback@XmCR_VALUE_CHANGED@T{ Value changed (see explanation) T}
_ The scrolling action that invokes the various increment and decrement callbacks depends on the value of the
XmNprocessingDirection resource; the table shows the actions for a left−to−right environment. The
XmNvalueChangedCallback is invoked when the user releases the mouse button after dragging the slider. The
callback is also invoked for any of the other scrolling actions if the corresponding callback resource is not set, with the
exception of the XmNdragCallback. This feature is convenient for cases where you are handling your own
scrolling and you are not concerned with the type of scrolling the user invoked.

The value field of the callback structure indicates the new position of the ScrollBar. This value can range from
XmNminimum to XmNmaximum. The pixel field indicates the x or y coordinate of the mouse location relative to the
origin of the ScrollBar for the XmNtoTopCallback, XmNtoBottomCallback, and XmNdragCallback
routines. The origin is the top of a vertical ScrollBar or the left side of a horizontal ScrollBar, regardless of the value

10 ScrolledWindows and ScrollBars 10.3.3 Callback Routines

266

of XmNprocessingDirection.

the source code demonstrates how a callback routine can be hooked up to each of the callback resources to allow you
to monitor the scrolling in a List widget more precisely. For Text and List widgets, you really should not be using the
callback routines to change the default scrolling behavior. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4.

 /* monitor_sb.c −− demonstrate the ScrollBar callback routines by
 * monitoring the ScrollBar for a ScrolledList. Functionally, this
 * program does nothing. However, by tinkering with the Scrolled
 * List and watching the output from the ScrollBar's callback routine,
 * you'll see some interesting behavioral patterns. By interacting
 * with the *List* widget to cause scrolling, the ScrollBar's callback
 * routine is never called. Thus, monitoring the scrolling actions
 * of a ScrollBar should not be used to keep tabs on exactly when
 * the ScrollBar's value changes!
 */
 #include <Xm/List.h>

 /* print the interesting resource values of a scrollbar */
 void
 scroll_action(scrollbar, client_data, call_data)
 Widget scrollbar;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmScrollBarCallbackStruct *cbs =
 (XmScrollBarCallbackStruct *) call_data;

 printf ("cbs−>reason: %s, cbs−>value = %d, cbs−>pixel = %d0,
 cbs−>reason == XmCR_DRAG? "drag" :
 cbs−>reason == XmCR_VALUE_CHANGED? "value changed" :
 cbs−>reason == XmCR_INCREMENT? "increment" :
 cbs−>reason == XmCR_DECREMENT? "decrement" :
 cbs−>reason == XmCR_PAGE_INCREMENT? "page increment" :
 cbs−>reason == XmCR_PAGE_DECREMENT? "page decrement" :
 cbs−>reason == XmCR_TO_TOP? "top" :
 cbs−>reason == XmCR_TO_BOTTOM? "bottom" : "unknown",
 cbs−>value, cbs−>pixel);
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, list_w, sb;
 XtAppContext app;
 char *items = "choice0, choice1, choice2, choice3, choice4, choice5, choice6, choice7, choice8, choice9, choice10, choice11, choice12, choice13, choice14";

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtAppInitialize(&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL, 0);

 list_w = XmCreateScrolledList (toplevel, "list_w", NULL, 0);
 XtVaSetValues (list_w,
 /* Rather than convert the entire list of items into an array
 * of compound strings, let's just let Motif's type converter
 * do it for us and save lots of effort (altho not much time).
 */

10 ScrolledWindows and ScrollBars 10.3.3 Callback Routines

267

 XtVaTypedArg, XmNitems, XmRString, items, strlen (items)+1,
 XmNitemCount, 15,
 XmNvisibleItemCount, 5,
 NULL);
 XtManageChild (list_w);

 /* get the scrollbar from ScrolledWindow associated with Text widget */
 XtVaGetValues (XtParent (list_w), XmNverticalScrollBar, &sb, NULL);
 XtAddCallback (sb, XmNvalueChangedCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNdragCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNincrementCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNdecrementCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNpageIncrementCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNpageDecrementCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNtoTopCallback, scroll_action, NULL);
 XtAddCallback (sb, XmNtoBottomCallback, scroll_action, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The program displays a simple ScrolledList that contains 15 entries, as shown in the figure.

Output of monitor_sb.c

The entries in the List are not important; the way that the ScrollBar reacts to the user's interaction is what is
interesting. The following output shows what happens when the user scrolls the List:

 cbs−>reason: increment, cbs−>value = 1, cbs−>pixel = 0
 cbs−>reason: page increment, cbs−>value = 5, cbs−>pixel = 0
 cbs−>reason: drag, cbs−>value = 6, cbs−>pixel = 46
 cbs−>reason: drag, cbs−>value = 7, cbs−>pixel = 50
 cbs−>reason: value changed, cbs−>value = 7, cbs−>pixel = 50
 cbs−>reason: decrement, cbs−>value = 6, cbs−>pixel = 0
 cbs−>reason: top, cbs−>value = 0, cbs−>pixel = 11

If you use the keyboard to select elements or scroll around in the list, you'll notice that the callbacks for the ScrollBar
are not invoked because the List widget is taking all of the keyboard events from the ScrollBar. Like any other widget,
the ScrollBar can receive keyboard events, and it even has translations to map certain key sequences to scrolling
actions. However, the List widget sets XmNtraversalOn to False for the ScrollBar, so that the List can process
its own keyboard actions, some of which scroll the window. The Text widget does the same thing with its ScrollBars.
As a result, there is a limit to what you can accomplish by monitoring ScrollBar actions on semi−automatic scrolling
objects like List and Text widgets.

10 ScrolledWindows and ScrollBars 10.3.3 Callback Routines

268

10.4 Implementing True Application−defined Scrolling

In this section, we pull together what we've learned in this chapter and put it to work to implement
application−defined scrolling. We are going to use an example that displays a large number of individual bitmaps in a
ScrolledWindow, so that the user can view all of the bitmaps by scrolling the window. The intent is to make the
appearance and functionality of the ScrolledWindow mimic the automatic scrolling mode as much as possible.

There are actually several ways to go about writing this program, depending on the constraints that we impose. The
simplest method is to render each bitmap into one large pixmap and use that pixmap as the XmNlabelPixmap for a
Label widget. The Label widget can then be used as the work window for an automatic ScrolledWindow. This design
is similar to most of the other examples of ScrolledWindows used throughout the book. However, we want to add a
constraint such that each incremental scrolling action causes the display to shift by one bitmap cell, so that the top and
left sides of the viewport always show a full bitmap. In other words, no partially−displayed bitmaps are allowed.
Furthermore, when the user drags the slider, we want the display to scroll in cell−increments, not pixel−by−pixel.

The constraints that we just described define the behavior that the List and Text widgets use for their own displays.
Like those widgets, our example program has a conceptual unit size that is represented by the object being scrolled.
For the Text and List widgets, the unit size is the height and width of the font used by the entries. For our bitmap
viewer, the heights and widths of the bitmaps vary more dramatically than the characters in a font, so for consistency,
the unit size is set to the largest of all of the bitmaps. The design of our program is based on the same principles used
by the ScrolledWindow's automatic scrolling method. Only in this case, we are going to do the work ourselves. The
reason that we need to use application−defined scrolling is that the automatic scrolling method cannot support the
scrolling constraints described above; there is no way to change the number of pixels per scrolling unit with an
automatic ScrolledWindow.

In our implementation, the work window is a DrawingArea widget whose size is constrained by the size of the
viewport in the ScrolledWindow. Initially, the ScrolledWindow sizes itself to the size of the DrawingArea widget, but
once the program is running, the size of the DrawingArea is changed by the ScrolledWindow as it is resized. The
bitmaps are rendered into a large pixmap, which is rendered into the DrawingArea in connection with scrolling
actions. The offset of the pixmap and how much of it is copied into the DrawingArea is controlled by the application,
following the same algorithm that the ScrolledWindow uses in automatic scrolling mode. The only difference is that
we can adjust for the pixels−per−unit value, whereas the automatic ScrolledWindow is only aware of single−pixel
units.

Proper scrolling is not a particularly difficult problem to solve, as it only involves simple arithmetic. The real problem
is handling the case where the user or the application causes the ScrolledWindow to resize, since this action changes
all of the variables in the calculation. When resizing happens, the ScrolledWindow passes that resizing onto the
DrawingArea widget, which must recalculate its size and update the ScrollBar resources so that the display and the
graphic representation match. Basically, the program has to solve four independent problems:

Read the bitmaps and load them into a sufficiently large pixmap.•
Create the ScrolledWindow, a DrawingArea widget, and two ScrollBars; the program must initialize each of
these widgets' resources so that the ratio between their sizes and the size of the pixmap is consistent.

•

Set up a callback routine for the ScrollBars to respond to scrolling actions.•
Provide a callback routine for the DrawingArea widget's XmNresizeCallback that updates all of the
widgets' resources according to the new ratio between the widgets and the pixmap.

•

Although each of these problems has a simple solution, when combined the general solution becomes quite complex.
Rather than trying to solve each problem individually, a well−designed application integrates the solutions to the
problems into a single, elegant design. the source code demonstrates our implementation of the bitmap viewer.

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

269

Although the program is quite long, you can follow along with the comments embedded in the code to understand
what is going on. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4.

 /* app_scroll.c − Displays bitmaps specified on the command line. All
 * bitmaps are drawn into a pixmap, which is rendered into a DrawingArea
 * widget, which is used as the work window for a ScrolledWindow. This
 * method is only used to demonstrate application−defined scrolling for
 * the motif ScrolledWindow. Automatic scrolling is much simpler, but
 * does not allow the programmer to impose incremental scrolling units.
 *
 * The bitmaps are displayed in an equal number of rows and columns if
 * possible.
 *
 * Example:
 * app_scroll /usr/include/X11/bitmaps/*
 */

 #include <stdio.h>
 #include <strings.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/DrawingA.h>
 #include <Xm/ScrollBar.h>

 #ifdef max /* just in case−−we don't know, but these are commonly set */
 #undef max /* by arbitrary unix systems. Also, we cast to int! */
 #endif
 /* redefine "max" and "min" macros to take into account "unsigned" values */
 #define max(a,b) ((int)(a)>(int)(b)?(int)(a):(int)(b))
 #define min(a,b) ((int)(a)<(int)(b)?(int)(a):(int)(b))

 /* don't accept bitmaps larger than 100x100 .. This value is arbitrarily
 * chosen, but is sufficiently large for most images. Handling extremely
 * large bitmaps would eat too much memory and make the interface awkward.
 */
 #define MAX_WIDTH 100
 #define MAX_HEIGHT 100

 typedef struct {
 char *name;
 int len; /* strlen(name) */
 unsigned int width, height;
 Pixmap bitmap;
 } Bitmap;

 /* get the integer square root of n −− used to calculate an equal
 * number of rows and colums for a given number of elements.
 */
 int_sqrt(n)
 register int n;
 {
 register int i, s = 0, t;
 for (i = 15; i >= 0; i−−) {
 t = (s | (1L << i));
 if (t * t <= n)
 s = t;
 }
 return s;
 }

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

270

 /* Global variables */
 Widget drawing_a, vsb, hsb;
 Pixmap pixmap; /* used as the image for DrawingArea widget */
 Display *dpy;
 Dimension view_width = 300, view_height = 300;
 int rows, cols;
 unsigned int cell_width, cell_height;
 unsigned int pix_hoffset, pix_voffset, sw_hoffset, sw_voffset;
 void redraw();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 extern char *strcpy();
 XtAppContext app;
 Widget toplevel, scrolled_w;
 Bitmap *list = (Bitmap *) NULL;
 GC gc;
 char *p;
 XFontStruct *font;
 int i = 0, total = 0;
 unsigned int bitmap_error;
 int j, k;
 void scrolled(), expose_resize();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtAppInitialize (&app, argv[0], NULL, 0,
 &argc, argv, NULL, NULL, 0);
 dpy = XtDisplay (toplevel);

 font = XLoadQueryFont (dpy, "fixed");

 /* load bitmaps from filenames specified on command line */
 while (*++argv) {
 printf ("Loading
 if (i == total) {
 total += 10; /* allocate bitmap structures in groups of 10 */
 if (!(list = (Bitmap *) XtRealloc (list, total * sizeof (Bitmap))))
 XtError ("Not enough memory for bitmap data");
 }
 /* read bitmap file using standard X routine. Save the resulting
 * image if the file isn't too big.
 */
 if ((bitmap_error = XReadBitmapFile (dpy, DefaultRootWindow (dpy),
 *argv, &list[i].width, &list[i].height, &list[i].bitmap,
 &j, &k)) == BitmapSuccess) {
 /* Get just the base filename (minus leading pathname)
 * We save this value for later use when we caption the bitmap.
 */
 if (p = rindex (*argv, '/'))
 p++;
 else
 p = *argv;
 if (list[i].width > MAX_WIDTH || list[i].height > MAX_HEIGHT) {
 printf ("%s: bitmap too big0, p);
 XFreePixmap (dpy, list[i].bitmap);
 continue;
 }
 list[i].len = strlen (p);

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

271

 list[i].name = p; /* we'll be getting it later */
 printf ("Size: %dx%d0, list[i].width, list[i].height);
 i++;
 } else {
 printf ("Couldn't load bitmap:
 switch (bitmap_error) {
 case BitmapOpenFailed : puts ("Open failed."); break;
 case BitmapFileInvalid : puts ("Bad file format."); break;
 case BitmapNoMemory : puts ("Not enough memory."); break;
 }
 }
 }
 if ((total = i) == 0) {
 puts ("Couldn't load any bitmaps.");
 exit (1);
 }
 printf ("Total bitmaps loaded: %d0, total);
 /* calculate size for pixmap by getting the dimensions of each. */
 printf ("Calculating sizes for pixmap..."), fflush (stdout);
 for (i = 0; i < total; i++) {
 if (list[i].width > cell_width)
 cell_width = list[i].width;
 if (list[i].height > cell_height)
 cell_height = list[i].height;
 /* the bitmap's size is one thing, but its caption may exceed it */
 if ((j = XTextWidth (font, list[i].name, list[i].len)) > cell_width)
 cell_width = j;
 }
 /* compensate for font in the vertical dimension; add a 6 pixel padding */
 cell_height += 6 + font−>ascent + font−>descent;
 cell_width += 6;
 cols = int_sqrt (total);
 rows = (total + cols−1)/cols;

 printf ("Creating pixmap area of size %dx%d (%d rows, %d cols)0,
 cols * cell_width, rows * cell_height, rows, cols);

 /* Create a single, 1−bit deep pixmap */
 if (!(pixmap = XCreatePixmap (dpy, DefaultRootWindow (dpy),
 cols * cell_width + 1, rows * cell_height + 1, 1)))
 XtError ("Can't Create pixmap");

 if (!(gc = XCreateGC (dpy, pixmap, NULL, 0)))
 XtError ("Can't create gc");
 XSetForeground(dpy, gc, 0); /* 1−bit deep pixmaps use 0 as background */
 /* Clear the pixmap by setting the entire image to 0's */
 XFillRectangle (dpy, pixmap, gc, 0, 0,
 cols * cell_width, rows * cell_height);
 XSetForeground (dpy, gc, 1); /* Set the foreground to 1 (1−bit deep) */
 XSetFont (dpy, gc, font−>fid); /* to print bitmap filenames (captions) */

 /* Draw the grid lines between bitmaps */
 for (j = 0; j <= rows * cell_height; j += cell_height)
 XDrawLine (dpy, pixmap, gc, 0, j, cols * cell_width, j);
 for (j = 0; j <= cols * cell_width; j += cell_width)
 XDrawLine (dpy, pixmap, gc, j, 0, j, rows*cell_height);

 /* Draw each of the bitmaps into the big picture */
 for (i = 0; i < total; i++) {
 int x = cell_width * (i % cols);
 int y = cell_height * (i / cols);

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

272

 XDrawString (dpy, pixmap, gc, x + 5, y + font−>ascent,
 list[i].name, list[i].len);
 XCopyArea (dpy, list[i].bitmap, pixmap, gc,
 0, 0, list[i].width, list[i].height,
 x + 5, y + font−>ascent + font−>descent);
 /* Once we copy it into the big picture, we don't need the bitmap */
 XFreePixmap (dpy, list[i].bitmap);
 }
 XtFree (list); /* don't need the array of structs anymore */
 XFreeGC (dpy, gc); /* nor do we need this GC */

 /* Create automatic Scrolled Window */
 scrolled_w = XtVaCreateManagedWidget ("scrolled_w",
 xmScrolledWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAPPLICATION_DEFINED, /* default values */

XmNvisualPolicy, XmVARIABLE, /* specified for clarity */ NULL); /* Create a drawing area as a child of the
ScrolledWindow. * The DA's size is initialized (arbitrarily) to view_width and * view_height. The ScrolledWindow
will expand to this size. */ drawing_a = XtVaCreateManagedWidget ("drawing_a", xmDrawingAreaWidgetClass,
scrolled_w, XmNwidth, view_width, XmNheight, view_height, NULL); XtAddCallback (drawing_a,
XmNexposeCallback, expose_resize, NULL); XtAddCallback (drawing_a, XmNresizeCallback, expose_resize,
NULL); /* Application−defined ScrolledWindows won't create their own * ScrollBars. So, we create them ourselves
as children of the * ScrolledWindow widget. The vertical ScrollBar's maximum size is * the number of rows that exist
(in unit values). The horizontal * ScrollBar's maximum width is represented by the number of columns. */ vsb =
XtVaCreateManagedWidget ("vsb", xmScrollBarWidgetClass, scrolled_w, XmNorientation, XmVERTICAL,
XmNmaximum, rows, XmNsliderSize, min (view_height / cell_height, rows), XmNpageIncrement, max
((view_height / cell_height) − 1, 1), NULL); if (view_height / cell_height > rows) sw_voffset = (view_height − rows *
cell_height) / 2; hsb = XtVaCreateManagedWidget ("hsb", xmScrollBarWidgetClass, scrolled_w, XmNorientation,
XmHORIZONTAL, XmNmaximum, cols, XmNsliderSize, min (view_width / cell_width, cols), XmNpageIncrement,
max ((view_width / cell_width) − 1, 1), NULL); if (view_width / cell_width > cols) sw_hoffset = (view_width − cols
* cell_width) / 2; /* Allow the ScrolledWindow to initialize itself accordingly...*/ XmScrolledWindowSetAreas
(scrolled_w, hsb, vsb, drawing_a); /* use same callback for both ScrollBars and all callback reasons */
XtAddCallback (vsb, XmNvalueChangedCallback, scrolled, XmVERTICAL); XtAddCallback (hsb,
XmNvalueChangedCallback, scrolled, XmHORIZONTAL); XtAddCallback (vsb, XmNdragCallback, scrolled,
XmVERTICAL); XtAddCallback (hsb, XmNdragCallback, scrolled, XmHORIZONTAL); XtRealizeWidget
(toplevel); XtAppMainLoop (app); } /* React to scrolling actions. Reset position of ScrollBars; call redraw() * to do
actual scrolling. cbs−>value is ScrollBar's new position. */ void scrolled(scrollbar, client_data, call_data) Widget
scrollbar; XtPointer client_data; XtPointer call_data; { int orientation = (int) client_data; /* XmVERTICAL or
XmHORIZONTAL */ XmScrollBarCallbackStruct *cbs = (XmScrollBarCallbackStruct *) call_data; if (orientation
== XmVERTICAL) { pix_voffset = cbs−>value * cell_height; if (((rows * cell_height) − pix_voffset) > view_height)
XClearWindow (dpy, XtWindow (drawing_a)); } else { pix_hoffset = cbs−>value * cell_width; if (((cols *
cell_width) − pix_hoffset) > view_width) XClearWindow (dpy, XtWindow (drawing_a)); } redraw (XtWindow
(drawing_a)); } /* This function handles both expose and resize (configure) events. * For XmCR_EXPOSE, just call
redraw() and return. For resizing, * we must calculate the new size of the viewable area and possibly * reposition the
pixmap's display and position offsets. Since we * are also responsible for the ScrollBars, adjust them accordingly. */
void expose_resize(drawing_a, client_data, call_data) Widget drawing_a; XtPointer client_data; XtPointer call_data; {
Dimension new_width, new_height, oldw, oldh; Boolean do_clear = False; XmDrawingAreaCallbackStruct *cbs =
(XmDrawingAreaCallbackStruct *) call_data; if (cbs−>reason == XmCR_EXPOSE) { redraw (cbs−>window);
return; } oldw = view_width; oldh = view_height; /* Unfortunately, the cbs−>event field is NULL, so we have to have
* get the size of the drawing area manually. A misdesign of * the DrawingArea widget−−not a bug (technically). */
XtVaGetValues (drawing_a, XmNwidth, &view_width, XmNheight, &view_height, NULL); /* Get the size of the
viewable area in "units lengths" where * each unit is the cell size for each dimension. This prevents * rounding error
for the pix_voffset and pix_hoffset values later. */ new_width = view_width / cell_width; new_height = view_height /

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

273

cell_height; /* When the user resizes the frame bigger, expose events are generated, * so that's not a problem, since
the expose handler will repaint the * whole viewport. However, when the window resizes smaller, no * expose event
is generated. The window does not need to be * redisplayed if the old viewport was smaller than the pixmap. * (The
existing image is still valid−−no redisplay is necessary.) * The window WILL need to be redisplayed if: * 1) new view
size is larger than pixmap (pixmap needs to be centered). * 2) new view size is smaller than pixmap, but the OLD
view size was * larger than pixmap. */ if ((int) new_height >= rows) { /* The height of the viewport is taller than the
pixmap, so set * pix_voffset = 0, so the top origin of the pixmap is shown, * and the pixmap is centered vertically in
viewport. */ pix_voffset = 0; sw_voffset = (view_height − rows * cell_height)/2; /* Case 1 above */ do_clear = True;
/* scrollbar is maximum size */ new_height = rows; } else { /* Pixmap is larger than viewport, so viewport will be
completely * redrawn on the redisplay. (So, we don't need to clear window.) * Make sure upper side has origin of a
cell (bitmap). */ pix_voffset = min (pix_voffset, (rows−new_height) * cell_height); sw_voffset = 0; /* no centering is
done */ /* Case 2 above */ if (oldh > rows * cell_height) do_clear = True; } XtVaSetValues (vsb, XmNsliderSize,
max (new_height, 1), XmNvalue, pix_voffset / cell_height, XmNpageIncrement, max (new_height−1, 1), NULL); /*
identical to vertical case above */ if ((int) new_width >= cols) { /* The width of the viewport is wider than the
pixmap, so set * pix_hoffset = 0, so the left origin of the pixmap is shown, * and the pixmap is centered horizontally
in viewport. */ pix_hoffset = 0; sw_hoffset = (view_width − cols * cell_width)/2; /* Case 1 above */ do_clear = True;
/* scrollbar is maximum size */ new_width = cols; } else { /* Pixmap is larger than viewport, so viewport will be
completely * redrawn on the redisplay. (So, we don't need to clear window.) * Make sure left side has origin of a cell
(bitmap). */ pix_hoffset = min (pix_hoffset, (cols−new_width)*cell_width); sw_hoffset = 0; /* Case 2 above */ if
(oldw > cols * cell_width) do_clear = True; } XtVaSetValues (hsb, XmNsliderSize, max (new_width, 1), XmNvalue,
pix_hoffset / cell_width, XmNpageIncrement, max (new_width−1, 1), NULL); if (do_clear) { /* XClearWindow()
doesn't generate an ExposeEvent */ XClearArea (dpy, cbs−>window, 0, 0, 0, 0, True); /* all 0's means the whole
window */ } } void redraw(window) Window window; { static GC gc; /* static variables are *ALWAYS* initialized
to NULL */ if (!gc) { /* !gc means that this GC hasn't yet been created. */ /* We create our own gc because the other
one is based on a 1−bit * bitmap and the drawing area window might be color (multiplane). * Remember, we're
rendering a multiplane pixmap, not the original * single−plane bitmaps! */ gc = XCreateGC (dpy, window, NULL, 0);
XSetForeground (dpy, gc, BlackPixelOfScreen (XtScreen (drawing_a))); XSetBackground (dpy, gc,
WhitePixelOfScreen (XtScreen (drawing_a))); } if (DefaultDepthOfScreen (XtScreen (drawing_a)) > 1) XCopyPlane
(dpy, pixmap, window, gc, pix_hoffset, pix_voffset, view_width, view_height, sw_hoffset, sw_voffset, 1L); else
XCopyArea (dpy, pixmap, window, gc, pix_hoffset, pix_voffset, view_width, view_height, sw_hoffset, sw_voffset); }
The bitmaps to be displayed are specified on the command line, as shown in the following command:

 % app_scroll /usr/include/X11/bitmaps/*

The output of this command is shown in the figure.

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

274

Output of app_scroll.c

The program begins by loading the bitmaps into an array of Bitmap structures that are specially designed for this
application. Since each bitmap can have a different size, we save all of the information about them for comparison
after they are all loaded. At that time, the largest bitmap is found and its size is used as the cell size for the viewer.
The pixmap is created with a single−plane (a bitmap), since color is not used to render the standard X11 bitmaps when
they are created. This pixmap is used as a virtual work window; its contents are rendered into the real DrawingArea
work window.

After the bitmaps are loaded, the ScrolledWindow and DrawingArea are created. The DrawingArea has
XmNexposeCallback and XmNresizeCallback callbacks installed so that the pixmap can be rendered or
repositioned within the DrawingArea at any time. Resizing does not change the pixmap, but it may cause its origin to
be repositioned relative to the DrawingArea widget. We create the ScrollBars explicitly, since they are not created
automatically when XmNscrollingPolicy is set to XmAPPLICATION_DEFINED. The ScrollBars are created as
children of the ScrolledWindow, as shown in the following fragment:

 vsb = XtVaCreateManagedWidget ("vsb",
 xmScrollBarWidgetClass, scrolled_w,
 XmNorientation, XmVERTICAL,
 XmNmaximum, rows,
 XmNsliderSize, min (view_height / cell_height, rows),
 XmNpageIncrement, max ((view_height / cell_height) − 1, 1),
 NULL);
 if (view_height / cell_height > rows)
 sw_voffset = (view_height − rows * cell_height) / 2;

The ScrollBars are initialized so that the XmNmaximum values are set to the number of rows and columns in the
pixmap. Similarly, XmNsliderSize is set to the number of bitmap cells that can fit in the viewport in the horizontal
and vertical dimensions. Internally, the application knows how many pixels each scrolling unit represents, since there
is no ScrollBar resource for this value. The variables sw_hoffset and sw_voffset are used when the pixmap is

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

275

smaller than the actual ScrolledWindow. In this case, the variables indicate the origin of the pixmap in the
DrawingArea, so that the pixmap appears centered, as shown in the figure.

Output of app_scroll.c when the viewport is larger than the pixmap

The call to XmScrolledWindowSetAreas() initializes the ScrolledWindow appropriately. This function assigns
the ScrollBars and the DrawingArea widget to internal variables within the ScrolledWindow, so that the widget
functions properly. While this call is opaque for automatic scrolling, it must be done for application−defined scrolling.

The ScrollBars are assigned a callback routine for the XmNvalueChangedCallback and XmNdragCallback
callbacks. The scrolled() routine handles all of the scrolling actions, including incremental and page scrolling,
that cause the value of the ScrollBar to change. We pass the values XmHORIZONTAL and XmVERTICAL as
client_data, so that the routine knows which of the two ScrollBars invoked it. The routine determines the portion
of the pixmap that should be rendered in the DrawingArea by calculating offsets into the pixmap. These offsets are
calculated by multiplying the value of the ScrollBar by the pixels−per−unit value for the pixmap.

Finally, the top−level widget is realized and the main loop is started. At this point, the DrawingArea is realized, so the
XmNexposeCallback is activated, which causes the DrawingArea to draw itself and display the first image of the
pixmap. The function expose_resize() handles both the Expose and ConfigureNotify (resize) events.
The function determines which event was delivered by checking the reason field of the callback structure passed to
the function. When the DrawingArea is resized, we need to adjust a number of resources so that the pixmap is scrolled
properly. For Expose events, no recalculation of variables is necessary, so all we need to do is redraw the display
using redraw().

The position at which the pixmap is rendered into the DrawingArea's window is somewhat complicated to calculate. If
the pixmap is larger than the clip window, the clip window acts as a view into the pixmap, so only a portion of the
pixmap can be seen. If the pixmap is smaller than the clip window, the entire pixmap can be seen, so the pixmap
should be centered in the middle of the viewable area. The application controls this behavior using a number of global

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

276

variables.

The view_width and view_height variables represent the dimensions of the ScrolledWindow, which are also
the dimensions of the DrawingArea window. The area specified by these values is the area of the pixmap that is going
to be copied into the window. The pix_hoffset and pix_voffset variables represent the horizontal and
vertical offsets into the pixmap when it is rendered into the DrawingArea. If the pixmap is larger than the clip
window, these values are calculated in the scrolled() callback routine when the user performs a scrolling action.
If the pixmap is smaller than the DrawingArea, these values are set to 0 because the origin of the pixmap is always
visible. The sw_hoffset and sw_voffset variables are used when the pixmap is smaller than the DrawingArea.
The values indicate the offsets into the DrawingArea where the entire pixmap is rendered so that it appears centered in
the viewport.

The redraw() routine depends on these variables being set. In order to maintain the values, the application monitors
the size of the DrawingArea. When a ConfigureNoti fy event occurs on the DrawingArea, the
expose_resize() callback routine is invoked. The routine gets the new dimensions of the DrawingArea so that it
can update the six variables mentioned above. Normally, we can get the new dimensions directly from the event
field of the callback structure. However, the DrawingArea widget invokes the XmNresizeCallback from within
the Resize() method, instead of from an action routine, so the callback does not have an XEvent structure
associated with it. All widget internals have methods that are invoked automatically by the X Toolkit Intrinsics and
are not associated with the translation tables normally used to handle events. Resize() is one such method. See
Volume Four, X Toolkit Intrinsics Programming Manual, for more information. Since the event field of the
callback structure is set to NULL, we have to get the window's size in another way. We use XtVaGetValues(), as
shown in the following code fragment:

 XtVaGetValues (drawing_a,
 XmNwidth, &view_width,
 XmNheight, &view_height,
 NULL);

Once we have the dimensions, we need to recalculate the value of the other four variables. Since our variables
represent pixel values, while the ScrollBar resources that we need to set use an abstract unit size, we must convert
between the two types of values using the cell_width and cell_height values. The variables new_width
and new_height represent the new viewport width and height in ScrollBar units.

If the new viewport height exceeds the number of rows in the pixmap, we know that the height of the viewport
exceeds the height of the pixmap. In this case, the value for sw_voffset is calculated to determine the offset that
causes the pixmap to be centered vertically in the viewport. Since the viewport needs to be completely redisplayed, we
set the local variable do_clear to True. We use this variable instead of calling XClearWindow() directly
because we may have to do it again later when we calculate the values for the horizontal ScrollBar. The value for
new_height is going to be used to set the XmN-sliderSize for the vertical ScrollBar, so we make sure that it
does not exceed its XmN-maximum value.

On the other hand, if the new viewport height does not exceed the total number of rows, we know that the pixmap is
larger than the viewport vertically. The pixmap is not going to be centered in the DrawingArea, so sw_voffset is
set to 0. pix_voffset is set to the minimum of its existing value and the difference between the total number of
rows and the new height of the viewport. If the viewport used to be bigger than the pixmap, but is now smaller, we
need to clear the window and do a complete redisplay. If the pixmap was bigger than the viewport and it still is, then
we do not need to clear the window because the current view is still accurate. The different between these two cases is
subtle and it is the sort of thing that you catch only when you test your program thoroughly.

After the calculations are performed, the application sets the XmNsliderSize, XmN-value, and

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

277

XmNpageIncrement resources for the vertical ScrollBar. The exact same calculations are done for the horizontal
dimension and the same resources are set on the horizontal ScrollBar. With these resources set, scrolling continues to
function properly when the DrawingArea is resized. When redraw() is called, it uses the global variables to copy
the relevant portion of the full pixmap directly into the DrawingArea. If the program is running on a color screen, the
routine uses XCopyPlane() because the DrawingArea cannot create a 1−bit deep window on a color screen. (Motif
widgets always create windows of the same depth as the screen on which they reside.) If the application is run on a
monochrome screen, the routine uses XCopyArea() . We determine the depth of the screen using
DefaultDepthOfScreen().

Incidentally, while we did not use it, XmScrollBarSetValues() could have been used to set the resources on the
ScrollBars. This function takes the following form:

 void
 XmScrollBarSetValues(widget, value, slider_size, increment,

page_increment, notify)
 Widget widget;
 int value;
 int slider_size;
 int increment;
 int page_increment;
 Boolean notify;

The notify parameter specifies whether you want the XmN-valueChangedCallback for the ScrollBar to be
invoked. Using this interface is probably slightly faster than using the XtVaSetValues() method, but only by a
small margin, so we chose to maintain consistency with our own style. The companion function for
XmScrollBarSetValues() is XmScrollBarGetValues(). This function retrieves the values from the
ScrollBar widget and takes the following form:

 void
 XmScrollBarGetValues(widget, value, slider_size, increment,

page_increment)
 Widget widget;
 int *value;
 int *slider_size;
 int *increment;
 int *page_increment;

Before closing this section, let's examine what the Text and List widgets do and compare it with what we have done in
the source code We stated earlier that while we mimic much of what these widgets do internally, the implementation
is quite different. The major difference is that we are fortunate enough to have all of the bitmaps loaded into a large,
statically−sized pixmap that we can render at will using the redraw() function. This function is clearly a
convenience, since it simply calls XCopyArea() or XCopyPlane() to copy the pixmap into the DrawingArea
using pre−calculated internal variables. The Text and List widgets do not have this luxury; they must redraw their
respective data directly into the work windows each time they need to redisplay.

If we were to implement the bitmap viewer using this technique, we would have to move the functionality of the main
for loop in main() into redraw() and calculate the location of each individual bitmap in the DrawingArea. This
process is quite painstaking and very error−prone. If you do not take into account multiple exposures, exposure
regions, and other low−level Xlib functionality, you might run into X performance issues. We didn't even take these
issues into account in our program. For example, our redraw() routine completely repaints the entire window for
every Expose event. Strictly speaking, repainting is inefficient and may not perform adequately for all applications,
especially graphic−intensive ones. To avoid this problem, you could come up with a generic set of routines to handle
exposures, so that of all your applications could use the same methodology, but that's the point of a toolkit.

10 ScrolledWindows and ScrollBars10.4 Implementing True Application−defined Scrolling

278

Let's take another look at the PG&E scenario that we discussed at the beginning of the chapter. As you recall, the
problem with that particular situation was that the database could retrieve 20% of the county (the work window), but
the graphic resolution was such that only 10% of it could be displayed at one time (the viewport). The fundamental
problem with the application−defined scrolling mode is that the work window cannot be a different size from the
viewport. However, we can work around this problem by complying with the restriction that the work window and
viewport are the same size, but we can use the enlarged pixmap idea from the source code to accomplish the task.
Each database query can be converted and rendered into a sufficiently large pixmap, which can then be rendered into
the work window as necessary. If the scrolling is small enough, another part of the pixmap can be rendered into the
work window, instead of performing a completely new database lookup.

10.5 Working With Keyboard Traversal in ScrolledWindows

As we described in Chapter 8, Manager Widgets, manager widgets play a significant role in handling keyboard
traversal mechanisms. As a manager, the ScrolledWindow supports keyboard traversal. However, one significant
difference is that the widgets in a ScrolledWindow may not be visible at all times. In Motif 1.1, the toolkit does not
provide a mechanism to allow keyboard traversal to widgets that are not visible. While it might be possible to
implement this feature, it certainly would not be an easy task. By default, the ScrolledWindow only allows the user to
traverse to widgets that are visible.

In Motif 1.2, there is a new callback for the ScrolledWindow that supports keyboard traversal in a ScrolledWindow.
The XmNtraverseObscuredCallback is invoked when the user attempts to traverse to a widget that is not
visible in a ScrolledWindow. If there is no routine specified for this callback, the keyboard traversal functionality is
the same as in Motif 1.1. An application can use the callback to cause the ScrolledWindow to make a widget visible,
so that it can receive the input focus. the source code shows the use of the XmNtraverseObscuredCallback.
This example uses functionality that is new in Motif 1.2, so it only works with the 1.2 version of the Motif toolkit.

 /* traversal.c −− demonstrate keyboard traversal in a ScrolledWindow
 * using the XmNtraverseObscuredCallback.
 */
 #include <Xm/PushB.h>
 #include <Xm/ToggleB.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/RowColumn.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, sw, rc;
 XtAppContext app;
 void traverse();
 int i;
 char name[10];

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 sw = XtVaCreateManagedWidget ("scrolled_w",
 xmScrolledWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 XtAddCallback (sw, XmNtraverseObscuredCallback, traverse, NULL);

10 ScrolledWindows and ScrollBars10.5 Working With Keyboard Traversal in ScrolledWindows

279

 /* RowColumn is the work window for the widget */
 rc = XtVaCreateWidget ("rc",
 xmRowColumnWidgetClass, sw,
 XmNorientation, XmHORIZONTAL,
 XmNpacking, XmPACK_COLUMN,
 XmNnumColumns, 10,
 NULL);

 for (i = 0; i < 10; i++) {
 sprintf (name, "Toggle %d", i);
 XtVaCreateManagedWidget (name, xmToggleButtonWidgetClass, rc, NULL);
 sprintf (name, "Button %d", i);
 XtVaCreateManagedWidget (name, xmPushButtonWidgetClass, rc, NULL);
 }
 XtManageChild (rc);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 traverse(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmTraverseObscuredCallbackStruct *cbs =
 (XmTraverseObscuredCallbackStruct *) call_data;

 XmScrollVisible (widget, cbs−>traversal_destination, 10, 10);
 }

This program creates a bunch of ToggleButtons and PushButtons in a RowColumn widget that is the work area for a
ScrolledWindow. The traverse() routine is installed as the XmNtraverseObscuredCallback. The
call_data parameter is an XmTraverseObscuredCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Widget traversal_destination;
 XmTraversalDirection direction;
 } XmTraverseObscuredCallbackStruct;

The reason field contains the value XmCR_OBSCURED_TRAVERSAL. The traversal_destination field
specifies the widget that is to receive the input focus and direction specifies the direction of traversal. The
traverse() routine calls XmScrollVisible() to make the traversal_destination widget visible.
This routine takes the following form:

 void
 XmScrollVisible(scrollw, widget, hor_margin, ver_margin)
 Widget scrollw;
 Widget widget;
 Dimension hor_margin;
 Dimension ver_margin;

The scrollw parameter specifies the ScrolledWindow widget, while the widget parameter specifies the widget

10 ScrolledWindows and ScrollBars10.5 Working With Keyboard Traversal in ScrolledWindows

280

that is to be made visible. The hor_margin and ver_margin arguments indicate the margins that are used if the
viewport of the ScrolledWindow needs to be adjusted to make the widget visible. In early versions of the Motif 1.2
toolkit, there is a bug in XmScrollVisible() that may cause it to function incorrectly when the margins are set to
any value other than 0. If you run the program in the source code you can use the arrow keys to traverse all of the
widgets in the ScrolledWindow.

10.6 Summary

The ScrolledWindow provides a convenient interface for displaying large amounts of data when you have limited
screen real estate. For most situations, the automatic scrolling mode is all that you really need. In this mode, a
ScrolledWindow requires very little care and feeding. By installing callback routines on the ScrollBars, you can even
monitor the scrolling actions. However, there are some drawbacks to the automatic scrolling mode: all of the data
must be rendered into the work window widget and scrolling occurs in single−pixel increments. If the size of the work
window that you need is prohibitively large or if you need to support scrolling in other than single−pixel increments,
you must use application−defined scrolling.

As demonstrated in the source code there is quite a bit of work involved in supporting real application−defined
scrolling because of the different states in the relationship between the size of the work window and the underlying
data. You must be able to support not only the underlying data, but also the way it is rendered into the work window,
the ScrollBars, and all of the auxiliary variables required for the scrolling calculations. And that work is just to support
the scrolling functionality. When you introduce the complexity of a real application, there is a greater chance of a poor
design model. The xshowbitmap.c program in the Appendix, Additional Example Programs, is fundamentally the
same program as app_scroll.c, but it has been enhanced into more of a real−world program.

10.7 Exercises

The following exercises focus on the concepts and methods described in this chapter.

In Chapter 10, The DrawingArea Widget, the program color_draw.c used a ScrolledWindow to support a
DrawingArea widget that allows the user to draw different colored lines. Although this program uses an
automatic ScrolledWindow, the work window is constantly updated as new lines are drawn. However, the
lines are actually drawn into a background pixmap, rather than into the drawing area. The pixmap is copied
into the DrawingArea dynamically, which gives the illusion that the user is drawing directly into it. This
method of indirection can be used to provide a way for the user to have two different views into the same
pixmap. Write a program that uses two automatic ScrolledWindows and two DrawingArea widgets to draw
into a single pixmap.

•

The getusers.c example uses an automatic ScrolledWindow to display a manager widget that contains many
widgets and gadgets. Modify the program to use application−defined scrolling, so that the scrolling increment
for the vertical ScrollBar is the size of the height of one of the Forms. The Forms all have the same height.

•

10 ScrolledWindows and ScrollBars 10.6 Summary

281

11 The DrawingArea Widget

This chapter describes the Motif DrawingArea widget, which provides a canvas for interactive drawing. The chapter
does not try to teach Xlib drawing, but rather it highlights, with numerous code examples, the difficulties that may be
encountered when working with this widget. The chapter assumes some knowledge of Xlib. See Volume One, Xlib
Programming Manual, for additional information.

The DrawingArea widget provides a blank canvas for interactive drawing using basic Xlib drawing primitives. The
widget does no drawing of its own, nor does it define or support any Motif user−interface design style. Since it is
subclassed from the Manager widget class, the DrawingArea widget may also contain other widgets as children,
although there is no regimented layout policy. In short, the DrawingArea is a free−form widget that you can use for
interactive drawing or object placement when conventional user−interface rules do not apply.

The most intuitive use of the DrawingArea is for a drawing or painting program. Here, the user can interactively draw
geometric objects and paint arbitrary colors. Another interesting application demonstrated at a recent trade show used
a DrawingArea widget to display a map of the United States with dynamically−drawn line segments representing the
flight paths taken by airplanes. The actual airplanes were represented by PushButton widgets displaying pixmaps.
Each airplane icon moved dynamically along its flight path unless the user grabbed and moved it interactively in order
to change the flight path. Both of these examples demonstrate how certain applications require visual or interactive
interfaces that go beyond the scope of the structured interface provided by Motif.

In order to support the widest range of uses for the DrawingArea widget, the toolkit provides callback resources for
exposure, configure (resize), and input (button and key presses) events. Each of these callbacks allows you to install
very simple drawing routines without doing substantial event−handling of your own. Unfortunately, this level of
event−handling support is usually insufficient for most robust applications. As a result, most applications install direct
event handlers or action routines to manage user input. The free−form nature of the DrawingArea makes it one of the
few Motif widgets where you can do handle events at this level without risking non−compliance with the Motif Style
Guide. (Most Motif widgets either do not allow programmer−installed translations or (silently) accept only a few
override translations for fear that you might inadvertently interfere with Motif GUI specifications.)

If you are using a DrawingArea as a manager widget, there are two important things to keep in mind: translation tables
and widget layout management. As a Manager widget subclass, the DrawingArea inherits certain translation and
action tables that pass events to gadget children and handle tab group traversal. Because of the inherited translations,
you must be careful about application−specific translations that you may introduce into particular instances of the
DrawingArea. If you are planning to use the DrawingArea to contain children and to have those children follow the
standard Motif keyboard traversal motions, you must be careful not to override the existing translations.

However, if you need a manager widget in the conventional sense, you should probably choose something other than a
DrawingArea widget, since the widget has no geometry management policy of its own. The DrawingArea should
probably only be used to manage children when no structured widget layout policy is needed, as in the airline
application from the trade show. In this situation, the widget assumes the dual responsibility of managing children and
allowing for application−defined interaction. As a result, there are going to be some complexities and inconveniences
with event handling, since the application is trying to take advantage of both aspects of the widget simultaneously.

11.1 Creating a DrawingArea Widget

Applications that wish to create DrawingArea widgets must include the file <Xm/DrawingA.h>. To create a
DrawingArea widget, you can use the following call:

282

 Widget drawing_a;

 drawing_a = XtVaCreateManagedWidget ("name",
 xmDrawingAreaWidgetClass, parent,

resource−value−list,
 NULL);

The parent of a DrawingArea must be either some type of Shell or a manager widget. It is quite common to find a
DrawingArea widget as a child of a ScrolledWindow or a MainWindow, since drawing surfaces tend to be quite large,
or at least dynamic in their growth potential.

If the DrawingArea widget is to have children, you might want to follow the guidelines set forth in Chapter 8,
Manager Widgets, about creating the widget in an unmanaged state. The widget can be managed with a call to
XtManageChild() after its children have been created. We do not demonstrate this technique, since we are not
going to use the widget as a traditional manager and there is not going to be a great deal of parent−child interaction
involving geometry management.

11.2 Using DrawingArea Callback Functions

The DrawingArea widget provides virtually no visual resources and very few functional ones. The most important
resources are those that allow you to provide callback functions for handling expose, resize, and input events. The
DrawingArea is typically input−intensive and, unlike most of the other Motif widgets, requires the application to
provide all of the necessary redrawing.

The callback routine for the XmNexposeCallback is invoked whenever an Expose event is generated for the
widget. In this callback function, an application must repaint all or part of the contents of the DrawingArea widget. If
an application does not redraw the contents of the widget, it appears empty, as the widget is cleared automatically.
Similarly, the XmN-resizeCallback is called whenever a ConfigureNotify event occurs as a result of the
DrawingArea being resized. The generalized XmNinputCallback is invoked as a result of every keyboard and
button event except button motion events.

As discussed in Chapter 2, The Motif Programming Model, callback routines are invoked by internal action routines
that are an integral part of all Motif widgets. Translation tables are used to specify X event sequences that invoke the
action routines. Action functions typically invoke the appropriate application callback functions associated with the
widget's resources.

Most Motif widgets do not allow the application to override or replace their default translations; the input model that
allows the application to conform to the Motif specifications is not to be overridden by the application. However,
because of the free−form nature of the DrawingArea widget, you are free to override or replace the default translation
tables used for event−handling and notification without non−compliant behavior. If you install your own translation
tables, you can have your action routines invoke callback routines as is done by the existing DrawingArea actions, or
you can have your action functions do the drawing directly. For even tighter control over event−handling, you can
install event handlers at the X Toolkit Intrinsics level.

There are a number of techniques available for doing event management and we only demonstrate a few of them in
this chapter. The technique you choose is a matter of personal preference and the intended extensibility of your
application. Event handlers involve less overhead, but translations are user−configurable. Either approach provides
more flexibility than using the default translation table and callback resources of the DrawingArea. See Volume Four,
X Toolkit Intrinsics Programming Manual, for a detailed discussion of translation tables and action routines and how
they are associated with callback functions.

11 The DrawingArea Widget11.2 Using DrawingArea Callback Functions

283

11.2.1 Handling Input Events

Since the callback approach to event handling is the simplest, we'll begin by discussing that approach. the source code
shows an extremely simple drawing program that associates a line drawing function with the XmNinputCallback
resource. Pressing any of the pointer buttons marks the starting point of a line; releasing the button marks the
endpoint. You can only draw straight lines. Even though the default translation table for the DrawingArea widget
selects key events and these events are passed to the callback function, the callback function itself ignores them and
thus key events have no effect.

To demonstrate the complications inherent in using the DrawingArea widget as a manager, the program also displays
a PushButton gadget that clears the window. A single callback function, drawing_area_callback(), uses both
the reason and the event fields of the XmDrawingAreaCallbackStruct to determine whether to draw a line
or to clear the window.

This simple application draws directly into the DrawingArea widget; the contents of its window is not saved
anywhere. The program does not support redrawing, since its purpose is strictly to demonstrate the way input handling
can be managed using the XmNinputCallback. If the window is exposed due to the movement of other windows,
the contents of the window is not redrawn. A more realistic drawing application would need code to handle both
expose and resize actions. The current application simply clears the window on resize to further illustrate that the
DrawingArea does not retain what is in its window. XtSetLanguageProc() is only available in X11R5; there is
no corresponding function in X11R4.

 /* drawing.c −− extremely simple drawing program that introduces
 * the DrawingArea widget. This widget provides a window for
 * drawing and some callbacks for getting input and other misc
 * events. It's also a manager, so it can have children.
 * There is no geometry management, tho.
 */
 #include <Xm/DrawingA.h>
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, drawing_a, pb;
 XtAppContext app;
 XGCValues gcv;
 GC gc;
 void drawing_area_callback();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL,
 XmNwidth, 400,
 XmNheight, 300,
 NULL);

 /* Create a DrawingArea widget. */
 drawing_a = XtVaCreateWidget ("drawing_a",
 xmDrawingAreaWidgetClass, toplevel,
 NULL);
 /* add callback for all mouse and keyboard input events */
 XtAddCallback (drawing_a, XmNinputCallback, drawing_area_callback, NULL);

11 The DrawingArea Widget 11.2.1 Handling Input Events

284

 /* Since we're going to be drawing, we will be using Xlib routines
 * and therefore need a graphics context. Create a GC and attach
 * to the DrawingArea's XmNuserData to avoid having to make global
 * variable. (Avoiding globals is a good design principle to follow.)
 */
 gcv.foreground = BlackPixelOfScreen (XtScreen (drawing_a));
 gc = XCreateGC (XtDisplay (drawing_a),
 RootWindowOfScreen (XtScreen (drawing_a)), GCForeground, &gcv);
 XtVaSetValues (drawing_a, XmNuserData, gc, NULL);

 /* add a pushbutton the user can use to clear the canvas */
 pb = XtVaCreateManagedWidget ("Clear",
 xmPushButtonGadgetClass, drawing_a,
 NULL);
 /* if activated, call same callback as XmNinputCallback. */
 XtAddCallback (pb, XmNactivateCallback, drawing_area_callback, NULL);

 XtManageChild (drawing_a);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Callback routine for DrawingArea's input callbacks and the
 * PushButton's activate callback. Determine which it is by
 * testing the cbs−>reason field.
 */
 void
 drawing_area_callback(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Position x, y;
 XmDrawingAreaCallbackStruct *cbs =
 (XmDrawingAreaCallbackStruct *) call_data;
 XEvent *event = cbs−>event;

 if (cbs−>reason == XmCR_INPUT) {
 /* activated by DrawingArea input event −− draw lines.
 * Button Down events anchor the initial point and Button
 * Up draws from the anchor point to the button−up point.
 */
 if (event−>xany.type == ButtonPress) {
 /* anchor initial point (i.e., save its value) */
 x = event−>xbutton.x;
 y = event−>xbutton.y;
 } else if (event−>xany.type == ButtonRelease) {
 /* draw full line; get GC and use in XDrawLine() */
 GC gc;
 XtVaGetValues (widget, XmNuserData, &gc, NULL);
 XDrawLine (event−>xany.display, cbs−>window, gc, x, y,
 event−>xbutton.x, event−>xbutton.y);
 x = event−>xbutton.x;
 y = event−>xbutton.y;
 }
 }

 if (cbs−>reason == XmCR_ACTIVATE)
 /* activated by pushbutton −− clear parent's window */
 XClearWindow (event−>xany.display, XtWindow (XtParent (widget)));

11 The DrawingArea Widget 11.2.1 Handling Input Events

285

 }

The output of the program is shown in the figure.

Output of drawing.c

The callback routine that is used for the XmNinputCallback takes the form of a standard callback routine. The
DrawingArea provides a XmDrawingAreaCallbackStruct for all of its callbacks. This structure is defined as
follows:

 typedef struct {
 int reason;
 XEvent *event;
 Window window;
 } XmDrawingAreaCallbackStruct;

The reason field identifies the type of occurrence that caused the callback to be invoked. For the
XmNinputCallback, the value is XmCR_INPUT. The event field of the callback structure describes the event
that caused the callback to be invoked. In older versions of the Motif toolkit, the pointer may be NULL if reason is
XmCR_RESIZE. The window field is the window associated with the DrawingArea widget−−this is the same value
returned by calling XtWindow() on the widget.

Since the event itself is passed in as part of the callback structure, we can look at the type field of the event for more
information than is provided by the callback reason alone. (See Volume One, Xlib Programming Manual, for a
detailed description of XEvent structures and how to use them.) In fact, since there are many possible events that can
be associated with the reason XmCR_INPUT, you have to look at the event structure if you need any detail about what
actually happened. shows the possible event types for each of the DrawingArea callbacks. tab(@), linesize(2); l | l | l
lfCW | lfCW | lfCW. Callback@Reason@Event Type(s)
_
XmNexposeCallback@XmCR_EXPOSE@Expose XmNresizeCallback@XmCR_RESIZE@ConfigureNotify

11 The DrawingArea Widget 11.2.1 Handling Input Events

286

XmNinputCallback@XmCR_INPUT@ButtonPress, ButtonRelease, @@KeyPress, KeyRelease
_ A common convention we've included in this program is the double use of the drawing_area_callback()
function. This technique is known as function overloading, since the same function is used by more than one source.
We are using the routine as the input callback for the DrawingArea widget, as well as the activate callback for the
PushButton gadget. Whenever the PushButton is activated, the callback function is invoked and passed an
XmPushButtonCallbackStruct with the reason field set to XmCR_ACTIVATE.

It is beyond the scope of this book to discuss at length or even introduce the use of Xlib; for that, see Volume One,
Xlib Programming Manual. However, there are a couple of details concerning the use of Xlib functions that are
noteworthy. For efficiency in use of the X protocol, Xlib drawing calls typically do not carry a lot of information
about the drawing to be done. Instead, drawing characteristics such as the foreground and background colors, fill style,
line weight, and so on, are defined in a graphics context (GC), which is cached in the X server. Any drawing function
that wishes to use a particular GC must include the handle returned by a GC creation call.

If many different routines are going to use the same GC, the programmer should try to make the handle to it generally
available. The natural tendency is to declare the GC as a global variable. However, as a program gets large, it is easy
to get carried away with the use of global variables. As a result, programs tend to get overly complicated and
decentralized. To avoid this problem, you can use the XmNuserData resource (inherited from the Manager widget
class) as a temporary holding area for arbitrary pointers and values. Since this program is small, it may not be worth
the overhead of a call to XtGetValues() to avoid a global variable. It is up to you if you want to use the
XmNuserData resource; this particular example just shows one way of avoiding global variables.

If you play with the program a little, you will soon find that you can draw right through the PushButton gadget in the
DrawingArea. Because gadgets do not have windows, the DrawingArea widget indiscriminately allows you to draw
through any gadget children it may be managing. Similarly, activating the PushButton clears the DrawingArea
window, but it does not repaint the PushButton. None of the manager widgets, including the DrawingArea, check if
the user (or the application) is overwriting or erasing gadgets. Changing the PushButton from a gadget to a widget
solves the immediate problem. However, it is generally not a good idea to use a DrawingArea widget as both a
drawing canvas and as a place to have user−interface elements such as PushButtons.

For conventional geometry management involving DrawingArea widgets, you have two choices. You can write your
own geometry management routine (as demonstrated for BulletinBoard widgets in Section #sbboard in Chapter 8,
Manager Widgets) or you can place the DrawingArea inside another manager that does more intelligent geometry
management. The nice part about this alternative is that the other manager widgets are no more or less intelligent
about graphics and repainting than the DrawingArea widget. They don't provide a callback for Expose events, but
you can always add translations for those events, if you need them.

11.2.2 Redrawing a DrawingArea

In the source code when an Expose event or a Resize event occurs, the drawing is not retained and as a result the
DrawingArea is always cleared. This problem was intentional for the first example because we wanted to focus on the
use of the input callback routine. -However, when you use the DrawingArea widget, you must always be prepared to
repaint whatever is supposed to be displayed in the widget at any time.

As you may already know, most X servers support a feature called backing store, which saves the contents of
windows, even when they are obscured by other windows, and repaints them when they are exposed. When backing
store is enabled and there is enough memory available for the server, X will repaint all damaged windows without
ever notifying the application that anything happened. However, you should never rely on this behavior, since you
never know if the X server supports backing store, or if it has enough memory to save the contents of your windows.
All applications are ultimately responsible for redrawing their windows' contents whenever necessary.

11 The DrawingArea Widget 11.2.2 Redrawing a DrawingArea

287

For a painting application like that in the source code the easiest way to make sure that a window can be repainted
whenever necessary is to draw both into the window and into an offscreen pixmap. The contents of the pixmap can be
copied back into the window as needed. the source code demonstrates such a program. The offscreen pixmap is copied
back to the window with XCopyArea() to redisplay the drawing when the XmNexposeCallback is called.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* draw2.c −− extremely simple drawing program that demonstrates
 * how to draw into an off screen pixmap in order to retain the
 * contents of the DrawingArea widget. This allows us to redisplay
 * the widget if it needs repainting (expose events).
 */
 #include <Xm/DrawingA.h>
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>

 #define WIDTH 400 /* arbitrary width and height values */
 #define HEIGHT 300

 Pixmap pixmap; /* used to redraw the DrawingArea */

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, drawing_a, pb;
 XtAppContext app;
 GC gc;
 void drawing_area_callback();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL,
 XmNwidth, WIDTH,
 XmNheight, HEIGHT,
 NULL);

 /* Create a DrawingArea widget. */
 drawing_a = XtVaCreateWidget ("drawing_a",
 xmDrawingAreaWidgetClass, toplevel,
 NULL);
 /* add callback for all mouse and keyboard input events */
 XtAddCallback (drawing_a, XmNinputCallback, drawing_area_callback, NULL);
 XtAddCallback (drawing_a, XmNexposeCallback, drawing_area_callback, NULL);

 gc = XCreateGC (XtDisplay (drawing_a),
 RootWindowOfScreen (XtScreen (drawing_a)), 0, NULL);
 XtVaSetValues (drawing_a, XmNuserData, gc, NULL);

 XSetForeground (XtDisplay (drawing_a), gc,
 WhitePixelOfScreen (XtScreen (drawing_a)));
 /* create a pixmap the same size as the drawing area. */
 pixmap = XCreatePixmap (XtDisplay (drawing_a),
 RootWindowOfScreen (XtScreen (drawing_a)), WIDTH, HEIGHT,
 DefaultDepthOfScreen (XtScreen (drawing_a)));
 /* clear pixmap with white */
 XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, WIDTH, HEIGHT);
 /* drawing is now drawn into with "black"; change the gc for future */
 XSetForeground (XtDisplay (drawing_a), gc,
 BlackPixelOfScreen (XtScreen (drawing_a)));

11 The DrawingArea Widget 11.2.2 Redrawing a DrawingArea

288

 /* add a pushbutton the user can use to clear the canvas */
 pb = XtVaCreateManagedWidget ("Clear",
 xmPushButtonGadgetClass, drawing_a,
 NULL);
 /* if activated, call same callback as XmNinputCallback. */
 XtAddCallback (pb, XmNactivateCallback, drawing_area_callback, NULL);

 XtManageChild (drawing_a);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Callback routine for DrawingArea's input and expose callbacks
 * as well as the PushButton's activate callback. Determine which
 * it is by testing the cbs−>reason field.
 */
 void
 drawing_area_callback(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Position x, y;
 XmDrawingAreaCallbackStruct *cbs =
 (XmDrawingAreaCallbackStruct *) call_data;
 XEvent *event = cbs−>event;
 Display *dpy = event−>xany.display;

 if (cbs−>reason == XmCR_INPUT) {
 /* activated by DrawingArea input event −− draw lines.
 * Button Down events anchor the initial point and Button
 * Up draws from the anchor point to the button−up point.
 */
 if (event−>xany.type == ButtonPress) {
 /* anchor initial point (i.e., save its value) */
 x = event−>xbutton.x;
 y = event−>xbutton.y;
 } else if (event−>xany.type == ButtonRelease) {
 /* draw full line; get GC and use in XDrawLine() */
 GC gc;
 XtVaGetValues (widget, XmNuserData, &gc, NULL);
 XDrawLine (dpy, cbs−>window, gc, x, y,
 event−>xbutton.x, event−>xbutton.y);
 /* draw into the pixmap as well for redrawing later */
 XDrawLine (dpy, pixmap, gc, x, y,
 event−>xbutton.x, event−>xbutton.y);
 x = event−>xbutton.x;
 y = event−>xbutton.y;
 }
 }

 if (cbs−>reason == XmCR_EXPOSE || cbs−>reason == XmCR_ACTIVATE) {
 GC gc;
 if (cbs−>reason == XmCR_ACTIVATE) /* Clear button pushed */
 widget = XtParent (widget); /* get the DrawingArea widget */
 XtVaGetValues (widget, XmNuserData, &gc, NULL);
 if (cbs−>reason == XmCR_ACTIVATE) { /* Clear button pushed */
 /* to clear a pixmap, reverse foreground and background */
 XSetForeground (dpy, gc, WhitePixelOfScreen (XtScreen (widget)));
 /* ...and fill rectangle the size of the pixmap */

11 The DrawingArea Widget 11.2.2 Redrawing a DrawingArea

289

 XFillRectangle (dpy, pixmap, gc, 0, 0, WIDTH, HEIGHT);
 /* don't foreget to reset */
 XSetForeground (dpy, gc, BlackPixelOfScreen (XtScreen (widget)));
 }
 /* Note: we don't have to use WIDTH and HEIGHT−−we could pull the
 * exposed area out of the event structure, but only if the reason
 * was XmCR_EXPOSE... make it simple for the demo; optimize as needed.
 */
 XCopyArea (dpy, pixmap, event−>xany.window, gc,
 0, 0, WIDTH, HEIGHT, 0, 0);
 }
 }

A frequent problem encountered in using the DrawingArea widget is the need to redraw after every Resize event.
When you enlarge the DrawingArea window, an Expose event is automatically generated since more of the window
becomes exposed. But, if you shrink the window, no Expose event is generated since no new part of the window is
being exposed.

The reason why no Expose event is generated when you shrink a DrawingArea widget is deep inside Xlib. The bit
gravity of a window indicates where new bits are placed automatically by X when a window is resized. If you resize a
window larger, then the data in the window remains in the top−left corner and the application gets a Resize event
and an Expose event. The Expose event just identifies the newly exposed area, not the entire window. If you make
the window smaller, all of the data in the window gets pushed to the top left; there is no newly exposed area, so there
is no Expose event.

The solution is to make the window forget about bit gravity, so every Resize event causes all of the bits to be
cleared. As a result, the Expose event identifies the entire window as being exposed, instead of just the newly
exposed region. This technique has the side effect of generating an Expose event even when the window is resized
smaller.

The re i s no rou t i ne to se t t he b i t g rav i t y o f a w indow ind i v idua l l y . I t can be se t on l y w i th
XChangeWindowAttributes(), as in the following code fragment:

 XSetWindowAttributes attrs;
 attrs.bit_gravity = ForgetGravity;
 XChangeWindowAttributes (XtDisplay (drawing_area),
 XtWindow (drawing_area), CWBitGravity, &attrs);

Once you do this, the DrawingArea widget gets Expose events when you resize it to be smaller.

11.3 Using Translations on a DrawingArea

As mentioned earlier, it is generally permissible to override or replace the default translation table of the DrawingArea
widget with new translations. The only potential problem is if you plan to use the DrawingArea as a manager for other
widgets and you expect it to follow the keyboard traversal mechanisms described by the Motif Style Guide. In fact,
handling keyboard traversal is pretty much all that the default translations for the DrawingArea do. For example, the
following is a subset of the default translations for the DrawingArea widget: This translation table lists only a subset
of the current translations in the DrawingArea widget; there is no guarantee that the translations will remain the same
in future revisions of the toolkit.

 <Key>osfSelect: DrawingAreaInput() ManagerGadgetSelect()
 <Key>osfActivate: DrawingAreaInput() ManagerParentActivate()
 <Key>osfHelp: DrawingAreaInput() ManagerGadgetHelp()
 <KeyDown>: DrawingAreaInput() ManagerGadgetKeyInput()

11 The DrawingArea Widget11.3 Using Translations on a DrawingArea

290

 <KeyUp>: DrawingAreaInput()
 <BtnMotion>: ManagerGadgetButtonMotion()
 <Btn1Down>: DrawingAreaInput() ManagerGadgetArm()
 <Btn1Down>,<Btn1Up>: DrawingAreaInput() ManagerGadgetActivate()

These translations show that the manager widget part of the DrawingArea is responsible for tracking events for its
gadget children. It is not necessary to support these translations if you are not going to use the DrawingArea to
manage children. Most user−generated events also invoke DrawingAreaInput(), which does not do any drawing,
but simply invokes the XmNinputCallback.

As you can see, the BtnMotion translation is not passed to DrawingAreaInput(), which means that the
XmNinputCallback is not called for pointer motion events. When it comes to more complex drawing than that
done in the source code this omission is a serious deficiency. To support rubberbanding or free−hand drawing
techniques, which require pointer motion events, you must install either an event handler or a translation entry to
handle motion events.

The simplest approach would be to replace the translation table entry for <BtnMotion> events. However, this is not
possible, due to a bug in the X Toolkit Intrinsics. The correct thing to do is the following:

 String translations =
 "<Btn1Motion>: DrawingAreaInput() ManagerGadgetButtonMotion()";
 ...
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, main_w,
 ...
 NULL);
 XtOverrideTranslations (drawing_a, XtParseTranslationTable (translations));
 XtAddCallback (drawing_a, XmNinputCallback, draw, NULL);

With this new translation, the XmNinputCallback function (draw()) would be notified of pointer motion while
Button 1 is down.

XtOverrideTranslations() is the preferred method for installing a new translation into the DrawingArea
widget because it is nondestructive. The routine only replaces translations for which identical events are specified and
leaves all other translations in place. However, this routine does not work in this case because there is already a
translation for the Button 1 down−up sequence in the DrawingArea translation table. In the current implementation,
once Button 1 goes down, the Xt event translator waits for the Button 1 up event to match the partially finished
translation. Therefore, no Button 1 motion events can be caught. If we want to get pointer motion events while the
button is down, we have to resort to other alternatives.

One such alternative is to replace the entire translation table, regardless of whether we are adding new entries or
overriding existing ones. This is known as a destructive override because the existing translation table is thrown out.
This action has the desired effect because the offending Button 1 translation is thrown out. However, we must then
take steps to re−install any other default translations that are still required. To completely replace the existing
translations, the XmNtranslations resource can be set as shown in the following code fragment:

 String translations =
 "<Btn1Motion>: DrawingAreaInput() ManagerGadgetButtonMotion()";
 ...
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, main_w,
 XmNtranslations, XtParseTranslationTable (translations),
 NULL);
 XtAddCallback (drawing_a, XmNinputCallback, draw, NULL);

11 The DrawingArea Widget11.3 Using Translations on a DrawingArea

291

Once you go to the trouble of replacing the translation table, you may as well install your own action functions as
well. Doing so allows you to do the drawing directly from the action functions, rather than using it as an intermediate
function to call an application callback. This direct−drawing approach is demonstrated in the source code The
program uses pointer motion to draw lines as the pointer is dragged with the button down, rather than when the button
is pressed and released. You'll notice that we have used much the same design as in the source code but have moved
some of the code into different callback routines and have placed the DrawingArea widget into a MainWindow widget
for flexibility. None of these changes are required nor do they enhance performance in any way. They merely point
out different ways of providing the same functionality. XtSetLanguageProc() is only available in X11R5; there
is no corresponding function in X11R4.

 /* free_hand.c −− simple drawing program that does freehand
 * drawing. We use translations to do all the event handling
 * for us rather than using the drawing area's XmNinputCallback.
 */
 #include <Xm/MainW.h>
 #include <Xm/DrawingA.h>
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>

 /* Global variables */
 GC gc;
 Pixmap pixmap;
 Dimension width, height;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w, drawing_a, pb;
 XtAppContext app;
 XGCValues gcv;
 void draw(), redraw(), clear_it();
 XtActionsRec actions;
 String translations = /* for the DrawingArea widget */
 /* ManagerGadget* functions are necessary for DrawingArea widgets
 * that steal away button events from the normal translation tables.
 */
 "<Btn1Down>: draw(down) ManagerGadgetArm() 0 <Btn1Up>: draw(up) ManagerGadgetActivate() 0 <Btn1Motion>: draw(motion) ManagerGadgetButtonMotion()";

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a MainWindow to contain the drawing area */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 /* Add the "draw" action/function used by the translation table */
 actions.string = "draw";
 actions.proc = draw;
 XtAppAddActions (app, &actions, 1);

 /* Create a DrawingArea widget. Make it 5 inches wide by 6 inches tall.
 * Don't let it resize so the Clear Button doesn't force a resize.
 */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",

11 The DrawingArea Widget11.3 Using Translations on a DrawingArea

292

 xmDrawingAreaWidgetClass, main_w,
 XmNtranslations, XtParseTranslationTable (translations),
 XmNunitType, Xm1000TH_INCHES,
 XmNwidth, 5000, /* 5 inches */
 XmNheight, 6000, /* 6 inches */
 XmNresizePolicy, XmNONE, /* remain this a fixed size */
 NULL);
 /* When scrolled, the drawing area will get expose events */
 XtAddCallback (drawing_a, XmNexposeCallback, redraw, NULL);

 /* convert drawing area back to pixels to get its width and height */
 XtVaSetValues (drawing_a, XmNunitType, XmPIXELS, NULL);
 XtVaGetValues (drawing_a, XmNwidth, &width, XmNheight, &height, NULL);
 /* create a pixmap the same size as the drawing area. */
 pixmap = XCreatePixmap (XtDisplay (drawing_a),
 RootWindowOfScreen (XtScreen (drawing_a)), width, height,
 DefaultDepthOfScreen (XtScreen (drawing_a)));

 /* Create a GC for drawing (callback). Used a lot −− make global */
 gcv.foreground = WhitePixelOfScreen (XtScreen (drawing_a));
 gc = XCreateGC (XtDisplay (drawing_a),
 RootWindowOfScreen (XtScreen (drawing_a)), GCForeground, &gcv);
 /* clear pixmap with white */
 XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width, height);
 /* drawing is now drawn into with "black"; change the gc */
 XSetForeground (XtDisplay (drawing_a), gc,
 BlackPixelOfScreen (XtScreen (drawing_a)));

 pb = XtVaCreateManagedWidget ("Clear",
 xmPushButtonGadgetClass, drawing_a, NULL);
 /* Pushing the clear button calls clear_it() */
 XtAddCallback (pb, XmNactivateCallback, clear_it, drawing_a);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Action procedure to respond to any of the events from the
 * translation table declared in main(). This function is called
 * in response to Button1 Down, Up and Motion events. Basically,
 * we're just doing a freehand draw −− not lines or anything.
 */
 void
 draw(widget, event, args, num_args)
 Widget widget;
 XEvent *event;
 String *args;
 int *num_args;
 {
 static Position x, y;
 XButtonEvent *bevent = (XButtonEvent *) event;

 if (*num_args != 1)
 XtError ("Wrong number of args!");

 if (strcmp (args[0], "down")) {
 /* if it's not "down", it must either be "up" or "motion"
 * draw full line from anchor point to new point.
 */
 XDrawLine (bevent−>display, bevent−>window, gc, x, y,
 bevent−>x, bevent−>y);

11 The DrawingArea Widget11.3 Using Translations on a DrawingArea

293

 XDrawLine (bevent−>display, pixmap, gc, x, y, bevent−>x, bevent−>y);
 }

 /* freehand is really a bunch of line segments; save this point */
 x = bevent−>x;
 y = bevent−>y;
 }

 /* Clear the window by clearing the pixmap and calling XCopyArea() */
 void
 clear_it(pb, client_data, call_data)
 Widget pb;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget drawing_a = (Widget) client_data;
 XmPushButtonCallbackStruct *cbs =
 (XmPushButtonCallbackStruct *) call_data;

 /* clear pixmap with white */
 XSetForeground (XtDisplay (drawing_a), gc,
 WhitePixelOfScreen (XtScreen (drawing_a)));
 XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width, height);
 /* drawing is now done using black; change the gc */
 XSetForeground (XtDisplay (drawing_a), gc,
 BlackPixelOfScreen (XtScreen (drawing_a)));
 XCopyArea (cbs−>event−>xbutton.display, pixmap, XtWindow (drawing_a), gc,
 0, 0, width, height, 0, 0);
 }

 /* redraw is called whenever all or portions of the drawing area is
 * exposed. This includes newly exposed portions of the widget resulting
 * from the user's interaction with the scrollbars.
 */
 void
 redraw(drawing_a, client_data, call_data)
 Widget drawing_a;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmDrawingAreaCallbackStruct *cbs =
 (XmDrawingAreaCallbackStruct *) call_data;

 XCopyArea (cbs−>event−>xexpose.display, pixmap, cbs−>window, gc,
 0, 0, width, height, 0, 0);
 }

The output of the program is shown in the figure.

11 The DrawingArea Widget11.3 Using Translations on a DrawingArea

294

Output of free_hand.c.

In the source code the DrawingArea widget uses the following translation string:

 String translations =
 "<Btn1Down>: draw(down) ManagerGadgetArm() 0 <Btn1Up>: draw(up) ManagerGadgetActivate() 0 <Btn1Motion>: draw(motion) ManagerGadgetButtonMotion()";

For each of the specified events, the translation describes two actions. The draw() action is our own function that
actually draws into the DrawingArea. The ManagerGadget actions are standard DrawingArea actions (inherited
from the Manager widget class) for passing events to a gadget child, as described earlier. We keep them in place
because we are still using the PushButton gadget. We are not keeping the routines for managing keyboard traversal,
but simply those required to arm and activate the button.

The draw() action routine tests whether it has been called from a button up event, a button down event, or a motion
event. Since the action function is passed the event that invoked it, we could simply test the type field of the event.
However, this example gives us a chance to exercise the Xt feature that supports string arguments passed to action
functions. Accordingly, the draw() function determines what action to take by examining its args[0] parameter,
which contains the string passed as the single parameter in the translation table. For example, draw(up) passes the
string "up" as the args[0] parameter in response to a <Btn1Up> event.

Lines are drawn for both ButtonRelease and ButtonMotion events, but not for ButtonPress events. A line
is drawn from the last anchor point to the current location of the mouse. As the pointer moves from one point to the
next, the anchor point is always one step behind, so a line segment is drawn from that location to the current location.
The only time that a line segment is not drawn is on the initial button press (and any motion events that occur while
the button is not down). The coordinate values are relative to the current location of the pointer within the
DrawingArea widget, no matter how it is positioned in the MainWindow.

The draw() function draws into the window and also into a pixmap. The MainWindow widget is configured to have
its XmNscrollingPolicy set to XmAUTOMATIC, so ScrollBars are automatically installed over the DrawingArea
when it is larger than the MainWindow, which allows the user to view different parts of the canvas interactively.
Scrolling actions cause the contents of the newly exposed portions of the canvas to be erased by default. Unless we
provide a mechanism by which the DrawingArea can redraw itself, scrolling the DrawingArea loses previously drawn
contents. To handle this problem, we employ the same principle we used in the source code We install a pixmap that
is used by both the draw() and redraw() functions.

The redraw() routine is installed as the callback function for the XmNexposeCallback. The function merely
uses XCopyArea() to copy the pixmap onto the window of the DrawingArea. We are not concerned with the
position of the DrawingArea with respect to the MainWindow in this routine. All we need to do is copy the pixmap
directly into the window. X ensures that the visible portion of the window is clipped as necessary.

11 The DrawingArea Widget11.3 Using Translations on a DrawingArea

295

In this example, the ManagerGadget actions don't do anything unless the pointer is inside the Clear button, so the
translation is relatively safe. However, you should be sure to remember that both actions are called. If you press
Button 1 inside the PushButton and doodle around a bit before releasing it, the drawing is still done, even though the
result is hidden by the gadget. In another application, the fact that actions for both the drawing area itself and its
gadget children are both called might lead to indeterminate results.

The draw() action does not (and cannot) know if the gadget is also going to react to the button event. This problem
does not exist with the standard DrawingAreaInput() action routine used in the previous examples because that
routine is implemented by the Motif toolkit and it uses its own internal mechanisms to determine if the gadget is
activated as well. If the DrawingArea does process the event on the gadget, the DrawingAreaInput() action
knows that it should not invoke the callback function. However, this internal mechanism is not available outside of the
widget code. Reordering the action functions does not help, since there is still no way to know, without making an
educated guess, whether or not the DrawingArea acted upon an event on behalf of a gadget child.

As a result of this problem, draw() starts drawing a line, even if it starts in the middle of the PushButton, because
the DrawingArea processes all of the action functions in the list. If you drag the pointer out of the gadget before
releasing the mouse button, the starting point of the line is inside the gadget, but it is hidden when the gadget repaints
itself. However, in this particular situation, you can do some guesswork. By installing an XmNarmCallback
function, you can tell whether or not the DrawingArea activated a button, and by setting an internal state variable, you
can decide whether or not the draw() action routine should do its drawing.

This confusing behavior is yet another reason why it is best not to include children in DrawingArea widgets that are
intended for interactive graphics. If the DrawingArea does not have any gadget children, installing these auxiliary
actions in the translation table is not necessary.

11.4 Using Color in a DrawingArea

In this section, we expand on our previous examples by incorporating color. The choice of colors is primarily
supported by a function we define called set_color(), which takes a widget and an arbitrary color name and sets
the global GC's foreground color. By providing an array of colors in the form of colored PushButtons, we've got a
color paint program. We have removed the PushButton gadget from the DrawingArea and created a proper control
panel to the left of the DrawingArea. The program uses a RowColumn widget (see Section #srowcolumn in
Chapter 8, Manager Widgets) to manage a set of eighteen colored PushButtons. On a monochrome screen, the
program runs, but the buttons are either black or white, depending on which is closer to the RGB values corresponding
to the color names chosen. You can only draw with the black buttons, since the background is already white. The
program that demonstrates these techniques is shown in the source code XtSetLanguageProc() is only available
in X11R5; there is no corresponding function in X11R4.

 /* color_draw.c −− simple drawing program using predefined colors. */
 #include <Xm/MainW.h>
 #include <Xm/DrawingA.h>
 #include <Xm/PushBG.h>
 #include <Xm/PushB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/Form.h>

 GC gc;
 Pixmap pixmap;
 /* dimensions of drawing area (pixmap) */
 Dimension width, height;

 String colors[] = {

11 The DrawingArea Widget 11.4 Using Color in a DrawingArea

296

 "Black", "Red", "Green", "Blue", "White", "Navy", "Orange", "Yellow",
 "Pink", "Magenta", "Cyan", "Brown", "Grey", "LimeGreen", "Turquoise",
 "Violet", "Wheat", "Purple"
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w, sw, rc, form, drawing_a, pb;
 XtAppContext app;
 XGCValues gcv;
 void draw(), redraw(), set_color(), exit(), clear_it();
 int i;
 XtActionsRec actions;
 String translations = /* for the DrawingArea widget */
 "<Btn1Down>: draw(down)0 <Btn1Up>: draw(up) 0 <Btn1Motion>: draw(motion)";

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a MainWindow to contain the drawing area */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmFormWidgetClass, toplevel, NULL);

 /* Create a GC for drawing (callback). Used a lot −− make global */
 gcv.foreground = WhitePixelOfScreen (XtScreen (main_w));
 gc = XCreateGC (XtDisplay (main_w),
 RootWindowOfScreen (XtScreen (main_w)), GCForeground, &gcv);

 /* Create a 3−column array of color tiles */
 rc = XtVaCreateWidget ("rc", xmRowColumnWidgetClass, main_w,
 XmNnumColumns, 3,
 XmNpacking, XmPACK_COLUMN,
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 NULL);
 for (i = 0; i < XtNumber(colors); i++) {
 /* Create a single tile (pixmap) for each color */
 pixmap = XCreatePixmap (XtDisplay (rc),
 RootWindowOfScreen (XtScreen (rc)),
 16, 16, DefaultDepthOfScreen (XtScreen (rc)));
 set_color (rc, colors[i]); /* set the gc's color according to name */
 XFillRectangle (XtDisplay (main_w), pixmap, gc, 0, 0, 16, 16);
 pb = XtVaCreateManagedWidget (colors[i], xmPushButtonWidgetClass, rc,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 NULL);
 /* callback for this pushbutton sets the current color */
 XtAddCallback (pb, XmNactivateCallback, set_color, colors[i]);
 }
 XtManageChild (rc);

 pb = XtVaCreateManagedWidget ("Quit",
 xmPushButtonGadgetClass, main_w,
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_WIDGET,
 XmNtopWidget, rc,
 NULL);

11 The DrawingArea Widget 11.4 Using Color in a DrawingArea

297

 XtAddCallback (pb, XmNactivateCallback, exit, NULL);

 /* Clear button −− wait till DrawingArea is created so we can use
 * it to pass as client data.
 */
 pb = XtVaCreateManagedWidget ("Clear",
 xmPushButtonGadgetClass, main_w,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, pb,
 XmNtopAttachment, XmATTACH_WIDGET,
 XmNtopWidget, rc,
 NULL);

 sw = XtVaCreateManagedWidget ("scrolled_win",
 xmScrolledWindowWidgetClass, main_w,
 XmNwidth, 300,
 XmNscrollingPolicy, XmAUTOMATIC,
 XmNscrollBarDisplayPolicy, XmAS_NEEDED,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, rc,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

 /* Add the "draw" action/function used by the translation table
 * parsed by the translations resource below.
 */
 actions.string = "draw";
 actions.proc = draw;
 XtAppAddActions (app, &actions, 1);

 /* Create a DrawingArea widget. Make it 5 inches wide by 6 inches tall.
 * Don't let it resize so the Clear Button doesn't force a resize.
 */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, sw,
 XmNtranslations, XtParseTranslationTable (translations),
 XmNunitType, Xm1000TH_INCHES,
 XmNwidth, 5000, /* 5 inches */
 XmNheight, 6000, /* 6 inches */
 XmNresizePolicy, XmNONE, /* remain this a fixed size */
 NULL);
 /* When scrolled, the drawing area will get expose events */
 XtAddCallback (drawing_a, XmNexposeCallback, redraw, NULL);
 /* Pushing the clear button clears the drawing area widget */
 XtAddCallback (pb, XmNactivateCallback, clear_it, drawing_a);

 /* convert drawing area back to pixels to get its width and height */
 XtVaSetValues (drawing_a, XmNunitType, XmPIXELS, NULL);
 XtVaGetValues (drawing_a, XmNwidth, &width, XmNheight, &height, NULL);
 /* create a pixmap the same size as the drawing area. */
 pixmap = XCreatePixmap (XtDisplay (drawing_a),
 RootWindowOfScreen (XtScreen (drawing_a)), width, height,
 DefaultDepthOfScreen (XtScreen (drawing_a)));
 /* clear pixmap with white */
 set_color (drawing_a, "White");
 XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width, height);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);

11 The DrawingArea Widget 11.4 Using Color in a DrawingArea

298

 }

 /* Action procedure to respond to any of the events from the
 * translation table declared in main(). This function is called
 * in response to Button1 Down, Up and Motion events. Basically,
 * we're just doing a freehand draw −− not lines or anything.
 */
 void
 draw(widget, event, args, num_args)
 Widget widget;
 XEvent *event;
 String *args;
 int *num_args;
 {
 static Position x, y;
 XButtonEvent *bevent = (XButtonEvent *) event;

 if (*num_args != 1)
 XtError ("Wrong number of args!");

 if (strcmp (args[0], "down")) {
 /* if it's not "down", it must either be "up" or "motion"
 * draw full line from anchor point to new point.
 */
 XDrawLine (bevent−>display, bevent−>window, gc, x, y,
 bevent−>x, bevent−>y);
 XDrawLine (bevent−>display, pixmap, gc, x, y, bevent−>x, bevent−>y);
 }

 /* freehand is really a bunch of line segements; save this point */
 x = bevent−>x;
 y = bevent−>y;
 }

 /* Clear the window by clearing the pixmap and calling XCopyArea() */
 void
 clear_it(pb, client_data, call_data)
 Widget pb;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget drawing_a = (Widget) client_data;
 XmPushButtonCallbackStruct *cbs =
 (XmPushButtonCallbackStruct *) call_data;

 /* clear pixmap with white */
 XSetForeground (XtDisplay (drawing_a), gc,
 WhitePixelOfScreen (XtScreen (drawing_a)));
 /* this clears the pixmap */
 XFillRectangle (XtDisplay (drawing_a), pixmap, gc, 0, 0, width, height);
 /* drawing is now done using black; change the gc */
 XSetForeground (XtDisplay (drawing_a), gc,
 BlackPixelOfScreen (XtScreen (drawing_a)));
 /* render the newly cleared pixmap onto the window */
 XCopyArea (cbs−>event−>xbutton.display, pixmap, XtWindow (drawing_a), gc,
 0, 0, width, height, 0, 0);
 }

 /* redraw is called whenever all or portions of the drawing area is
 * exposed. This includes newly exposed portions of the widget resulting
 * from the user's interaction with the scrollbars.

11 The DrawingArea Widget 11.4 Using Color in a DrawingArea

299

 */
 void
 redraw(drawing_a, client_data, call_data)
 Widget drawing_a;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmDrawingAreaCallbackStruct *cbs =
 (XmDrawingAreaCallbackStruct *) call_data;

 XCopyArea (cbs−>event−>xexpose.display, pixmap, cbs−>window, gc,
 0, 0, width, height, 0, 0);
 }

 /* callback routine for when any of the color tiles are pressed.
 * This general function may also be used to set the global gc's
 * color directly. Just provide a widget and a color name.
 */
 void
 set_color(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 String color = (String) client_data;
 Display *dpy = XtDisplay (widget);
 Colormap cmap = DefaultColormapOfScreen (XtScreen (widget));
 XColor col, unused;

 if (!XAllocNamedColor (dpy, cmap, color, &col, &unused)) {
 char buf[32];
 sprintf (buf, "Can't alloc %s", color);
 XtWarning (buf);
 return;
 }
 XSetForeground (dpy, gc, col.pixel);
 }

The output of the program in shown in the figure.

11 The DrawingArea Widget 11.4 Using Color in a DrawingArea

300

Output of color_draw.c

One thing to note about the program is that the callback routine for the Clear button is passed the DrawingArea
widget as the client data. This technique saves us from having to declare a global variable, while still providing a
handle to the DrawingArea in the callback routine.

11.5 Summary

The DrawingArea widget is probably most useful when it is used as a canvas for displaying raster images, animation,
or a mixture of text and graphics. It is also well−suited for tasks that require interactive user input. The widget
provides some rudimentary input mechanisms in the form of callbacks that are invoked by button events.

The translation and action tables supported by the X Toolkit Intrinsics provide a simple mechanism for notifying
applications of user events such as double−mouse clicks, keyboard events, and so on. By creatively modifying the
default translations and actions, you could build a rather intricate system of action functions that produces interesting
graphics based on various forms of user input sequences.

However, what you can do with actions is simplistic given the complexities that are involved in true paint or draw
applications. Applications that require a graphic front end should -probably dig deeper into the lower levels of Xt for
event handling and into Xlib for image -rendering.

11.6 Exercises

There are a number of different possibilities you could explore in extending the DrawingArea widget. The following
exercises are intended to shine the light down some interesting paths that you can take.

As we have demonstrated, a DrawingArea widget needs to be able to redisplay the contents of its window. For
the programs in this chapter, we implemented redisplay by duplicating in a pixmap all of the drawing done in
the window. When the window needs to be repainted, the pixmap is simply copied into it. However, this
technique does not take resizing into account. If the draw2 application is resized bigger, parts of the window
are not properly redrawn because the pixmap is not resized. If you wanted to support a canvas that can grow
dynamically, you also have to resize the off−screen pixmap. Modify draw2.c so that the pixmap resizes along
with the DrawingArea. You need to add a callback for XmNresizeCallback. The callback should query
the size of the DrawingArea, create a new pixmap, use XCopyArea() to copy the old pixmap into the new
one, and destroy the old pixmap.

•

The resource XmNcolormap can be used to set and get the colormap associated with a DrawingArea widget,
using XtVaSetValues() and XtVaGetValues(). Modify color_draw.c to use colormap values rather
than predefined colors.

•

A paint program and a draw program differ in the way they internally represent their graphical displays. A
paint program usually maintains a background pixmap as demonstrated by free_hand, whereas a draw
program stores geometric information about the shapes that are drawn. For example, circles can be
represented using a center (x,y coordinate) and a radius; rectangles can be represented by an origin coordinate
with width and height values; and freehand drawings can be represented by a list of coordinates (line
segments). Entire pictures can be represented by a list of geometric shape definitions.
Modify free_hand.c or color_draw.c to use a list of XSegment structures to represent the lines that are drawn
by the user. Instead of using a pixmap and XCopyArea() to repaint the DrawingArea widget on Expose
events, repaint the picture by calling XDrawSegments() and using the data stored in the internal list of
XSegment structures.

•

In the previous exercise, we gave you some hints about how you might build an interactive drawing
application. For those of you who really want to dig into this subject, you can extend the program by giving

•

11 The DrawingArea Widget 11.5 Summary

301

the user a choice of geometric shapes to draw. You need to provide a user interface to support an array of
object types: arcs, circles, squares, rectangles, lines, and freehand drawings. Based on the user's choice, you
have to maintain a state machine that indicates how much of a geometric figure has been drawn. Use a
translation table to monitor the events that correspond to the state machine and store the coordinates of key
geometric points in internal data structures. Granted, this exercise is no small feat, but it is a great way to kill a
weekend!

11 The DrawingArea Widget 11.5 Summary

302

12 Labels and Buttons

This chapter contains an in−depth look at the label and button widgets provided by the Motif toolkit. These widgets
are the most commonly used primitive widgets.

Labels and buttons are among the most widely used interface objects in GUI−based applications. They are also the
simplest in concept and design. Labels provide the basic resources necessary to render and manage text or images
(pixmaps) by controlling color, alignment, and other visual attributes. PushButtons are subclassed from Label; they
extend its capabilities by adding callback routines that respond to user interaction from the mouse or keyboard. These
visual and interactive features provide the cornerstone for many widgets in the Motif toolkit, such as CascadeButtons,
DrawnButtons, and ToggleButtons.

This chapter also discusses ArrowButtons. While the ArrowButton is not subclassed from Label like the other buttons,
it does provide a subset of the interactive capabilities of the other buttons. ArrowButtons do not contain text or
graphical labels; they simply display directional arrows that point up, down, left, or right. These widgets are meant to
act as companions to other interface objects whose values or displays can be controlled or changed incrementally by
the user. An example might be four ArrowButtons that are used to represent directional movement for the display of a
bitmap editor.

Although CascadeButtons are subclassed from the Label widget, they are specifically used in Motif menus and are not
addressed in this chapter. The menu systems that are provided by Motif are separate entities and are treated separately
in Chapter 4, The Main Window, and Chapter 15, Menus. Since the Motif menus use Labels and PushButtons for
menu items, these widgets have certain resources that only take effect when the widgets are used in menus. These
resources are not discussed in this chapter either.

Labels and buttons have a wide range of uses and they are used in many of the compound objects provided by the
Motif toolkit. As a result, these widgets are discussed throughout this book. This chapter provides a basic discussion
of the main resources and callbacks used by the objects. It also provides examples of common usage and attempts to
address problem areas.

12.1 Labels

Labels are simply props for the stage. They are not intended to respond to user interaction, although a help callback
can be attached in case the HELP key is pressed. It is equally common to find Labels displaying either text or
graphics, yet they cannot display both simultaneously in the conventional sense.

Since Labels can display text, it may not always be obvious whether to use a Label or a Text widget to display textual
information. The Motif Style Guide suggests that Labels should always be used when noneditable text is displayed,
even if the text is longer than what you might think of as a label. If a Label is large, you can always place it in the
work area of an automatic ScrolledWindow widget, as discussed in Chapter 9, ScrolledWindows and ScrollBars.
Even if the text is expected to change frequently, your needs can often be accommodated by a Label widget or gadget.

Another issue that affects the choice between a Label widget and a Text widget is the ability to select the text. Even if
you have text that is not editable by the user, you may wish to allow the user to select all or part of the text. With
Motif 1.2, the Label widget acts as a drag source for drag and drop operations, which means that the full text of a
Label can be manipulated using drag and drop. All of the button subclasses of Label inherit the drag source capability,
so the text labels for PushButtons and ToggleButtons can also be manipulated using drag and drop. However, this
capability does not allow the user to manipulate only part of the text. For that type of interaction, and with previous

303

versions of the toolkit, you need to use a Text widget rather than a Label to provide selection capabilities.

Labels have a number of added visual advantages over Text widgets. The text in a Label can be greyed out when it is
insensitive and it can display text using multiple fonts. The Text widgets do not support multiple fonts. In Motif 1.2,
an insensitive Text widget greys out its text, while in Motif 1.1 it does not. Labels are also lighter−weight objects than
Text widgets. There is little overhead in maintaining or displaying a Label and there is no need to handle event
processing on a Label to the same degree as for a Text widget. All things considered, we would recommend using
Label widgets over Text widgets.

However, when it comes to interactive objects, Labels are not the best choice. In most cases where you want to allow
the user to click on a Label, it is more appropriate to use a PushButton or a ToggleButton, since they are designed to
support user interaction. Furthermore, users who are familiar with other Motif applications will not expect to have to
interact with Labels. In short, the best thing to do with Label widgets is simple and obvious: use them to display
labels.

There are a number of resources associated with Labels that are used by other Motif objects or by widget classes that
are subclassed from Label. For example, since Labels (and PushButtons) are used extensively as menu items in
menus, they can have accelerators, mnemonics, and other visual resources set to provide the appropriate functionality
for menus. These resources do not apply to Labels (and PushButtons) that are not used as menu items, so we do not
discuss them here.

The only callback routine for the Label widget is the XmNhelpCallback associated with all Primitive widgets. If
the user presses the HELP key on a Label widget, its help callback is called. Whether a Label receives Help events
depends on the input policy the user is using and whether or not keyboard traversal is on. Since it may not be possible
for the user to use the HELP key on Labels, we don't recommend providing help callbacks for them.

12.1.1 Creating a Label

Applications that use Labels must include the header file <Xm/Label.h>, which defines the xmLabelWidgetClass
type. This type is a pointer to the actual widget structure used by XtVaCreateManagedWidget(). This routine
can be used to create a Label as follows:

 Widget label;

 label = XtVaCreateManagedWidget ("name",
 xmLabelWidgetClass, parent,

resource−value−list,
 NULL);

This code fragment shows the most common way to create a Label. Since Labels do not have children, there is no
reason to create them as unmanaged widgets first and then manage them later. As for all widgets classes, the Motif
toolkit also provides the XmCreateLabel() convenience routine for creating Labels.

Label gadgets are also available. Recall that a gadget is a windowless object that relies on its parent to display its
visual attributes and to provide it with events generated either by the system or by the user. Since a gadget does not
have a window, its background color and pattern cannot be set individually; they are provided by the parent.

The Label gadget is an entirely different class from its widget counterpart. To use the gadget variant, you must include
the heade r f i l e <Xm/Labe lG .h> and use the xmLabe lGadge tC lass po in te r i n t he ca l l t o
XtVaCreateManagedWidget(), as in the following example:

 Widget label;

12 Labels and Buttons 12.1.1 Creating a Label

304

 label = XtVaCreateManagedWidget ("name",
 xmLabelGadgetClass, parent,

resource−value−list,
 NULL);

12.1.2 Text Labels

A Label widget or gadget can display either text or an image. The XmNlabelType resource controls the type of
label that is displayed; the resource can be set to XmSTRING or XmPIXMAP. The default value is XmSTRING, so if
you want to display text in a Label, you do not need to set this resource explicitly.

The resource that specifies the string that is displayed in a Label is XmNlabelString. The value for this resource
must be a Motif compound string; common C character strings are not allowed. The following code fragment shows
the appropriate way to specify the text for a Label:

 Widget label;
 XmString str = XmStringCreateLocalized ("A Label");

 label = XtVaCreateManagedWidget ("label",
 xmLabelWidgetClass, parent,
 XmNlabelString, str,
 NULL);

 XmStringFree (str);

If the XmNlabelString resource is not specified, the Label automatically converts its name into a compound
string and uses that as its label. Therefore, the previous example could also be implemented as follows:

 Widget label;

 label = XtVaCreateManagedWidget ("A Label",
 xmLabelWidgetClass, parent,
 NULL);

This method of specifying the label string for the widget is much simpler than using a compound string. It avoids the
overhead of creating and destroying a compound string, which is expensive in terms of allocating and freeing
memory. The problem with the name of the widget shown above is that it is illegal as a widget name. Technically,
widget names should only be composed of alphanumerics (letters and numbers), hyphens, and underscores. Characters
such as space, dot (.), and the asterisk (*) are disallowed because they make it impossible for the user to specify these
widgets in resource files. On the other hand, using names that contain these characters can be to your advantage if you
want to try to prevent users from changing the resource values of certain widgets. You can achieve the same result by
hard−coding the label or by using an illegal widget name. The first method is more elegant, so the decision you make
here should be well−informed.

If you are going to hard−code the label string, you can avoid the overhead of creating a compound string by using the
XtVaTypedArg feature of Xt, as shown in the following example:

 label = XtVaCreateManagedWidget ("widget_name",
 xmLabelWidgetClass, parent,
 XtVaTypedArg, XmNlabelString, XmRString,
 "A Label", 8, /* 8 = strlen("A Label") + 1 */
 NULL);

12 Labels and Buttons 12.1.2 Text Labels

305

The C string "A Label" (which is 7 chars long, plus 1 NULL byte) is automatically converted into a compound
string by the toolkit using a pre−installed type converter. This method can also be used to change the label for a
widget using XtVaSetValues().

Since compound strings are dynamically created and destroyed, you cannot statically declare an argument list that
contains a pointer to a compound string. For example, it would be an error to do the following:

 static Arg list[] = {
 ...
 XmNlabelString, XmStringCreateLocalized ("A label"),
 ...
 };

 label = XtCreateManagedWidget ("name",
 xmLabelWidgetClass, parent,
 list, XtNumber (list));

This technique causes an error because you cannot create a compound string in a statically declared array. For a
complete discussion of compound strings, see Chapter 19, Compound Strings.

12.1.3 Images as Labels

A Label widget or gadget can display an image instead of text by setting the XmNlabelType resource to
XmPIXMAP. As a result of this resource setting, the Label displays the -pixmap specified for the XmNlabelPixmap
resource. the source code demonstrates how pixmaps can be used as labels. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* pixmaps.c −− Demonstrate simple label gadgets in a row column.
 * Each command line argument represents a bitmap filename. Try
 * to load the corresponding pixmap and store in a RowColumn.
 */
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Pixel fg, bg;
 Widget toplevel, rowcol;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 if (argc < 2) {
 puts ("Specify bitmap filenames.");
 exit (1);
 }
 /* create a RowColumn that has an equal number of rows and
 * columns based on the number of pixmaps it is going to
 * display (this value is in "argc").
 */
 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,

12 Labels and Buttons 12.1.3 Images as Labels

306

 XmNnumColumns, int_sqrt (argc),
 XmNpacking, XmPACK_COLUMN,
 NULL);

 /* Get the foreground and background colors of the rowcol to make
 * all the pixmaps appear using a consistent color.
 */
 XtVaGetValues (rowcol,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);

 while (*++argv) {
 Pixmap pixmap = XmGetPixmap (XtScreen (rowcol), *argv, fg, bg);
 if (pixmap == XmUNSPECIFIED_PIXMAP)
 printf ("Couldn't load %s0, *argv);
 else
 XtVaCreateManagedWidget (*argv, xmLabelGadgetClass, rowcol,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 NULL);
 }

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* get the integer square root of n −− used to determine the number
 * of rows and columns of pixmaps to use in the RowColumn widget.
 */
 int_sqrt(n)
 register int n;
 {
 register int i, s = 0, t;
 for (i = 15; i >= 0; i−−) {
 t = (s | (1 << i));
 if (t * t <= n)
 s = t;
 }
 return s;
 }

The program displays a two−dimensional array of pixmaps based on the bitmap files listed on the command line. For
example, the following command produces the output shown in the figure.

 % pixmaps flagup letters wingdogs xlogo64 calculator tie_fighter

12 Labels and Buttons 12.1.3 Images as Labels

307

Output of pixmaps flagup letters wingdogs xlogo64 calculator tie_fighter

To optimize the use of space by the RowColumn widget, the number of rows and columns is set to the square root of
the number of images. For example, if there are nine pixmaps to load, there should be a 3x3 grid of images. Since the
number of files to be loaded corresponds to the number of arguments in argv, argc is passed to int_sqrt() to
get the integer square root of its value. This value tells us the number of columns to specify for the XmNnumColumns
resource of the RowColumn.

The bitmap files are read using XmGetPixmap(), which is a function that creates a pixmap from the specified file.
This file must be in X11 bitmap format. Since the function needs foreground and background colors for the pixmap,
we use the colors of the RowColumn. If the specified file cannot be found or if it does not contain a bitmap, the
function returns the constant XmUNSPECIFIED_PIXMAP. XmUNSPECIFIED_PIXMAP is not 0 or NULL. Many
people have a tendency to test for these values upon return of functions that return opaque objects. The literal value is
2. If this error condition is returned, the program skips the file and goes on to the next one. For more detailed
information on XmGetPixmap() and other supporting functions, see Section #spixmaps in Chapter 3, Overview of
the Motif Toolkit.

12.1.4 Label Sensitivity

A Label can be made inactive by setting the XmNsensitive resource to False. While it may seem frivolous to set
a Label insensitive, since Labels are never really active, it is quite common to associate a Label with another
interactive element, such as a List, a TextField, or even a composite item such as RadioBox. In these situations, it is
useful to desensitize the Label along with its corresponding user−interface element, to emphasive that the component
is inactive. In the same vein, if XtSetSensitive() is applied to a Manager widget, the routine sensitizes or
desensitizes all of the children of the widget, including Labels.

If a Label is displaying text, setting the widget insensitive causes the text to be greyed out. This effect is achieved by
s t i p p l i n g t h e t e x t l a b e l . I f a L a b e l i s d i s p l a y i n g a n i m a g e , y o u n e e d t o s p e c i f y t h e
XmNlabelInsensitivePixmap resource to indicate the image that is displayed when the Label is inactive; the
Label does not stipple the image for you. By default, the resource is set to XmUNSPECIFIED_PIXMAP, which means
that the Label will not display a pixmap when it is insensitive. In order to have the Label display a stippled pixmap,
y o u m u s t c r e a t e a b i t m a p b y A N D − i n g a s t i p p l e p a t t e r n o v e r t h e i m a g e a n d t h e n s e t
-XmNlabelInsensitivePixmap to this value.

12 Labels and Buttons 12.1.4 Label Sensitivity

308

12.1.5 Label Alignment

Within the boundaries of a Label widget or gadget, the text or image that is displayed can be left justified, right
justified, or centered. The alignment depends on the value of the XmN-alignment resource, which can have one of
the following values:

 XmALIGNMENT_BEGINNING
 XmALIGNMENT_END
 XmALIGNMENT_CENTER

The default value is XmALIGNMENT_CENTER, which causes the text or pixmap to be centered vertically and
horizontally within the widget or gadget. The XmALIGNMENT_BEGINNING and XmALIGNMENT_END values refer
to the left and right edges of the widget or gadget when the value for XmNstringDirection is set to
XmSTRING_DIRECTION_L_TO_R. If the text used within a Label is read from left−to−right (the default), the
beginning of the string is on the left. However, if the text used is read from right−to−left, the alignment values are
inverted, as should be the value for XmNstringDirection. These values also apply to Labels that display
pixmaps.

If you have a set of Labels that are associated with strings of text that are right justified, all of the Labels should use
the same alignment and string direction settings for consistency. One way to handle this situation is to set the
resources universally (as a class−based resource) for all Labels and subclasses of Labels. For example, if your
application is written for a language that displays text from right−to−left, you may choose to have the following lines
in the application defaults file:

 *XmLabel.stringDirection: string_direction_r_to_l
 *XmLabelGadget.stringDirection: string_direction_r_to_l

Note that the resource must be set for both the widget and gadget classes. You should also be aware that setting the
string direction does not cause the compound strings for the Labels to be automatically converted to the right
direction. Similarly, a Label that uses a compound string with a right−to−left string direction does not automatically
set the XmNstringDirection resource appropriately. These are internationalization issues if you are thinking of
supporting languages that are justified either left−to−right or right−to−left.

The RowColumn manager widget can also be used to enforce consistency by controlling the geometry management of
its children. If you are using a RowColumn to lay out a group of Labels (or objects subclassed from Label, such as
PushButtons), you can tell the RowColumn to align each of its children in a consistent manner using the
XmNentryAlignment resource. This resource takes the same values as the XmNalignment resource for Labels.
If the parent of a Label widget or gadget is a RowColumn with its XmNisAligned resource set to True, the
alignment resource of each of the Label children is forced to the same value as the XmNentryAlignment
resource.

You should note that the alignment is only enforced when the RowColumn resource XmN-rowColumnType is
XmWORK_AREA. If you are using a RowColumn to arrange components in your application, its type should always be
a work area. The other types of the widget are used by the internals of Motif for creating special objects like
MenuBars and PulldownMenus. If you set the XmNentryAlignment resource for other types of RowColumn
widgets, you may or may not see the alignment effects.

In Motif 1.2, there is a new RowColumn resource that affects the vertical alignment of its children that are Labels,
subclasses of Label, and Text widgets. The XmNentryVerticalAlignment resource can take one of the
following values:

 XmALIGNMENT_BASELINE_BOTTOM

12 Labels and Buttons 12.1.5 Label Alignment

309

 XmALIGNMENT_BASELINE_TOP
 XmALIGNMENT_CONTENTS_BOTTOM
 XmALIGNMENT_CENTER
 XmALIGNMENT_CONTENTS_TOP

The resource only takes effect when the children of the RowColumn are arranged in rows, which means that the
XmNorientation is XmHORIZONTAL. The default value is XmALIGNMENT_CENTER, which causes the center of
all of the children in a row to be aligned.

12.1.6 Multi−line and Multi−font Labels

The fonts used within a Label are directly associated with the font list element tags used in the compound string
specified for the XmNlabelString resource. The XmNfontList resource for a Label specifies the mapping
between font list tags and font names that is used when displaying the text. Since a compound string may use multiple
character sets, a Label can display any number of fonts, as specified in the XmNlabelString for the Label. A
compound string may also contain embedded newlines. the source code shows the use of a Label to display a single
compound string that contains a monthly calendar. XtSetLanguageProc() is only available in X11R5; there is
no corresponding function in X11R4. XmFontListEntryCreate() is only available in Motif 1.2; there is no
corresponding function in Motif 1.1. XmFontListAppendEntry() is only available in Motif 1.2;
XmFontListCreate() and XmFontListAdd() are the corresponding functions in Moti f 1.1.
XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* xcal.c −− display a monthly calendar. The month displayed is a
 * single Label widget whose text is generated from the output of
 * the "cal" program found on any UNIX machine. popen() is used
 * to run the program and read its output. Although this is an
 * inefficient method for getting the output of a separate program,
 * it suffices for demonstration purposes. A List widget displays
 * the months and the user can provide the year as argv[1].
 */
 #include <stdio.h>
 #include <X11/Xos.h>
 #include <Xm/List.h>
 #include <Xm/Frame.h>
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/SeparatoG.h>

 int year;
 XmStringTable ArgvToXmStringTable();
 void FreeXmStringTable();

 char *months[] = {
 "January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November", "December"
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, frame, rowcol, label, w;
 XtAppContext app;
 Display *dpy;
 extern void set_month();
 XmFontList fontlist;
 XmFontListEntry entry;

12 Labels and Buttons 12.1.6 Multi−line and Multi−font Labels

310

 XFontStruct *font;
 XmStringTable strs;
 int month_no;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a fontlist based on the fonts we're using. These are the
 * fonts that are going to be hardcoded in the Label and List widgets.
 */
 dpy = XtDisplay (toplevel);
 font = XLoadQueryFont (dpy, "−*−courier−bold−r−*−−18−*");
 entry = XmFontListEntryCreate ("tag1", XmFONT_IS_FONT, font);
 fontlist = XmFontListAppendEntry (NULL, entry);
 font = XLoadQueryFont (dpy, "−*−courier−medium−r−*−−18−*");
 entry = XmFontListEntryCreate ("tag2", XmFONT_IS_FONT, font);
 fontlist = XmFontListAppendEntry (fontlist, entry);
 XtFree (entry);

 if (argc > 1) {
 month_no = 1;
 year = atoi (argv[1]);
 }
 else {
 long time(), t = time(0);
 struct tm *today = localtime (&t);
 year = 1900 + today−>tm_year;
 month_no = today−>tm_mon+1;
 }

 /* The RowColumn is the general layout manager for the application.
 * It contains two children: a Label gadget that displays the calendar
 * month, and a ScrolledList to allow the user to change the month.
 */
 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 /* enclose the month in a Frame for decoration. */
 frame = XtVaCreateManagedWidget ("frame",
 xmFrameWidgetClass, rowcol, NULL);
 label = XtVaCreateManagedWidget ("month",
 xmLabelGadgetClass, frame,
 XmNalignment, XmALIGNMENT_BEGINNING,
 XmNfontList, fontlist,
 NULL);

 /* create a list of month names */
 strs = ArgvToXmStringTable (XtNumber (months), months);
 w = XmCreateScrolledList (rowcol, "list", NULL, 0);
 XtVaSetValues (w,
 XmNitems, strs,
 XmNitemCount, XtNumber(months),
 XmNfontList, fontlist,
 NULL);
 FreeXmStringTable (strs);
 XmFontListFree (fontlist);
 XtAddCallback (w, XmNbrowseSelectionCallback, set_month, label);

12 Labels and Buttons 12.1.6 Multi−line and Multi−font Labels

311

 XtManageChild (w);
 XmListSelectPos (w, month_no, True); /* initialize month */

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback function for the List widget −− change the month */
 void
 set_month(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 register FILE *pp;
 extern FILE *popen();
 char text[BUFSIZ];
 register char *p = text;
 XmString str;
 Widget label = (Widget) client_data;
 XmListCallbackStruct *list_cbs =
 (XmListCallbackStruct *) call_data;

 /* Ask UNIX to execute the "cal" command and read its output */
 sprintf (text, "cal %d %d", list_cbs−>item_position, year);
 if (!(pp = popen (text, "r"))) {
 perror (text);
 return;
 }
 *p = 0;
 while (fgets (p, sizeof (text) − strlen (text), pp))
 p += strlen (p);
 pclose (pp);

 /* display the month using the "tag1" font from the
 * Label gadget's XmNfontList.
 */
 str = XmStringCreateLtoR (text, "tag1");
 XtVaSetValues (label, XmNlabelString, str, NULL);
 XmStringFree (str);
 }

 /* Convert an array of string to an array of compound strings */
 XmStringTable
 ArgvToXmStringTable(argc, argv)
 int argc;
 char **argv;
 {
 XmStringTable new =
 (XmStringTable) XtMalloc ((argc+1) * sizeof (XmString));

 if (!new)
 return (XmStringTable) NULL;

 new[argc] = 0;
 while (−−argc >= 0)
 new[argc] = XmStringCreate (argv[argc], "tag2");
 return new;
 }

12 Labels and Buttons 12.1.6 Multi−line and Multi−font Labels

312

 /* Free the table created by ArgvToXmStringTable() */
 void
 FreeXmStringTable(argv)
 XmStringTable argv;
 {
 register int i;

 if (!argv)
 return;
 for (i = 0; argv[i]; i++)
 XmStringFree (argv[i]);
 XtFree (argv);
 }

The output of this program is shown in the figure.

Output of xcal.c

The principal function in the source code is set_month(). In this function, we call popen() to run the UNIX
program cal and read its input into a buffer. Since we know ahead of time about how much text we are going to read,
text is declared with ample space (BUFSIZ). Each line is read consecutively until fgets() returns NULL, at
which time we close the opened process using pclose() and convert the text buffer into a compound string. This
compound string specifies a font list element tag and it includes newlines because fgets() does not strip newline
characters from the strings it retrieves.

The program displays the calendar for the month corresponding to the selected item in the List, but only as a single
Label widget. If we wanted to display individual days using different fonts (with Sundays grayed out, for example),
then the text buffer would have to be parsed. In this case, separate compound strings would be created using a
different font for the Sunday dates only. Since this exercise is more about manipulating compound strings than it is
about Label widgets, we refer you to Chapter 19, Compound Strings, for a detailed discussion of the use of multiple
fonts in compound strings. If you want to provide the user with the ability to select individual days from the month
displayed, you must parse the dates from the text buffer and you probably want to use separate PushButton widgets
for each date. See the Appendix, Additional Example Programs, for an example of this technique.

12.2 PushButtons

Since the PushButton is subclassed from Label, a PushButton can do everything that a Label can. However, unlike
Labels, PushButtons can interact with the user and invoke functions internal to the underlying application through

12 Labels and Buttons 12.2 PushButtons

313

callback routines. This interactivity is the principal difference between PushButtons and Labels. There are other visual
differences, but these are adjusted automatically by the PushButton widget using Label resources.

<Xm/PushB.h> and <Xm/PushBG.h> are the header files for PushButton widgets and gadgets, respectively. These
objects can be created using XtVaCreateManagedWidget(), as in the following code fragment:

 Widget pushb_w, pushb_g;

 pushb_w = XtVaCreateManagedWidget ("name",
 xmPushButtonWidgetClass, parent,

resource−value−list,
 NULL);

 pushb_g = XtVaCreateManagedWidget ("name",
 xmPushButtonGadgetClass, parent,

resource−value−list,
 NULL);

12.2.1 PushButton Callbacks

The major callback routine associated with the PushButton widget is the XmNactivateCallback. The functions
associated with this resource are called whenever the user activates the PushButton by pressing the left mouse button
over it or by pressing the SPACEBAR when the widget has the keyboard focus.

The other cal lback rout ines associated wi th the PushButton are the XmNarmCal lback and the
XmNdisarmCallback. Each function in an arm callback list is called whenever the user presses the left mouse
button when the pointer is over the PushButton. When the PushButton is armed, the top and bottom shadows are
inverted and the background of the button changes to the arm color. The arm callback does not indicate that the button
has been released. If the user releases the mouse button within the widget, then the activate callback list is invoked.
The arm callback is always called before the activate callback, whether or not the activate callback is even called.

When the user releases the button, the disarm callback list is invoked. When the button is disarmed, its shadow colors
and the background return to their normal state. Like the arm callback, the disarm callback does not guarantee that the
activate callback has been invoked. If the user changes her mind before releasing the mouse button, she can move the
mouse outside of the widget area and then release the button. In this case, only the arm and disarm callbacks are
called. However, the most common case is that the user actually selects and activates the button, in which case the arm
callback is called first, followed by the activate callback and then the disarm callback.

The activate callback function is by far the most useful of the PushButton callbacks. It is generally unnecessary to
register arm and disarm callback functions, unless your application has a specific need to know when the button is
pushed and released, even if it is not activated. the source code demonstrates the use of the various PushButton
callbacks. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* pushb.c −− demonstrate the pushbutton widget. Display one
 * PushButton with a single callback routine. Print the name
 * of the widget and the number of "multiple clicks". This
 * value is maintained by the toolkit.
 */
 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;

12 Labels and Buttons 12.2.1 PushButton Callbacks

314

 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, button;
 void my_callback();
 XmString btn_text;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 btn_text = XmStringCreateLocalized ("Push Here");
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, btn_text,
 NULL);
 XmStringFree (btn_text);
 XtAddCallback (button, XmNarmCallback, my_callback, NULL);
 XtAddCallback (button, XmNactivateCallback, my_callback, NULL);
 XtAddCallback (button, XmNdisarmCallback, my_callback, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 my_callback(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmPushButtonCallbackStruct *cbs =
 (XmPushButtonCallbackStruct *) call_data;

 if (cbs−>reason == XmCR_ARM)
 printf ("%s: armed0, XtName (w));
 else if (cbs−>reason == XmCR_DISARM)
 printf ("%s: disarmed0, XtName (w));
 else
 printf ("%s: pushed %d times0, XtName (w), cbs−>click_count);
 }

The callback structure associated with the PushButton callback routines is XmPushButtonCallbackStruct,
which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 int click_count;
 } XmPushButtonCallbackStruct;

The reason parameter is set to XmCR_ACTIVATE, XmCR_ARM, or XmCR_DISARM depending on the callback that
invoked the callback routine. We use this value to decide what action to take in the callback routine. The event that
caused the callback routine to be invoked is referenced by the event field.

The value of the click_count field reflects how many times the PushButton has been clicked repeatedly. A
repeated button click is one that occurs during a predefined time segment since the last button click. Repeated button
clicks can only be done using the mouse. The time segment that determines whether a button click is repeated is

12 Labels and Buttons 12.2.1 PushButton Callbacks

315

defined by the resource multiClickTime. This resource is not defined by Motif but on a per−display basis; the
value should be left to the user to specify independently from the application. You can get or set this value using the
functions XtGetMultiClickTime() or XtSetMultiClickTime(). The time interval is used by Xt's
translation manager to determine when multiple events are interpreted as a repeat event. The default value is 200
milliseconds (1/5 of a second).

12.2.2 Multiple Button Clicks

Unfortunately, there is no way to determine whether you are about to receive multiple button clicks from a
PushButton. Each time the user activates the PushButton, the arm callback is invoked, followed by the activate
callback, followed by the disarm callback. These three callbacks are invoked regardless of whether multiple clicks
have occurred.

The best way to determine whether multiple button clicks have occurred would be for the disarm callback to be called
only when there are no more button clicks queued. Under this scenario, the same callback function can be used to
determine the end of a multiple button click sequence. However, since the Motif toolkit does not operate this way, we
must approach the task of handling multiple button clicks differently. We handle the situation by setting up our own
timeout routines independently of Motif and handling multiple clicks through the timeout function. Even though we
are going to use an alternate method for handling multiple clicks, we can still use the click_count parameter in the
callback structure provided by the PushButton callback routine. Our technique is demonstrated in the source code
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* multi_click.c −− demonstrate handling multiple PushButton clicks.
 * First, obtain the time interval of what constitutes a multiple
 * button click from the display and pass this as the client_data
 * for the button_click() callback function. In the callback, single
 * button clicks set a timer to expire on that interval and call the
 * function process_clicks(). Double clicks remove the timer and
 * just call process_clicks() directly.
 */
 #include <Xm/PushB.h>

 XtAppContext app;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 void button_click();
 XmString btn_text;
 int interval;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 /* get how long for a double click */
 interval = XtGetMultiClickTime (XtDisplay (toplevel));
 printf ("Interval = %d0, interval);

 btn_text = XmStringCreateLocalized ("Push Here");
 button = XtVaCreateManagedWidget ("button",

12 Labels and Buttons 12.2.2 Multiple Button Clicks

316

 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, btn_text,
 NULL);
 XmStringFree (btn_text);
 XtAddCallback (button, XmNactivateCallback, button_click, interval);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Process button clicks. Single clicks set a timer, double clicks
 * remove the timer, and extended clicks are ignored.
 */
 void
 button_click(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 static XtIntervalId id;
 void process_clicks();
 int interval = (int) client_data;
 XmPushButtonCallbackStruct *cbs =
 (XmPushButtonCallbackStruct *) call_data;

 if (cbs−>click_count == 1)
 id = XtAppAddTimeOut (app, interval, process_clicks, False);
 else if (cbs−>click_count == 2) {
 XtRemoveTimeOut (id);
 process_clicks (True);
 }
 }

 /* This function won't be called until we've established whether
 * or not a single or a double click has occured.
 */
 void
 process_clicks(client_data, id)
 XtPointer client_data;
 XtIntervalId id;
 {
 int double_click = (int) client_data;

 if (double_click)
 puts ("Double click");
 else
 puts ("Single click");
 }

The program displays the same basic PushButton widget. First, it obtains the time interval that constitutes a multiple
button click from the display. This value is passed as the client_data to the PushButton's callback function,
button_click(). When the user first clicks on the PushButton, the callback function is called, and since it is a
single−click at this point, a timer is set to expire on the given time interval. If the timer expires, the function
process_clicks() is called with False as its parameter, which means that a single−click has indeed occurred.
However, if a second button click occurs before the timer expires, the timer is removed and process_clicks() is
called directly with True as its data, to indicate that a double−click has occurred. The function
process_clicks() can be any function that processes single, double, or multiple clicks, depending on how you
modify the example we've provided.

12 Labels and Buttons 12.2.2 Multiple Button Clicks

317

If you run the source code you may find that you get mixed messages about whether an action is a single or double
mouse click. A multiple mouse click means that the user has both pressed and released the mouse button more than
once. It is very common for a user to intend to double click on a button only to find that she really invoked a double
press; she quickly pressed the mouse button twice, but she failed to release it before the required time interval. This
problem makes it difficult to interpret double (multiple) button clicks. It is important that you inform the user of the
proper double−clicking method in any accompanying documentation you provide with your application, as attempting
to program around this problem will definitely cause you great distress.

If you are going to use multiple button clicks for PushButtons, it is important that the -multiple−click actions perform
a more global version of the single−click actions. The reason for this recommendation is that if the user intends to
perform a double click but doesn't click fast enough, the single−click action is invoked instead of the double−click
action. If the two actions are completely different, it can make an application difficult to use. You might also consider
displaying some visual cue to the user about the availability of double−click actions. For example, you could use a
multi−lined label in a PushButton, where the first line indicates the single−click action and the second line specifies
the double−click action. If you use this technique, make sure that your documentation informs the user how to invoke
either of the two actions.

While double−clicking is a popular interface technique among application programmers and it is certainly useful for
computers with single−button mice, it may not be the best interface for all occasions. Possible error conditions may
arise when the user is unfamiliar with single and double−clicking techniques. Users often trip on mouse buttons,
causing unintentional multiple clicks. Also, users frequently intend to do one double click yet succeed in doing two
single clicks. As a result, they get very upset because the application invokes the wrong action twice as opposed to the
right action once. Rather than subjecting your users to possible misinterpretation, it may be better to define an
alternate method for providing separate actions for the same PushButton widget.

For example, you could define an action for a SHIFT−modified button click. This action is easy enough for the user to
do, it is less subject to ambiguity or accidental usage, and it is much easier to program. The callback function only
needs to check the event data structure and see if the SHIFT key is down when the button is activated.

The PushButton looks for and reports multiple button−click actions by default, so if you are not interested in multiple
button clicks, you should set the resource XmNmultiClick to XmMULTICLICK_DISCARD. When multiple clicks
are discarded, only the first of a series of clicks are processed; the rest are discarded without notifying the callback
routine. To turn multiple clicks back on, set the resource to XmMULTICLICK_KEEP.

12.3 ToggleButtons

A ToggleButton is a simple user−interface element that represents a Boolean state. Usually, the widget consists of an
indicator (a square or diamond) with either text or a pixmap on one side of it. The indicator is optional, however, since
the text or pixmap itself can provide the state information of the button. The ToggleButton widget is subclassed from
Label, so ToggleButtons can have their labels set to compound strings or pixmaps and can be aligned in the same
ways and under the same restrictions as Label widgets.

Individually, a ToggleButton might be used to indicate whether a file should be opened in overwrite mode or append
mode, or whether a mail application should update a folder upon process termination. But for the most part, it is when
ToggleButtons are grouped together that they become interesting components of a user interface. A RadioBox is a
group of ToggleButtons in which only one may be on at any given time. Like the old AM car radios, when one button
is pressed in, all of the others are popped out. A CheckBox is a group of ToggleButtons in which each ToggleButton
may be set independently of the others. In a RadioBox the selection indicator is represented by a diamond shape, and
in a CheckBox it is represented by a square. In either case, when the button is on, the indicator is filled with a
highlight color and appears to be pressed in, and when it is off, the indicator appears to be popped out.

12 Labels and Buttons 12.3 ToggleButtons

318

A CheckBox or a RadioBox can often present a set of choices to the user more effectively than a List widget, a
PopupMenu, or a row of PushButtons. In fact, these configurations are so common that Motif provides convenience
routines for creating them: XmCreateRadioBox() and XmCreateSimpleCheckBox(). RadioBoxes and
CheckBoxes are really specialized instances of the RowColumn manager widget that contain ToggleButton children.

12.3.1 Creating ToggleButtons

Applications that use ToggleButtons must include the header file <Xm/ToggleB.h>. ToggleButtons may be created
using XtVaCreateManagedWidget(), as in the following code fragment:

 Widget toggle;

 toggle = XtVaCreateManagedWidget ("name",
 xmToggleButtonWidgetClass, parent,

resource−value−list,
 NULL);

ToggleButtons are also available in the form of gadgets. To use a ToggleButton gadget, you must include the header
file <Xm/ToggleBG.h>. ToggleButton gadgets may be created using XtVaCreateManagedWidget() as follows:

 Widget toggle;

 toggle = XtVaCreateManagedWidget ("name",
 xmToggleButtonGadgetClass, parent,

resource−value−list,
 NULL);

As we'll show you later in this section, it is also possible to create ToggleButtons at the same time as you create their
RowColumn parent. This technique is commonly used when you create a RadioBox or a CheckBox.

the figure shows an example of several different ToggleButtons in various states.

12 Labels and Buttons 12.3.1 Creating ToggleButtons

319

ToggleButton widgets and gadgets

12.3.2 ToggleButton Resources

Since ToggleButtons are fairly simple objects, there are only a few resources associated with them aside from those
inherited from the Label class. Probably the most important of these resources is XmNindicatorType, which
controls whether the selection indicator is a square or a diamond and indicates whether the ToggleButtons are part of a
CheckBox or a RadioBox. The resource can be set to XmN_OF_MANY, which specifies a square−shaped indicator that
indicates that multiple ToggleButtons in the same group can be selected, or XmONE_OF_MANY, which specifies a
diamond−shaped indicator that indicates that only one ToggleButton in the group may be set. Applications rarely set
this resource directly, however, because the convenience routines that create RadioBoxes and CheckBoxes set the
resource automatically.

When you are grouping ToggleButtons together in a single manager widget, the Motif toolkit expects you to use a
RowColumn widget. The RowColumn widget has several resources intrinsic to its class that control the behavior of
ToggleButton children. Setting the RowColumn resource XmNradioBehavior to True automatically changes the
XmN-indicatorType resource of every ToggleButton managed by the RowColumn to XmONE_OF_MANY, which
provides the exclusive RadioBox behavior. Setting XmNradioBehavior to False sets the XmNindicatorType
to XmN_OF_MANY and gives the CheckBox behavior. If you want to use ToggleButtons in a manager widget other
than a RowColumn, you need to set the XmNindicatorType resource for each ToggleButton individually, as well
as manage the state of each button.

Many of the remaining resources are intended mostly for fine−tuning the details of the indicator square or diamond.
These detai ls are straightforward and do not require a great deal of discussion. For example, the
XmNindicatorSize resource can be used to set the width and height of the indicator. There is nothing magical

12 Labels and Buttons 12.3.2 ToggleButton Resources

320

about these sorts of resources or their side effects, so most are either set automatically by the ToggleButton or they
should be left to the user to configure for herself.

12.3.3 ToggleButton Pixmaps

The XmNselectPixmap resource specifies the pixmap to use when a ToggleButton is on (or selected). The
XmNset resource specifies the state of a ToggleButton; the button is selected when the resource is set to True. The
selected pixmap only applies if the XmN-labelType resource is set to XmPIXMAP. XmNlabelType is a Label
class resource, but it applies to ToggleButtons since they are subclassed from Label. the source code demonstrates the
creation of a ToggleButton and the use of the XmNselectPixmap resource. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* toggle.c −− demonstrate a simple toggle button. */
 #include <Xm/ToggleB.h>
 #include <Xm/RowColumn.h>

 void
 toggled(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmToggleButtonCallbackStruct *state =
 (XmToggleButtonCallbackStruct *) call_data;

 printf ("%s: %s0, XtName (widget), state−>set? "on" : "off");
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, toggle;
 XtAppContext app;
 Pixmap on, off;
 Pixel fg, bg;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("_rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 XtVaGetValues (rowcol,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);
 on = XmGetPixmap (XtScreen (rowcol), "switch_on", fg, bg);
 off = XmGetPixmap (XtScreen (rowcol), "switch_off", fg, bg);
 if (on == XmUNSPECIFIED_PIXMAP || off == XmUNSPECIFIED_PIXMAP) {
 puts ("Couldn't load pixmaps");
 exit (1);
 }

12 Labels and Buttons 12.3.3 ToggleButton Pixmaps

321

 toggle = XtVaCreateManagedWidget ("toggle",
 xmToggleButtonWidgetClass, rowcol,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, off,
 XmNselectPixmap, on,
 NULL);
 XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);

 toggle = XtVaCreateManagedWidget ("toggle",
 xmToggleButtonWidgetClass, rowcol,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, off,
 XmNselectPixmap, on,
 NULL);
 XtAddCallback (toggle, XmNvalueChangedCallback, toggled, NULL);

 XtManageChild (rowcol);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output for this program is shown in the figure. The button on the left shows the ToggleButton when it is in the off
state and the button on the right shows it in the on state. The pixmaps illustrate the movement of a simple mechanical
switch. Since the pixmaps make the state of the toggle clear, the square indicator is not really necessary. It can be
turned off by setting XmNindicatorOn to False (its default value is True).

Output of toggle.c

In order to create the pixmaps for the ToggleButtons, we use the function XmGetPixmap(), which is a
general−purpose pixmap loading and caching function. The function needs a foreground and background color for the
pixmap it creates, so we retrieve and use the colors from the RowColumn that is the parent of the ToggleButton.
XmGetPixmap() loads the pixmaps stored in the files switch_on and switch_off in the current directory. The fact
that the pixmap files happen to reside in the current directory is not necessarily the recommended method for using
XmGetPixmap(). For a complete discussion of the function, see Section #spixmaps in Chapter 3, Overview of the
Motif Toolkit. Those files contain the following bitmap definitions:

 #define switch_on_width 16
 #define switch_on_height 16
 static char switch_on_bits[] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x3c,
 0x00, 0x1e, 0x00, 0x0f, 0x80, 0x07, 0xc0, 0x03, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

 #define switch_off_width 16
 #define switch_off_height 16
 static char switch_off_bits[] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x3c, 0x00,

12 Labels and Buttons 12.3.3 ToggleButton Pixmaps

322

 0x78, 0x00, 0xf0, 0x00, 0xe0, 0x01, 0xc0, 0x03, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

The XmNselectInsensitivePixmap resource can be used to specify a third pixmap to be used when the widget
or gadget is insensitive, but in a selected state. When a ToggleButton is insensitive, the user cannot change its value
interactively.

12.3.4 ToggleButton Callbacks

The primary callback routine associated with the ToggleButton is the XmNvalueChangedCallback, which is
invoked when the value of the ToggleButton changes. The ToggleButton also has arm and disarm callbacks that are
analogous to the callbacks in PushButtons. The callback structure associated with the ToggleButton callback routines
is XmToggleButtonCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 int set;
 } XmToggleButtonCallbackStruct;

When the value of the ToggleButton has changed, the reason field is set to XmCR_VALUE_CHANGED and the set
field indicates the current state of the widget.

You can determine the state of a ToggleButton at any time using either XmToggleButtonGetState() or
XmToggleButtonGadgetGetState(). These functions take the following form:

 Boolean
 XmToggleButtonGetState(toggle_w)
 Widget toggle_w;

 Boolean
 XmToggleButtonGadgetGetState(toggle_w)
 Widget toggle_w;

Both of the routines return the state of the specified ToggleButton. XmToggleButtonGetState() determines if
the toggle_w parameter is a widget or a gadget, so you can use the routine on either a ToggleButton widget or a
ToggleButton gadget. XmToggleButtonGadgetSetState() can only be used on a gadget.

You can explicitly set the state of a ToggleButton using similar functions: XmToggleButtonSetState() and
XmToggleButtonGadgetSetState(). These functions take the following form:

 void
 XmToggleButtonSetState(toggle_w, state, notify)
 Widget toggle_w;
 Boolean state;
 Boolean notify;

 void
 XmToggleButtonGadgetSetState(toggle_w, state, notify)
 Widget toggle_w;
 Boolean state;
 Boolean notify;

The state argument specifies the state of the ToggleButton. The notify parameter allows you to specify whether
or not the XmNvalueChangedCallback of the ToggleButton is called when the state is changed. Just like the

12 Labels and Buttons 12.3.4 ToggleButton Callbacks

323

corresponding get function, XmToggleButtonSetState() determines if its parameter is a widget or gadget
internally, so you can use it on either a ToggleButton widget or a ToggleButton gadget.
XmToggleButtonGadgetSetState() can only be used on a gadget.

One important point to make about ToggleButtons is that, unlike PushButtons and DrawnButtons, the callback is not
typically used to take an action in the application. This point becomes clearer with groups of ToggleButtons, which
are commonly used to set the state of various variables. When the user has set the state as desired, she might tell the
application to apply the settings by clicking on an associated PushButton. For this reason, the callback routine for a
ToggleButton may simply set the state of a global variable; the value can then be used by other application functions.

Of course, like almost every object in Motif, a ToggleButton can be put to many uses. For example, a single
ToggleButton could be used to swap the foreground and background colors of a window as soon as the user selects the
button. An application that controls a CD player could have a Pause button represented by a ToggleButton.

12.3.5 RadioBoxes

When a group of ToggleButtons are used as part of an interface, it is in the form of a RadioBox or a CheckBox. The
primary difference between the two is the selection of the ToggleButtons within. In a RadioBox, only one item may be
selected at a time (analogous to old−style AM car radios). You push one button and the previously set button pops out.
Examples of exclusive settings in a RadioBox might be baud rate settings for a communications program or U.S.
versus European paper sizes in the page setup dialog of a word processing -program.

A RadioBox is implemented using a combination of ToggleButton widgets or gadgets and a RowColumn manager
widget. As discussed in Chapter 8, Manager Widgets, the RowColumn widget is a general−purpose composite widget
that manages the layout of its children. The RowColumn has special resources that allow it to act as a RadioBox for a
group of ToggleButtons.

In a RadioBox, only one of the buttons may be set at any given time. This functionality is enforced by the
RowColumn when the resource XmNradioBehavior is set to True. For true RadioBox effect, the
XmNradioAlwaysOne resource can also be set to tell the RowColumn that one of the ToggleButtons should always
be set. Since you have the freedom to add or delete ToggleButtons from a RowColumn, regardless of their state, if you
are not careful you can violate this aspect of radio behavior. Also, XmNradioBehavior is currently not a
dynamically settable resource. If you want to use it, you should create the RowColumn widget with this resource set.
Setting it using XtVaSetValues() after widget creation may not result in the desired behavior. Whenever
XmNradioBehavior is set, the RowColumn automatically sets the XmNindicatorType resource to
XmONE_OF_MANY and the XmNvisibleWhenOff resource to True for all of its ToggleButton children.
Furthermore, the XmNisHomogeneous resource on the RowColumn is forced to True to ensure that no other kinds
of widgets can be contained in that RowColumn instance.

Motif provides the convenience function XmCreateRadioBox() to automatically create a RowColumn widget that
is configured as a RadioBox. This routine creates a RowColumn widget with XmNisHomogeneous set to True,
XmNentryClass set to xmToggleButtonGadgetClass, XmNradioBehavior set to True, and
XmNpacking set to XmPACK_COLUMN. Keep in mind that unless XmNisHomogeneous is set to True, there is
nothing restricting a RadioBox from containing other classes as well as ToggleButtons. Whether the RowColumn is
homogeneous or not, the toggle behavior is not affected. Although the Motif convenience function sets the
homogeneity, i t is not a requirement. Pr ior to Moti f 1.1.1, XmCreateRadioBox() actual ly set
XmNisHomogeneous to False rather than True, which is a bug. If your code relies on the bug and now breaks,
all you need to do is add code to set XmNisHomogeneous to False when you create your RadioBox. For example,
you might want a RadioBox to contain a Label, or perhaps even some other control area, like a Command widget.

12 Labels and Buttons 12.3.5 RadioBoxes

324

the source code contains a program that creates and uses a RadioBox. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4.

 /* simple_radio.c −− demonstrate a simple radio box. Create a
 * box with 3 toggles: "one", "two" and "three". The callback
 * routine prints the most recently selected choice. Maintain
 * a global variable that stores the most recently selected.
 */
 #include <Xm/ToggleBG.h>
 #include <Xm/RowColumn.h>

 int toggle_item_set;

 void
 toggled(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int which = (int) client_data;
 XmToggleButtonCallbackStruct *state =
 (XmToggleButtonCallbackStruct *) call_data;

 printf ("%s: %s0, XtName (widget), state−>set? "on" : "off");
 if (state−>set)
 toggle_item_set = which;
 else
 toggle_item_set = 0;
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, radio_box, one, two, three;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 radio_box = XmCreateRadioBox (toplevel, "radio_box", NULL, 0);

 one = XtVaCreateManagedWidget ("One",
 xmToggleButtonGadgetClass, radio_box, NULL);
 XtAddCallback (one, XmNvalueChangedCallback, toggled, 1);

 two = XtVaCreateManagedWidget ("Two",
 xmToggleButtonGadgetClass, radio_box, NULL);
 XtAddCallback (two, XmNvalueChangedCallback, toggled, 2);

 three = XtVaCreateManagedWidget ("Three",
 xmToggleButtonGadgetClass, radio_box, NULL);
 XtAddCallback (three, XmNvalueChangedCallback, toggled, 3);

 XtManageChild (radio_box);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);

12 Labels and Buttons 12.3.5 RadioBoxes

325

 }

The program creates three ToggleButtons inside of a RadioBox. When the user selects one of the buttons, the
previously−set widget is toggled off, and the XmNvalueChangedCallback routine is called. Notice that the
routine is called twice for each selection: the first time to notify that the previously set widget has been turned off, and
the second time to notify that the newly set widget has been turned on. The output of the program is shown in the
figure.

Output of radio_box.c

The global variable toggle_item_set indicates which of the three selections is on. The value of
toggle_item_set is accurate at any given time because it is either set to the most currently selected object or it is
set to 0. In a real application, this global variable would be used to store the state of the buttons, so that other
application functions could reference them.

You should beware of lengthy callback lists, however. If you have more than one function in the callback list for the
ToggleButtons (unlike the situation shown above), the entire list is going to be called twice. A zero value for
toggle_item_set indicates that you are in the first of two phases of the toggling mechanism. In this case, you can
fall through your callback lists, as the list is called again with the value set to the recently selected toggle item.

Motif provides another RadioBox creation routine, XmVaCreateSimpleRadioBox(), for creating simple
RadioBoxes. If a RadioBox only has one callback associated with it and you only need to know which button has been
selected, this routine may be used. The form of the function is:

 XmVaCreateSimpleRadioBox(parent, name, button_set, callback, ..., NULL)
 Widget parent;
 String name;
 int button_set;
 void *callback;

In addition to the specified parameters, the function also accepts a NULL−terminated list of resource−value pairs that
apply to the RowColumn widget that acts as the RadioBox. You can specify any normal RowColumn resources in this
list, as well as the value XmVaRADIOBUTTON, which is a convenient method for specifying a button that is to be
created inside the RadioBox. This parameter is followed by four additional arguments: a label of type XmString,
a mnemonic of type XmKeySym, an accelerator of type String, and accelerator_text (also of type
XmString) that is used to display the accelerator in the widget. Only the label argument has any effect through
Motif 1.2 and all subreleases. You can use XmVaRADIOBUTTON multiple times in the same call to
XmVaCreateSimpleRadioBox(), so that you can create an entire group of ToggleButtons in one function call.

the source code contains an example of XmVaCreateSimpleRadioBox(). This program is functionally identical

12 Labels and Buttons 12.3.5 RadioBoxes

326

to the previous example. XtSetLanguageProc() is only available in X11R5; there is no corresponding function
in X11R4. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* simple_radio.c −− demonstrate a simple radio box by using
 * XmVaCreateSimpleRadioBox(). Create a box with 3 toggles:
 * "one", "two" and "three". The callback routine prints
 * the most recently selected choice.
 */
 #include <Xm/RowColumn.h>

 void
 toggled(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int which = (int) client_data;
 XmToggleButtonCallbackStruct *state =
 (XmToggleButtonCallbackStruct *) call_data;

 printf ("%s: %s0, XtName (widget), state−>set? "on" : "off");
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, radio_box;
 XtAppContext app;
 XmString one, two, three;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 one = XmStringCreateLocalized ("One");
 two = XmStringCreateLocalized ("Two");
 three = XmStringCreateLocalized ("Three");
 radio_box = XmVaCreateSimpleRadioBox (toplevel, "radio_box",
 0, /* the inital choice */
 toggled, /* the callback routine */
 XmVaRADIOBUTTON, one, NULL, NULL, NULL,
 XmVaRADIOBUTTON, two, NULL, NULL, NULL,
 XmVaRADIOBUTTON, three, NULL, NULL, NULL,
 NULL);
 XmStringFree (one);
 XmStringFree (two);
 XmStringFree (three);

 XtManageChild (radio_box);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

12 Labels and Buttons 12.3.5 RadioBoxes

327

12.3.6 CheckBoxes

A CheckBox is similar to a RadioBox, except that there is no restriction on how many items may be selected at once.
A word processing program might use a CheckBox for non-exclusive settings, such as whether font smoothing,
bitmap smoothing, or both, should be applied.

Like RadioBoxes, CheckBoxes are implemented using RowColumn widgets and ToggleButton children. To allow
multiple items to be selected, the XmNradioBehavior resource is set to False. The convenience routine
XmVaCreateSimpleCheckBox() works just like the radio box creation routine, except that it turns off the
XmNradioBehavior resource. Rather than using this function, we can simply create a common RowColumn
widget without the aid of convenience functions and add ToggleButton children. With this technique, we have more
direct control over the resources that are set in the RowColumn, since we can specify exactly which ones we want
using the varargs interface for creating the widget.

the source code demons t ra tes how to c rea te a CheckBox w i th a regu la r RowColumn w idge t .
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* toggle_box.c −− demonstrate a homebrew ToggleBox. A static
 * list of strings is used as the basis for a list of toggles.
 * The callback routine toggled() is set for each toggle item.
 * The client data for this routine is set to the enumerated
 * value of the item with respect to the entire list. This value
 * is treated as a bit which is toggled in "toggles_set" −− a
 * mask that contains a complete list of all the selected items.
 * This list is printed when the PushButton is selected.
 */
 #include <Xm/ToggleBG.h>
 #include <Xm/PushBG.h>
 #include <Xm/SeparatoG.h>
 #include <Xm/RowColumn.h>

 unsigned long toggles_set; /* has the bits of which toggles are set */

 char *strings[] = {
 "One", "Two", "Three", "Four", "Five",
 "Six", "Seven", "Eight", "Nine", "Ten",
 };

 /* A RowColumn is used to manage a ToggleBox (also a RowColumn) and
 * a PushButton with a separator gadget in between.
 */
 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, toggle_box, w;
 XtAppContext app;
 void toggled(), check_bits();
 int i;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcol = XtVaCreateManagedWidget ("rowcolumn",
 xmRowColumnWidgetClass, toplevel,

12 Labels and Buttons 12.3.6 CheckBoxes

328

 NULL);

 toggle_box = XtVaCreateWidget ("togglebox",
 xmRowColumnWidgetClass, rowcol,
 XmNpacking, XmPACK_COLUMN,
 XmNnumColumns, 2,
 NULL);

 /* simply loop thru the strings creating a widget for each one */
 for (i = 0; i < XtNumber (strings); i++) {
 w = XtVaCreateManagedWidget (strings[i],
 xmToggleButtonGadgetClass, toggle_box, NULL);
 XtAddCallback (w, XmNvalueChangedCallback, toggled, i);
 }

 XtVaCreateManagedWidget ("sep",
 xmSeparatorGadgetClass, rowcol, NULL);
 w = XtVaCreateManagedWidget ("Check Toggles",
 xmPushButtonGadgetClass, rowcol, NULL);
 XtAddCallback (w, XmNactivateCallback, check_bits, NULL);

 XtManageChild (rowcol);
 XtManageChild (toggle_box);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* callback for all ToggleButtons. */
 void
 toggled(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int bit = (int) client_data;
 XmToggleButtonCallbackStruct *toggle_data =
 (XmToggleButtonCallbackStruct *) call_data;

 if (toggle_data−>set) /* if the toggle button is set, flip its bit */
 toggles_set |= (1 << bit);
 else /* if the toggle is "off", turn off the bit. */
 toggles_set &= ~(1 << bit);
 }

 void
 check_bits(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int i;

 printf ("Toggles set:");
 for (i = 0; i < XtNumber (strings); i++)
 if (toggles_set & (1<<i))
 printf (" %s", strings[i]);
 putchar ('0);
 }

The output of this program is shown in the figure.

12 Labels and Buttons 12.3.6 CheckBoxes

329

Output of toggle_box.c

This example is similar to the previous RadioBox examples, except that since more than one of the buttons may be set
at a time in a CheckBox, we can no longer use toggle_item_set the way we did in the previous examples.
Instead, we are going to change its name to toggles_set and its type to unsignedlong. This time we are going
to use the variable as a mask, which means that its individual bits have meaning, rather than the combined value of the
variable. The bits indicate which of the ToggleButtons have been set. Each time a ToggleButton changes its value, the
callback routine flips the corresponding bit in the mask. We can therefore determine at any given time which buttons
are set and which are not. The unsignedlong type can only represent up to 32 ToggleButtons. If more buttons are
used within the CheckBox, a new mechanism is needed, although the basic design presented here can still be used.

The PushButton in the program provides a way to check the state of all of the ToggleButtons. The callback routine for
the PushButton prints the strings of those buttons that are selected by looping through the toggles_set variable
and checking for bits that have been set.

One interesting aspect of this program is that it works just as well if the CheckBox is a RadioBox. To test this
statement, we can run the program again with the radioBehavior resource set to True via the −xrm
command−line option:

 toggle_box −xrm "*radioBehavior: True"

The result is shown in the figure.

12 Labels and Buttons 12.3.6 CheckBoxes

330

Output of toggle_box.c with radioBehavior set to True

As you can see, simply changing this single RowColumn resource completely changes the appearance of all the
ToggleButtons.

12.4 ArrowButtons

An ArrowButton is just like a PushButton, except that it only displays a directional arrow symbol. The arrow can
point up, down, left, or right. Motif provides both widget and gadget versions of the ArrowButton; the associated
header files are <Xm/ArrowB.h> and <Xm/ArrowBG.h>. the source code shows a program that creates four
ArrowButtons, one for each direction. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

 /* arrow.c −− demonstrate the ArrowButton widget.
 * Have a Form widget display 4 ArrowButtons in a
 * familiar arrangement.
 */
 #include <Xm/ArrowBG.h>
 #include <Xm/Form.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, form;
 Display *dpy;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 dpy = XtDisplay (toplevel);
 /* Rather than listing all these resources in an app−defaults file,
 * add them directly to the database for this application only. This
 * would be virtually equivalent to hard−coding values, since these
 * resources will override any other specified external to this file.

12 Labels and Buttons 12.4 ArrowButtons

331

 */
 XrmPutStringResource
 (&dpy−>db, "*form*topAttachment", "attach_position");
 XrmPutStringResource
 (&dpy−>db, "*form*leftAttachment", "attach_position");
 XrmPutStringResource
 (&dpy−>db, "*form*rightAttachment", "attach_position");
 XrmPutStringResource
 (&dpy−>db, "*form*bottomAttachment", "attach_position");

 form = XtVaCreateWidget ("form", xmFormWidgetClass, toplevel,
 XmNfractionBase, 3,
 NULL);

 XtVaCreateManagedWidget ("arrow1",
 xmArrowButtonGadgetClass, form,
 XmNtopPosition, 0,
 XmNbottomPosition, 1,
 XmNleftPosition, 1,
 XmNrightPosition, 2,
 XmNarrowDirection, XmARROW_UP,
 NULL);

 XtVaCreateManagedWidget ("arrow2",
 xmArrowButtonGadgetClass, form,
 XmNtopPosition, 1,
 XmNbottomPosition, 2,
 XmNleftPosition, 0,
 XmNrightPosition, 1,
 XmNarrowDirection, XmARROW_LEFT,
 NULL);

 XtVaCreateManagedWidget ("arrow3",
 xmArrowButtonGadgetClass, form,
 XmNtopPosition, 1,
 XmNbottomPosition, 2,
 XmNleftPosition, 2,
 XmNrightPosition, 3,
 XmNarrowDirection, XmARROW_RIGHT,
 NULL);

 XtVaCreateManagedWidget ("arrow4",
 xmArrowButtonGadgetClass, form,
 XmNtopPosition, 2,
 XmNbottomPosition, 3,
 XmNleftPosition, 1,
 XmNrightPosition, 2,
 XmNarrowDirection, XmARROW_DOWN,
 NULL);

 XtManageChild (form);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

the figure shows the output of this program.

12 Labels and Buttons 12.4 ArrowButtons

332

The four ArrowButton directions

The size of the arrow−shaped image is calculated dynamically based on the size of the widget itself. If the widget is
resized for some reason, the directional arrow grows or shrinks to fill the widget. The XmNarrowDirection
resource controls the direction of the arrow displayed by an ArrowButton. This resource may have one of the
following values:

 XmARROW_UP
 XmARROW_DOWN
 XmARROW_LEFT
 XmARROW_RIGHT

ArrowButtons are useful if you want to provide redundant interface methods for certain widgets. For example, you
could use ArrowButtons to move the viewport of a ScrolledWindow. Redundancy, when used appropriately, can be an
important part of a graphical user interface. Many users may not adapt well to certain interface controls, such as
PulldownMenus in MenuBars or keyboard accelerators, while they are perfectly comfortable with iconic controls such
as ArrowButtons and PushButtons displaying pixmaps. ArrowButtons are also useful if you want to build your own
interface for an object that is not part of the Motif widget set.

ArrowButton widgets and gadgets work in the same way as PushButtons. ArrowButtons have an
XmNactivateCallback, an XmNarmCallback, an XmNdisarmCallback, and a XmNmultiClick
resource. The callback routines all take a parameter of type XmArrowButtonCallbackStruct, which is defined
as follows:

 typedef struct {
 int reason;
 XEvent *event;
 int click_count;
 } XmArrowButtonCallbackStruct;

This callback structure is identical to the one used for PushButtons.

ArrowButtons are commonly used to increment and decrement a value, a position, or another type of data by some
arbitrary amount. If the amount being incremented or decremented is sufficiently small in comparison to the total size
of the object, it is convenient for the user if you give her the ability to change the value quickly. For example, we can
emulate the activate callback routine being called continuously when the user holds down the mouse button over an
ArrowButton widget. This functionality is not a feature of the ArrowButton; it is something we have to add ourselves.
To implement this feature, we use an Xt timer as demonstrated in the source code XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* arrow_timer.c −− demonstrate continuous callbacks using

12 Labels and Buttons 12.4 ArrowButtons

333

 * ArrowButton widgets. Display up and down ArrowButtons and
 * attach arm and disarm callbacks to them to start and stop timer
 * that is called repeatedly while the button is down. A label
 * that has a value changes either positively or negatively
 * by single increments while the button is depressed.
 */
 #include <Xm/ArrowBG.h>
 #include <Xm/Form.h>
 #include <Xm/RowColumn.h>
 #include <Xm/LabelG.h>

 XtAppContext app;
 Widget label;
 XtIntervalId arrow_timer_id;
 typedef struct value_range {
 int value, min, max;
 } ValueRange;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget w, toplevel, rowcol;
 void start_stop();
 ValueRange range;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 w = XtVaCreateManagedWidget ("arrow_up",
 xmArrowButtonGadgetClass, rowcol,
 XmNarrowDirection, XmARROW_UP,
 NULL);
 XtAddCallback (w, XmNarmCallback, start_stop, 1);
 XtAddCallback (w, XmNdisarmCallback, start_stop, 1);

 w = XtVaCreateManagedWidget ("arrow_dn",
 xmArrowButtonGadgetClass, rowcol,
 XmNarrowDirection, XmARROW_DOWN,
 NULL);
 XtAddCallback (w, XmNarmCallback, start_stop, −1);
 XtAddCallback (w, XmNdisarmCallback, start_stop, −1);

 range.value = 0;
 range.min = −50;
 range.max = 50;
 label = XtVaCreateManagedWidget ("label",
 xmLabelGadgetClass, rowcol,
 XtVaTypedArg, XmNlabelString, XmRString, "0 ", 3,
 XmNuserData, &range,
 NULL);

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);

12 Labels and Buttons 12.4 ArrowButtons

334

 XtAppMainLoop (app);
 }

 /* start_stop is used to start or stop the incremental changes to
 * the label's value. When the button goes down, the reason is
 * XmCR_ARM and the timer starts. XmCR_DISARM disables the timer.
 */
 void
 start_stop(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 int incr = (int) client_data;
 XmArrowButtonCallbackStruct *cbs =
 (XmArrowButtonCallbackStruct *) call_data;
 void change_value();

 if (cbs−>reason == XmCR_ARM)
 change_value (incr, 1);
 else if (cbs−>reason == XmCR_DISARM)
 XtRemoveTimeOut (arrow_timer_id);
 }

 /* change_value is called each time the timer expires. This function
 * is also used to initiate the timer. The "id" represents that timer
 * ID returned from the last call to XtAppAddTimeOut(). If id == 1,
 * the function was called from start_stop(), not a timeout. If the value
 * has reached its maximum or minimum, don't restart timer, just return.
 * If id == 1, this is the first timeout so make it be longer to allow
 * the user to release the button and avoid getting into the "speedy"
 * part of the timeouts.
 */
 void
 change_value(client_data, id)
 XtPointer client_data;
 XtIntervalId id;
 {
 ValueRange *range;
 char buf[8];
 int incr = (int) client_data;

 XtVaGetValues (label, XmNuserData, &range, NULL);
 if (range−>value + incr > range−>max ||
 range−>value + incr < range−>min)
 return;
 range−>value += incr;
 sprintf (buf, "%d", range−>value);
 XtVaSetValues (label,
 XtVaTypedArg, XmNlabelString, XmRString, buf, strlen(buf),
 NULL);
 arrow_timer_id =
 XtAppAddTimeOut (app, id==1? 500 : 100, change_value, incr);
 }

The output of this program is shown in the figure.

12 Labels and Buttons 12.4 ArrowButtons

335

Output of arrow_timer.c

The program creates up and down ArrowButtons and attaches arm and disarm callbacks that start and stop an internal
timer. Each time the timer expires, the value displayed by the Label changes incrementally by one. The timer remains
on as long as the button is down. We know that the button has been released when the disarm event occurs.

The function responsible for this behavior is start_stop(); it is installed for both the arm and disarm callback.
When the button is pressed, the reason is XmCR_ARM, and the timer starts. When the button is released, the disarm
callback is invoked, the reason is XmCR_DISARM, and the timer is disabled. The start_stop() routine initiates
the timer by calling change_value(). Each time the timer expires, change_value() is also called, which
means that the function is called repeatedly while the button is pressed. The id represents the ID of the timer that
recently expired from the last call to XtAppAddTimeOut(). If the value is one, the function was called from
start_stop(), not as a timeout. We don't restart the timer if the value has reached its maximum or minimum
value. If id is one, we know that this is the initiating call, so we make the first timeout last longer to allow the user to
release the button before getting into the "speedy" timeouts. Otherwise, the time out occurs every 100 milliseconds.

If you experiment with the program, you can get a feel for how the functions work and modify some of the
hard−coded values, such as the timeout values. While we demonstrate this technique with ArrowButtons, it can also
be applied to a PushButton or any other widget that provides arm and disarm callbacks.

12.5 DrawnButtons

DrawnButtons are similar to PushButtons, except that they also have callback routines for Expose and
ConfigureNotify events. Whenever a DrawnButton is exposed or resized, the corresponding callback routine is
responsible for redisplaying the contents of the button. The widget does not handle its own repainting. These callbacks
are invoked anytime the widget needs to redraw itself, even if it is a result of a change to a resource such as
XmN-shadowType, XmNshadowThickness, or the foreground or background color of the widget.

The purpose of the DrawnButton is to allow you to draw into it while maintaining complete control over what the
widget displays. Unlike with a PushButton, you are in control of the repainting of the surface area of the widget, not
including the beveled edges that give it a 3D effect. To provide a dynamically changing pixmap using a PushButton
widget, you would have to change the XmNlabelPixmap resource using XtVaSetValues(). Unfortunately, this
method results in an annoying flickering effect because the PushButton redisplays itself entirely whenever its pixmap
changes. By using the DrawnButton widget, you can dynamically change its display by rendering graphics directly
onto the window of the widget using any Xlib routines such as XDrawLine() or XCopyArea(). This tight control
may require more work on your part, but the feedback to the user is greatly improved over the behavior of the
PushButton.

DrawnButtons are created similarly to PushButtons and ArrowButtons. However, because the widget provides you
with its own drawing area, there is no corresponding gadget version of this object. The associated header file is
<Xm/DrawnB.h> and it must be included by files that create the widget. the source code shows a simple example of
how a DrawnButton can be created. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

12 Labels and Buttons 12.5 DrawnButtons

336

 /* drawn.c −− demonstrate the DrawnButton widget by drawing a
 * common X logo into its window. This is hardly much different
 * from a PushButton widget, but the DrawnButton isn't much
 * different, except for a couple more callback routines...
 */
 #include <Xm/DrawnB.h>
 #include <Xm/BulletinB.h>

 Pixmap pixmap;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, bb, button;
 Pixel fg, bg;
 Dimension ht, st;
 void my_callback();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 bb = XtVaCreateManagedWidget ("bb",
 xmBulletinBoardWidgetClass, toplevel, NULL);

 XtVaGetValues (bb,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);
 pixmap = XmGetPixmap (XtScreen (bb), "xlogo64", fg, bg);

 button = XtVaCreateManagedWidget ("button",
 xmDrawnButtonWidgetClass, bb,
 NULL);

 XtVaGetValues (button,
 XmNhighlightThickness, &ht,
 XmNshadowThickness, &st,
 NULL);

 XtVaSetValues (button,
 XmNwidth, 2 * ht + 2 * st + 64,
 XmNheight, 2 * ht + 2 * st + 64,
 NULL);

 XtAddCallback (button, XmNactivateCallback, my_callback, NULL);
 XtAddCallback (button, XmNexposeCallback, my_callback, NULL);
 XtAddCallback (button, XmNresizeCallback, my_callback, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 my_callback(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;

12 Labels and Buttons 12.5 DrawnButtons

337

 {
 XmDrawnButtonCallbackStruct *cbs =
 (XmDrawnButtonCallbackStruct *) call_data;
 if (cbs−>reason == XmCR_ACTIVATE)
 printf ("%s: pushed %d times0, XtName(w), cbs−>click_count);
 else if (cbs−>reason == XmCR_EXPOSE) {
 Dimension ht, st;

 XtVaGetValues (w,
 XmNhighlightThickness, &ht,
 XmNshadowThickness, &st,
 NULL);

 XtVaSetValues (w,
 XmNwidth, 2 * ht + 2 * st + 64,
 XmNheight, 2 * ht + 2 * st + 64,
 NULL);

 XCopyArea (XtDisplay (w), pixmap, XtWindow (w),
 XDefaultGCOfScreen (XtScreen (w)), 0, 0, 64, 64,
 ht + st, ht + st);
 }
 else /* XmCR_RESIZE */
 puts ("Resize");
 }

The program simply displays the X Window System logo as shown in the figure.

Output of drawn.c

A s ing le ca l lback rout ine, my_cal lback() , i s spec i f ied for the XmNact iva teCal lback ,
XmNexposeCallback, and XmNresizeCallback callbacks. The callback structure associated with the
DrawnButton is called the XmDrawnButtonCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Window window;
 int click_count;
 } XmDrawnButtonCallbackStruct;

The window field of the structure is the window ID of the DrawnButton widget. This value is the same as that
returned by XtWindow(). The my_callback() callback routine checks the value of the reason field to
determine which action to take. The reason can be one of the following values: In some versions of the Motif 1.1

12 Labels and Buttons 12.5 DrawnButtons

338

toolkit, the event field of this callback structure is NULL when the reason is XmCR_RESIZE. As a result, you
cannot use the event structure to provide you with the new dimensions of the widget. To query the widget's size, you
must use XtVaGetValues() or possibly XtQueryGeometry(). The event field is also NULL when the user
activates the button using the keyboard rather than the mouse.

 XmCR_ACTIVATE
 XmCR_ARM
 XmCR_DISARM
 XmCR_EXPOSE
 XmCR_RESIZE

When the reason is XmCR_EXPOSE, the callback routine handles drawing the X Window System logo in the
DrawnButton. Since the widget takes care of drawing its own highlight and shadow, we have to be careful not to draw
over these areas.

Since all of the rendering in a DrawnButton is the responsibility of the application, you must decide whether you want
to render the graphics differently when the button is insensitive. Since the DrawnButton is subclassed from the Label
class, you can provide a XmNlabelPixmap and XmNlabelInsensitivePixmap if you like, but in this case
you might as well use a PushButton instead of a DrawnButton.

In Chapter 20, Signal Handling, we present an example that shows how DrawnButtons can be used to construct an
application manager. An application manager is a program that contains a set of icons, where each icon corresponds
to a program. When the user pushes one of the buttons, the corresponding program is run. The button deactivates itself
so that only one instance of each application can run at a time. There is no particular reason for this design restriction
aside from the fact that it demonstrates the use of the visual resources of the DrawnButton widget.

The XmNpushButtonEnabled resource of the DrawnButton indicates whether or not the DrawnButton should
look and act like a PushButton. When the value is False (the default), the DrawnButton displays whatever contents
you put in it as well as a shadow border. The style of the shadow is specified by the XmNshadowType resource,
which can be set to one of the following values:

 XmSHADOW_IN
 XmSHADOW_OUT
 XmSHADOW_ETCHED_IN
 XmSHADOW_ETCHED_OUT

When XmNpushButtonEnabled is False, the button does not provide any feedback to the user when the button
is activated.

When the value of XmNpushButtonEnabled is set to True, the DrawnButton behaves like a PushButton and
does provide feedback to the user when the button is activated. The shadow border for the button is always drawn in
the XmSHADOW_IN style, regardless of the setting of the XmNshadowType resource. When the button is activated,
the shadow is reversed, just as for a PushButton.

12.6 Summary

The Label class acts as a superclass for more widgets than any other widget in the Motif toolkit and as a result, its use
is rather broad. We have presented the fundamentals of Labels, PushButtons, ToggleButtons, ArrowButtons, and
DrawnButtons in this chapter. For additional information on these widgets, especially their uses in menu systems, see
Chapter 4, The Main Window, and Chapter 15, Menus. Examples of all these widgets are also liberally spread
throughout the rest of the book.

12 Labels and Buttons 12.6 Summary

339

12.7 Exercise

The following exercise is intended to stimulate and encourage other creative uses of labels and buttons.

Generic X windows have a background pixmap property that can be set using
XSetWindowBackgroundPixmap(). See Volume One, Xlib Programming Manual, for details on
XSetWindowBackgroundPixmap(). Whenever the background pixmap is set, the image is tiled on the
window. If the window is larger than the image, the image is replicated in a checkerboard fashion until the
window's background is filled; if the window is the same size or smaller than the image, the image is centered
in the window. The image is automatically rendered into the window appropriately by the server whenever
necessary. Since widgets have windows, the X Toolkit Intrinsics provides a resource for the Core widget class
that allows you to set the background pixmap using XtN-backgroundPixmap. (Motif's
XmNbackgroundPixmap resource is identical except that the naming convention provides consistency
among resource names.) Write a program that displays a Label that contains both graphics and a text label by
setting both XmNlabelString and XmNbackgroundPixmap to appropriate values.

•

12 Labels and Buttons 12.7 Exercise

340

13 The List Widget

This chapter describes another control that the user can manipulate. The List widget displays a number of text choices
that the user can select interactively.

Almost every application needs to display lists of choices to the user. This task can be accomplished in many ways,
depending on the nature of the choices. For example, a group of ToggleButtons is ideal for displaying configuration
settings that can be individually set and unset and then applied all at once. A list of commands can be displayed in a
PopupMenu, or for a more permanent command palette, a RowColumn or Form widget can manage a group of
PushButton widgets. But for displaying a list of text choices, such as a list of files to be opened or a list of fonts to be
applied to text, nothing beats a List widget.

A List widget displays a single column of text choices that can be selected or deselected using either the mouse or the
keyboard. Each choice is represented by a single−line text element specified as a compound string. the figure shows a
typical List widget.

A List widget with two selected items

Internally, the List widget operates on an array of compound strings that are defined by the application. (See
Chapter 19, Compound Strings, for a discussion of how to create and manage compound strings.) Compound strings
that use multiple fonts are allowed, but the List widget does not render these items very well. Each string is an element
of the array, with the first position starting at one, as opposed to position zero, which is used in C−style arrays. The
user can select a particular choice by clicking and releasing the left mouse button on the item. All of the items in the
list are available to the user for selection at all times; you cannot make individual items unselectable. What happens
when an item is selected is up to the application callback routines invoked by the List widget.

341

A List widget is typically a child of a ScrolledWindow, so that the List is displayed with ScrollBars attached to it. The
selection mechanism for the List does not change, so the user can still select items as before, but the user can now use
the ScrollBars to adjust the items in the list that are visible.

The List widget supports four different selection policies:

In single selection mode, selecting an item toggles its selection state and deselects any other selected item.
Single selection Lists should be used when only one of many choices may be selected at a time, although
under this policy there may also be no items selected. Some possible uses for a single selection List include
choosing a font family or style for text input and choosing a color for a bitmap editor.

•

In browse selection mode, selecting a new item deselects any other selected item, but there can never be a
state where no items are selected. From the user's perspective, browse selection is similar to single selection,
except that there is an initial selected item. There are also differences with respect to callback routines. This
issue is addressed in Section #slistcb.

•

In multiple selection mode, any number of items can be selected at one time. When an item is selected, the
selection state of the item is toggled; the selection states of the rest of the items are not changed. The List can
be in a state where none of the items are selected or all of the items are selected. Multiple selection mode is
advantageous in situations where an action may be taken on more than one item at a time, such as in an
electronic mail application, where the user might choose to delete, save, or print multiple messages
simultaneously.

•

In extended selection mode, the user can select discontiguous ranges of items. This selection policy is an
extension of the multiple selection policy that provides more flexibility.

•

13.1 Creating a List Widget

Using List widgets is fairly straightforward. An application that uses the List widget must include the header file
<Xm/List.h>. This header file declares the types of the public List functions and the widget class name
xmListWidgetClass. A List widget can be created as shown in the following code fragment:

 Widget list;

 list = XtVaCreateManagedWidget ("name",
 xmListWidgetClass, parent,

resource−value−list,
 NULL);

the source code shows a program that creates a simple List widget. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif
1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* simple_list.c −− introduce the List widget. Lists present
 * a number of comound strings as choices. Therefore, strings
 * must be converted before set in lists. Also, the number of
 * visible items must be set or the List defaults to 1 item.
 */
 #include <Xm/List.h>

 char *months[] = {
 "January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"
 };

 main(argc, argv)
 int argc;

13 The List Widget 13.1 Creating a List Widget

342

 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;
 int i, n = XtNumber (months);
 XmStringTable str_list;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 str_list = (XmStringTable) XtMalloc (n * sizeof (XmString));

 for (i = 0; i < n; i++)
 str_list[i] = XmStringCreateLocalized (months[i]);

 XtVaCreateManagedWidget ("Hello",
 xmListWidgetClass, toplevel,
 XmNvisibleItemCount, n,
 XmNitemCount, n,
 XmNitems, str_list,
 NULL);

 for (i = 0; i < n; i++)
 XmStringFree (str_list[i]);
 XtFree (str_list);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The program simply creates a List widget as the child of the toplevel widget. The List contains the names of the
months as its choices. The output of the program is shown in the figure.

Output of simple_list.c

13 The List Widget 13.1 Creating a List Widget

343

The selection policy of the List is controlled by the XmNselectionPolicy resource. The possible values for this
resource are:

 XmSINGLE_SELECT
 XmBROWSE_SELECT
 XmMULTIPLE_SELECT
 XmEXTENDED_SELECT

XmBROWSE_SELECT is the default selection policy for the List widget. Since this policy is the one that we want to
use, we do not need to set the XmNselectionPolicy resource. You should be aware that the user could change
this policy with a resource specification. If you want to enforce this selection policy, you can program defensively and
hard−code the value for XmNselectionPolicy, despite its default.

The program demonstrates the use of three basic elements of the List widget: the list of items, the number of items in
the list, and the number of visible items. Because the items in a List must be compound strings, each of the choices
must be converted from a C string to a compound string. The application allocates an array of XmStrings, creates a
compound string for each month name, and stores the string in the str_list. The List widget is created with
str_list as the value for the XmNitems resource and XmNitemCount is set to n.

Just like other widgets that use compound strings, the List widget copies the entire table of compound strings into its
own internal storage. As a result, the list of strings needs to be freed after you have used it to set the XmNitems
resource. When you set the items using this resource, you also need to set the XmNitemCount resource to specify
the number of items in the list. If this resource is not set, the List does not know how many items to copy. The value
of XmNitemCount should never be larger than the number of items in XmN-items. If the value for
XmNitemCount is less than the number of items, the additional items are not put in the list.

To retrieve the list of items, you can call XtVaGetValues() on these resources, as shown in the following code
fragment:

 extern Widget list;
 XmStringTable choices;
 int n_choices;

 XtVaGetValues (list,
 XmNitems, &choices,
 XmNitemCount, &n_choices,
 NULL);

Since the items that the area returned are compound strings, you must convert them to C−style strings if you need to
use any of the standard C library functions to view or manipulate the strings. You can also use any of the compound
string functions described in Chapter 19, Compound Strings, for this purpose. Since we used XtVaGetValues()
to obtain the values for the resources, the returned data should, as always, be considered read−only. You should not
change any of the items in the list or attempt to free them (or the pointer to them) when you are done examining their
values.

the source code also makes use of the XmNvisibleItemCount resource, which sets the height of the list to match
the number of items that should be visible. If you want all the items to be visible, you simply set the value to the total
number of items in the list. Setting the visible item count to a higher value is acceptable, assuming that the list is
expected to grow to at least that size. If you want to set the number of visible items to be less than the number of items
actually in the list, you should use a ScrolledList as described in the next section.

13 The List Widget 13.1 Creating a List Widget

344

13.2 Using ScrolledLists

Most applications use List widgets in conjunction with ScrolledWindows. By creating a List widget as the child of a
ScrolledWindow, we create what Motif calls a ScrolledList. The ScrolledList is not a widget, but a compound object.
While this chapter describes most of the common resources and functions that deal with ScrolledLists, more detailed
information about ScrolledWindows and ScrollBars can be found in Chapter 9, ScrolledWindows and ScrollBars.

A ScrolledList is built from two widget classes, so we could create and manage the widgets separately using two calls
to XtVaCreateManagedWidget(). However, since ScrolledLists are used so frequently, Motif provides a
convenience function to create this compound object. XmCreateScrolledList() takes the following form:

 Widget
 XmCreateScrolledList(parent, name, arglist, argcount)
 Widget parent;
 char *name;
 ArgList arglist;
 Cardinal argcount;

The arglist parameter is an array of size argcount that contains resources to be passed to both the
ScrolledWindow widget and the List widget. Generally, the two widgets use different resources that are specific to the
widgets themselves, so there isn't any confusion about which resources apply to which widget. However, common
resources, such as Core resources, are interpreted by both widgets, so caution is advised. If you want to set some
resources on one widget, while ensuring that the values are not set on the other widget, you should avoid passing the
values to the convenience routine. Instead, you can set resources separately by using XtVaSetValues() on each
widget individually. XmCreateScrolledList() returns the List widget; if you need a handle to the
ScrolledWindow, you can use XtParent() on the List widget. When you use the convenience routine, you need to
manage the object explicitly with XtManageChild().

ScrolledLists are useful because they can display a portion of the entire list provided by the widget. For example, we
can modify the previous example, simple_list.c, to use a ScrolledList by using the following code fragment:

 ...
 /* Create the ScrolledList */
 list_w = XmCreateScrolledList (toplevel, "Months", NULL, 0);

 /* set the items, the item count, and the visible items */
 XtVaSetValues (list_w,
 XmNitems, str_list,
 XmNitemCount, n,
 XmNvisibleItemCount, 5,
 NULL);

 /* Convenience routines don't create managed children */
 XtManageChild (list_w);
 ...

The size of the viewport into the entire List widget is controlled by the XmNvisibleItemCount resource. In Motif
1.1, the value of this resource defaults to 1, while in Motif 1.2, the resource calculates its value based on the
XmNheight of the List. We set the resource to 5. The output resulting from our changes is shown in the figure.

The XmNscrollBarDisplayPolicy and XmNlistSizePolicy resources control the display of the
ScrollBars in a ScrolledList. The value for XmNscrollBarDisplayPolicy controls the display of the vertical
ScrollBar; the resource can be set to either XmAS_NEEDED (the default) or XmSTATIC. If the policy is
XmAS_NEEDED, when the entire list is visible, the vertical ScrollBar is not displayed. When the resource is set to

13 The List Widget 13.2 Using ScrolledLists

345

XmSTATIC, the vertical ScrollBar is always displayed. The XmNlistSizePolicy resource reflects

Output of simple_list.c modified to use a ScrolledList

how the ScrolledList manages its horizontal ScrollBar. The default setting is XmVARIABLE, which means that the
ScrolledList attempts to grow horizontally to contain its widest item and a horizontal ScrollBar is not displayed. This
policy may present a problem if the parent of the ScrolledList constrains its horizontal size. If the resource is set to
XmRESIZE_IF_ POSSIBLE, the ScrolledList displays a horizontal ScrollBar only if it cannot resize itself
accordingly. If the value XmCONSTANT is used, the horizontal ScrollBar is displayed at all times, whether it is needed
or not.

The size of a ScrolledList is ultimately controlled by its parent. In most cases, a manager widget such as a
RowColumn or Form allows its children to be any size they request. If a ScrolledList is a child of a Form widget, its
size is whatever you specify with either the XmN-height resource or the XmNvisibleItemCount. However,
certain constraints, such as the XmNresizePolicy in a Form widget, may affect the height of its children
unexpectedly. For example, if you set XmNresizePolicy to XmRESIZE_NONE, the ScrolledList widget's height
request is ignored, which makes it look like XmNvisibleItemCount is not working.

The List widget accepts keyboard input to select items in the list, browse the list, and scroll the list. Like all other
Motif widgets, the List has translation functions that facilitate this process. The translations are hard−coded into the
widget and we do not recommend attempting to override this list with new translations. For ScrolledLists, the List
widget automatically sets the ScrollBar's XmNtraversalOn resource to False so that the ScrollBar associated
with the ScrolledList does not get keyboard input. Instead, the List widget handles the input that affects scrolling. We
recommended that you do not interfere with this process, so users are not confused by different applications on the
desktop behaving in different ways.

If a List widget is sensitive, all of the items in the List are selectable. If it is insensitive, none of them are selectable.
You cannot set certain items to be insensitive to selection at any given time. Furthermore, you cannot set the entire
List to be insensitive and allow the user to manipulate the ScrollBars. It is not entirely possible to make a read−only
List widget; the user always has the ability to select items in the List, providing that it is sensitive. Of course, you can
always choose not to hook up callback procedures to the widget, but this can lead to more confusion than anything
else because if the user selects an object and the toolkit provides the visual feedback acknowledging the action, the
user will expect the application to respond as well.

13.3 Manipulating Items

From the programmer's perspective, much of the power of the List widget comes from being able to manipulate its
items. The toolkit provides a number of convenience functions for dealing with the items in a List. While the items are
accesible through the XmNitems resource, the convenience routines are designed to deal with many common

13 The List Widget 13.3 Manipulating Items

346

operations, such as adding items to the List, removing items, and locating items.

13.3.1 Adding Items

The entire list of choices may not always be available at the time the List is created. In fact, it is not uncommon to
have no items available for a new list. In these situations, items can be added to the list dynamically using the
following functions XmListAddItem(), XmListAddItemUnselected(), XmListAddItems(), and
XmListAddItemsUnselected(). XmListAddItemsUnselected() is a new routine in Motif 1.2. These
functions take the following form:

 void
 XmListAddItem(list_w, item, position)
 Widget list_w;
 XmString item;
 int position;

 void
 XmListAddItemUnselected(list_w, item, position)
 Widget list_w;
 XmString item;
 int position;

 void
 XmListAddItems(list_w, items, item_count, position)
 Widget list_w;
 XmString *items;
 int item_count;
 int position;

 void
 XmListAddItemsUnselected(list_w, items, item_count, position)
 Widget list_w;
 XmString *items;
 int item_count;
 int position;

These routines allow you to add one or more items to a List widget at a specified position. Remember that list
positions start at 1, not 0. The position 0 indicates the last position in the List; specifying this position appends the
item or items to the end of the list. If the new item(s) are added to the list in between existing items, the rest of the
items are moved down the list.

The d i f fe rence be tween XmLis tAddI tem() and XmLis tAddI temUnse lec ted() i s tha t
XmListAddItem() compares each new item to each of the existing items. If a new item matches an existing item
and if the existing item is selected, the new item is also selected. XmListAddItemUnselected() simply adds
the new item without performing this check. In most situations, it is clear which routine you should use. If you know
that the new item does not already exist, you should add it unselected. If the List is a single selection list, you should
add new items as unselected. The only t ime that you should real ly add new items to the l ist using
XmListAddItem() is when there could be duplicate entries, the list supports multiple selections, and you explicitly
want to select all new items whose duplicates are already selected. The same is true of the routines that add multiple
items.

t h e s o u r c e c o d e s h o w s h o w i t e m s c a n b e a d d e d t o a S c r o l l e d L i s t d y n a m i c a l l y u s i n g
XmListAddItemUnselected(). XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;

13 The List Widget 13.3.1 Adding Items

347

XmStringCreateSimple() is the corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces
XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* alpha_list.c −− insert items into a list in alphabetical order. */

 #include <Xm/List.h>
 #include <Xm/RowColumn.h>
 #include <Xm/TextF.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, list_w, text_w;
 XtAppContext app;
 Arg args[5];
 int n = 0;
 void add_item();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel, NULL);

 XtSetArg (args[n], XmNvisibleItemCount, 5); n++;
 list_w = XmCreateScrolledList (rowcol, "scrolled_list", args, n);
 XtManageChild (list_w);

 text_w = XtVaCreateManagedWidget ("text",
 xmTextFieldWidgetClass, rowcol,
 XmNcolumns, 25,
 NULL);
 XtAddCallback (text_w, XmNactivateCallback, add_item, list_w);

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Add item to the list in alphabetical order. Perform binary
 * search to find the correct location for the new item position.
 * This is the callback routine for the TextField widget.
 */
 void
 add_item(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget list_w = (Widget) client_data;
 char *text, *newtext = XmTextFieldGetString (text_w);
 XmString str, *strlist;
 int u_bound, l_bound = 0;

 /* newtext is the text typed in the TextField widget */
 if (!newtext || !*newtext) {
 /* non−null strings must be entered */

13 The List Widget 13.3.1 Adding Items

348

 XtFree (newtext); /* XtFree() checks for NULL */
 return;
 }
 /* get the current entries (and number of entries) from the List */
 XtVaGetValues (list_w,
 XmNitemCount, &u_bound,
 XmNitems, &strlist,
 NULL);
 u_bound−−;
 /* perform binary search */
 while (u_bound >= l_bound) {
 int i = l_bound + (u_bound − l_bound) / 2;
 /* convert the compound string into a regular C string */
 if (!XmStringGetLtoR (strlist[i], XmFONTLIST_DEFAULT_TAG, &text))
 break;
 if (strcmp (text, newtext) > 0)
 u_bound = i − 1; /* newtext comes before item */
 else
 l_bound = i + 1; /* newtext comes after item */
 XtFree (text); /* XmStringGetLtoR() allocates memory ... yuk */
 }
 str = XmStringCreateLocalized (newtext);
 XtFree (newtext);
 /* positions indexes start at 1, so increment accordingly */
 XmListAddItemUnselected (list_w, str, l_bound+1);
 XmStringFree (str);
 XmTextFieldSetString (text_w, "");
 }

In the source code the ScrolledList is created with no items. However, we do specify XmN-visibleItemCount, in
anticipation of items being added to the list. A TextField widget is used to prompt for strings that are added to the list
using the add_item() callback. This function performs a binary search on the list to determine the position where
the new item is to be added. A binary search can save time, as it is expensive to scan an entire List widget and convert
each compound string into a C string. When the position for the new item is found, it is added using
XmListAddItemUnselected(). The output of this program is shown in the figure.

Output of alpha_list.c

13 The List Widget 13.3.1 Adding Items

349

13.3.2 Finding Items

It is often useful to be able to determine whether or not a List contains a particular item. The simplest function for
determining whether a particular item exists is XmListItemExists(), which takes the following form:

 Boolean
 XmListItemExists(list_w, item)
 Widget list_w;
 XmString item;

This function performs a linear search on the list for the specified item. If you are maintaining your list in a particular
order, you may want to search the list yourself using another type of search to improve performance. The List's
internal search function does not convert the compound strings to C strings. The search routine does a direct
byte−by−byte comparison of the strings using XmStringByteCompare(), which is much more efficient than
converting the compound strings to C strings for comparison. However, the linear search is still slower than a binary
search by orders of magnitude. And unfortunately, XmStringByteCompare() does not return which string is of
greater or lesser value. The routine just returns whether the strings are different, so we cannot use it to alphabetize the
items in a List.

If you need to know the position of an item in the List, you can use XmListItemPos(). This routine takes the
following form:

 int
 XmListItemPos(list_w, item)
 Widget list_w;
 XmString item;

This function returns the position of the first occurrence of item in the List, with 1 being the first position. If the
function returns 0, the element is not in the List. If a List contains duplicate entries, you can find all of the positions of
a particular item using XmListGetMatchPos(), which takes the following form:

 Boolean
 XmListGetMatchPos(list_w, item, pos_list, pos_cnt)
 Widget list_w;
 XmString item;
 int **pos_list;
 int *pos_cnt;

This function returns True if the specified item is found in the List in one or more locations. The pos_list
parameter is allocated to contain the array of positions of the item and the number of items found is returned in
pos_cnt. When you are done using pos_list, you should free it using XtFree(). The function returns False
if there are no items in the List, if memory cannot be allocated for pos_list, or if the specified item isn't in the List.
In these cases, pos_list does not point to allocated space and should not be referenced or freed and the value of
pos_cnt is not specified. The following code fragment shows the use of XmListGetMatchPos() to get the
positions of an item in a List:

 extern Widget list_w;
 int *pos_list;
 int pos_cnt, i;
 char *choice = "A Sample Text String";
 XmString str = XmStringCreateLocalized (choice);

 if (!XmListGetMatchPos (list_w, str, &pos_list, &pos_cnt))
 XtWarning ("Can't get items in list");

13 The List Widget 13.3.2 Finding Items

350

 else {
 printf ("%s exists in positions %d:", choice, pos_cnt);
 for (i = 0; i < pos_cnt; i++)
 printf (" %d", pos_list[i]);
 puts ("");
 XtFree (pos_list);
 }

13.3.3 Replacing Items

There are also a number of functions for replacing items in a List. To replace a contiguous sequence of items, use
either XmListReplaceItemsPos() or XmListReplaceItemsPosUnselected(). These functions take
the following form:

 void
 XmListReplaceItemsPos(list_w, new_items, item_count, position)
 Widget list_w;
 XmString *new_items;
 int item_count;
 int position;

 void
 XmListReplaceItemsPosUnselected(list_w, new_items, item_count,

position)
 Widget list_w;
 XmString *new_items;
 int item_count;
 int position;

These functions replace the specified number of items with the new items starting at position. The difference
between the two functions is the same as the difference between the List routines that add items selected and
unselected. XmListReplaceItemsPosUnselected() is a new routine in Motif 1.2.

You can also replace arbitrary elements in the list with new elements, using XmListReplaceItems() or
XmListReplaceItemsUnselected. These routines take the following form:

 void
 XmListReplaceItems(list_w, old_items, item_count, new_items)
 Widget list_w;
 XmString *old_items;
 int item_count;
 XmString *new_items;

 void
 XmListReplaceItemsUnselected(list_w, old_items, item_count, new_items)
 Widget list_w;
 XmString *old_items;
 int item_count;
 XmString *new_items;

These functions work by searching the entire list for each element in old_items. Every occurrence of each element
that is found is replaced with the corresponding element from new_items. The search continues for each element in
old_items until item_count has been reached. The difference between the two functions is the same as the
difference between the List routines that add items selected and unselected.
XmListReplaceItemsUnselected() is a new routine in Motif 1.2.

13 The List Widget 13.3.3 Replacing Items

351

There is another new routine in Motif 1.2 that allows you to replace items in a List based upon position. The
XmListReplacePositions() routine takes the following form:

 void
 XmListReplacePositions(list_w, pos_list, new_items, item_count)
 Widget list_w;
 int *pos_list;
 XmString *new_items;
 int item_count;

This routine replaces the item at each position specified in pos_list with the corresponding item in new_items
until item_count has been reached.

13.3.4 Deleting Items

You can delete items from a List widget in many ways. First, to delete a single item, you can use either
XmListDeleteItem() or XmListDeletePos(). These functions take the following form:

 void
 XmListDeleteItem(list_w, item)
 Widget list_w;
 XmString item;

 void
 XmListDeletePos(list_w, position)
 Widget list_w;
 int position;

XmListDeleteItem() finds the given item and deletes it from the list, while XmListDeletePos() removes
an item directly from the given position. If you know the position of an item, you can avoid creating a compound
string and use XmListDeletePos(). After an item is deleted, the items following it are moved up one position.

You can delete multiple items using either XmListDeleteItems(), XmListDeleteItemsPos(), or
XmListDeletePositions(). These routines take the following form:

 void
 XmListDeleteItems(list_w, items, item_count)
 Widget list_w;
 XmString *items;
 int item_count;

 XmListDeleteItemsPos(list_w, item_count, position)
 Widget list_w;
 int item_count;
 int position;

 XmListDeletePositions(list_w, pos_list, pos_count)
 Widget list_w;
 int *pos_list;
 int pos_count;

XmListDeleteItems() deletes each of the items in the items array from the List; there are item_count
strings in the array. You must create and initialize this array before calling the function and you must free it
afterwards. If you already know the positions of the items you want to delete, you can avoid creating an array of
compound strings and use XmListDeleteItemsPos() or XmListDeletePositions().

13 The List Widget 13.3.4 Deleting Items

352

XmListDeleteItemsPos() deletes item_count items from the List starting at position.
XmListDeletePositions() deletes the item at each position specified in pos_list until item_count has
been reached. This routine is new in Motif 1.2.

You can delete all of the items in a List widget using XmListDeleteAllItems(). This routine takes the
following form:

 void
 XmListDeleteAllItems(list_w)
 Widget list_w;

13.3.5 Selecting Items

Since the main purpose of the List widget is to allow a user to make a selection from a set of choices, one of the most
important tasks for the programmer is to determine which items have been selected by the user. In this section, we
present an overview of the resources and functions available to set or get the actual items that are selected in the List
widget. Later in Section #slistcb, we discuss how to determine the items that are selected by the user when they are
selected. The resources and functions used to set and get the selected items in the List widget are directly analogous to
those that set the actual items in the list. Just as XmNitems represents the entire list, the XmNselectedItems
resource represents the list of selected items. The XmNselectedItemCount resource specifies the number of
items that are selected.

There are convenience routines that allow you to modify the items that are selected in a List. The functions
XmSelectItem() and XmSelectPos() can be used to select individual items. These functions take the
following form:

 void
 XmListSelectItem(list_w, item, notify)
 Widget list_w;
 XmString item;
 Boolean notify;

 void
 XmListSelectPos(list_w, position, notify)
 Widget list_w;
 int position;
 Boolean notify;

These functions cause the specified item to be selected. If you know the position in the list of the item to be selected,
you should use XmListSelectPos() rather than XmListSelectItem(). The latter routine uses a linear search
to find the specified item. The search can take a long time in a large list, which can affect performance if you are
performing frequent list operations.

When the specified item is selected, any other items that have been previously selected are deselected, except when
XmNselectionPolicy is set to XmMULTIPLE_SELECT. In this case, the specified item is added to the list of
selected items. Even though the extended selection policy allows multiple items to be selected, the previous selection
is deselected when one of these routines is called. If you want to add an item to the list of selected items in an
extended selection list, you can set the selection policy to XmMULTIPLE_SELECT, use one of the routines, and then
set the selection policy back to XmEXTENDED_SELECT.

The notify parameter indicates whether or not the callback routine for the List widget should be called. If your
callback routine does special processing of list items, then you can avoid having redundant code by passing True. As
a result, the callback routine is called just as if the user had made the selection himself. If you are calling either of

13 The List Widget 13.3.5 Selecting Items

353

these functions from the callback routine, you probably want to pass False to avoid a possible infinite loop.

There are no functions available for selecting multiple items at the same time. To select multiple items, use
XtVaSetValues() and set the XmNselectedItems and XmN-selectedItemCount resources to the entire
list of selected items. Another alternative is to follow the suggestion made earlier and temporarily set
XmNselectionPolicy to XmMULTIPLE_SELECT. You can call the above routines repeatedly to select the
desired items individually and then set the selection policy back to XmEXTENDED_SELECT.

Items can be deselected in the same manner that they are selected using XmListDeselectItem() and
XmListDeselectPos(). These functions take the following form:

 void
 XmListDeselectItem(list_w, item)
 Widget list_w;
 XmString item;

 void
 XmListDeselectPos(list_w, position)
 Widget list_w;
 int position;

These routines modify the list of selected items, but they do not have a notify parameter, so they do not invoke the
callback routine for the List. You can deselect all items in the list by calling XmListDeselectAllItems(),
which takes the following form:

 void
 XmListDeselectAllItems(list_w)
 Widget list_w;

There are also convenience routines that allow you to check on the selected items in a List. You can use
XmListPosSelected() to determine whether an item is selected. This routine in new in Motif 1.2; it takes the
following form:

 Boolean
 XmListPosSelected(list_w, position)
 Widget list_w;
 int position;

The routine returns True if the item at the specified position is selected and False otherwise. You can get the
positions of all of the selected items in a List using XmListGetSelectedPos(), which takes the following form:

 Boolean
 XmListGetSelectedPos(list_w, pos_list, pos_cnt)
 Widget list_w;
 int **pos_list;
 int *pos_cnt;

The use of this function is identical to that of XmListGetMatchPos(). The pos_list parameter is allocated to
contain the array of positions of selected items and the number of items selected is returned in pos_cnt. When you
are done using pos_list, you should free it using XtFree(). The function returns False if there are no selected
items in the List or if memory cannot be allocated for pos_list. In these cases, pos_list does not point to
allocated space and should not be referenced or freed and the value of pos_cnt is not specified.

13 The List Widget 13.3.5 Selecting Items

354

13.3.6 An Example

In this section, we pull together all of the functions we have described in the preceding sections. This example builds
on alpha_list.c, the program that adds items that are input by the user to a ScrolledList in alphabetical order. Using
another Text widget, the user can also search for items in the list. The searching method uses regular expression
pattern−matching functions intrinsic to UNIX systems. the source code shows the new application.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in
Motif 1.2.

 /* search_list.c −− search for items in a List and select them */

 #include <stdio.h>
 #include <Xm/List.h>
 #include <Xm/LabelG.h>
 #include <Xm/Label.h>
 #include <Xm/RowColumn.h>
 #include <Xm/PanedW.h>
 #include <Xm/TextF.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, list_w, text_w;
 XtAppContext app;
 Arg args[5];
 int n = 0;
 XmString label;
 void add_item(), search_item();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmPanedWindowWidgetClass, toplevel, NULL);

 label = XmStringCreateLocalized ("List:");
 XtVaCreateManagedWidget ("list_lable", xmLabelWidgetClass, rowcol,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);
 XtSetArg (args[n], XmNvisibleItemCount, 10); n++;
 XtSetArg (args[n], XmNselectionPolicy, XmEXTENDED_SELECT); n++;
 list_w = XmCreateScrolledList (rowcol, "scrolled_list", args, n);
 XtManageChild (list_w);

 label = XmStringCreateLocalized ("Add:");
 XtVaCreateManagedWidget ("add_label", xmLabelWidgetClass, rowcol,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);
 text_w = XtVaCreateManagedWidget ("add_text",
 xmTextFieldWidgetClass, rowcol,
 XmNcolumns, 25,
 NULL);

13 The List Widget 13.3.6 An Example

355

 XtAddCallback (text_w, XmNactivateCallback, add_item, list_w);

 label = XmStringCreateLocalized ("Search:");
 XtVaCreateManagedWidget ("search_label", xmLabelWidgetClass, rowcol,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);
 text_w = XtVaCreateManagedWidget ("search_text",
 xmTextFieldWidgetClass, rowcol,
 XmNcolumns, 25,
 NULL);
 XtAddCallback (text_w, XmNactivateCallback, search_item, list_w);

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Add item to the list in alphabetical order. Perform binary
 * search to find the correct location for the new item position.
 * This is the callback routine for the Add: TextField widget.
 */
 void
 add_item(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget list_w = (Widget) client_data;
 char *text, *newtext = XmTextFieldGetString (text_w);
 XmString str, *strlist;
 int u_bound, l_bound = 0;

 if (!newtext || !*newtext) {
 /* non−null strings must be entered */
 XtFree (newtext);
 return;
 }
 XtVaGetValues (list_w,
 XmNitemCount, &u_bound,
 XmNitems, &strlist,
 NULL);
 u_bound−−;
 /* perform binary search */
 while (u_bound >= l_bound) {
 int i = l_bound + (u_bound − l_bound)/2;
 if (!XmStringGetLtoR (strlist[i], XmFONTLIST_DEFAULT_TAG, &text))
 break;
 if (strcmp (text, newtext) > 0)
 u_bound = i−1; /* newtext comes before item */
 else
 l_bound = i+1; /* newtext comes after item */
 XtFree (text);
 }
 str = XmStringCreateLocalized (newtext);
 XtFree (newtext);
 /* positions indexes start at 1, so increment accordingly */
 XmListAddItemUnselected (list_w, str, l_bound+1);
 XmStringFree (str);
 XmTextFieldSetString (text_w, "");
 }

13 The List Widget 13.3.6 An Example

356

 /* find the item in the list that matches the specified pattern */
 void
 search_item(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget list_w = (Widget) client_data;
 char *exp, *text, *newtext = XmTextFieldGetString (text_w);
 XmString *strlist, *selectlist = NULL;
 int matched, cnt, j = 0;
 #ifndef SYSV
 extern char *re_comp();
 #endif /* SYSV */

 if (!newtext || !*newtext) {
 /* non−null strings must be entered */
 XtFree (newtext);
 return;
 }

 /* compile expression into pattern matching library */
 #ifdef SYSV
 if (!(exp = regcmp (newtext, NULL))) {
 printf ("Error with regcmp(%s)0, newtext);
 XtFree (newtext);
 return;
 }
 #else /* BSD */
 if (exp = re_comp (newtext)) {
 printf ("Error with re_comp(%s): %s0, newtext, exp);
 XtFree (newtext);
 return;
 }
 #endif /* SYSV */

 /* get all the items in the list ... we're going to search each one */
 XtVaGetValues (list_w,
 XmNitemCount, &cnt,
 XmNitems, &strlist,
 NULL);
 while (cnt−−) {
 /* convert item to C string */
 if (!XmStringGetLtoR (strlist[cnt], XmFONTLIST_DEFAULT_TAG, &text))
 break;
 /* do pattern match against search string */
 #ifdef SYSV
 /* returns NULL if match failed */
 matched = regex (exp, text, NULL) != NULL;
 #else /* BSD */
 /* −1 on error, 0 if no−match, 1 if match */
 matched = re_exec (text) > 0;
 #endif /* SYSV */
 if (matched) {
 selectlist = (XmString *) XtRealloc (selectlist,
 (j+1) * (sizeof (XmString *)));
 selectlist[j++] = XmStringCopy (strlist[cnt]);
 }
 XtFree (text);
 }

13 The List Widget 13.3.6 An Example

357

 #ifdef SYSV
 free (exp); /* this must be freed for regcmp() */
 #endif /* SYSV */
 XtFree (newtext);
 /* set the actual selected items to be those that matched */
 XtVaSetValues (list_w,
 XmNselectedItems, selectlist,
 XmNselectedItemCount, j,
 NULL);
 while (j−−)
 XmStringFree (selectlist[j]);
 XmTextFieldSetString (text_w, "");
 }

The output of this program is shown in the figure. The TextField widget that is used to search for items in the List
widget works identically to the one that is used to add new items. Its callback routine, search_item(), searches
the list for the specified pattern. The version of UNIX you are running (System V or BSD) dictates which kind of
regular expression matching is done. System V machines use the function regcmp() to compile the pattern and
regex() to search for the pattern within another string, while BSD UNIX systems use the functions re_comp()
and re_exec() to do the same thing. Systems that support both BSD and System V may support one, the other, or
both methods of regular expression handling. You should consult your system's documentation for more information
on these functions.

The items in the list are retrieved using XtVaGetValues() and the strlist parameter. This variable points to
the internal list used by the List widget, so it is important that we do not change any of these elements or free these
pointers when we are through with them. Changing the value of XmNselectedItems causes the internal list to
change. Since the internal list is referenced by strlist, it is important to copy any values that we want to use
elsewhere. If the pattern matches a list item, the item is copied using XmStringCopy() and is later added to the
List's XmNselectedItems.

13 The List Widget 13.3.6 An Example

358

Output of search_list.c

13.4 Positioning the List

The items within a List can be positioned such that an arbitrary element is placed at the top or bottom of the List. If
the List is being used as part of a ScrolledList, the item is placed at the top or bottom of the viewport of the
ScrolledWindow. To position a particular item at the top or bottom of the window, use either XmListSetItem() or
XmListSetBottomItem(). These routines take the following form:

 void
 XmListSetItem(list_w, item)
 Widget list_w;
 XmString item;

 void
 XmListBottomItem(list_w, item)
 Widget list_w;
 XmString item;

Both of these functions require an XmString parameter to reference a particular item in the list. However, if you
know the position of the item, you can use XmListSetPos() or XmListSetBottomPos() instead. These
functions take the following form:

 void
 XmListSetPos(list_w, position)

13 The List Widget 13.4 Positioning the List

359

 Widget list_w;
 int position;

 void
 XmListSetBottomPos(list_w, position)
 Widget list_w;
 int position;

The position parameter can be set to 0 to specify that the last item be positioned at the bottom of the viewport.
Through a mixture of resource values and simple calculations, you can position any particular item anywhere in the
list. For example, if you have an item that you want to be sure is visible, but you are not concerned about where in the
viewport it is displayed, you can write a function to make the item visible. the source code shows the
MakePosVisible() routine, which makes sure that the item at a specified position is visible.

 void
 MakePosVisible(list_w, item_no)
 Widget list_w;
 int item_no;
 {
 int top, visible;

 XtVaGetValues (list_w,
 XmNtopItemPosition, &top,
 XmNvisibleItemCount, &visible,
 NULL);
 if (item_no < top)
 XmListSetPos (list_w, item_no);
 else if (item_no >= top + visible)
 XmListSetBottomPos (list_w, item_no);
 }

The function gets the number of visible items and the position of the item at the top of the viewport. The
XmNtopItemPosition resource stores this information. If the item comes before top, item_no is set to the top
of the List using XmListSetPos(). If it comes after top + visible, the item is set at the bottom of the List
using XmListSetBottomPos(). If you don't know the position of the item in the List, you can write a function
that makes a specified item visible, as shown in the source code

 MakeItemVisible(list_w, item)
 Widget list_w;
 XmString item;
 {
 int item_no = XmListItemPos (list_w, item);

 if (item_no > 0)
 MakePosVisible (list_w, item_no);
 }

The MakeItemVisible() routine simple gets the position of the given item in the list using XmListItemPos()
and calls MakePosVisible().

In Motif 1.2, there are some new routines that deal with positions in a List. The XmListGetKbdItemPos() and
XmListSetKbdItemPos() routines retrieve and set the item in the List that has the location cursor. These
routines take the following form:

 int
 XmListGetKbdItemPos(list_w)

13 The List Widget 13.4 Positioning the List

360

 Widget list_w;

 Boolean
 XmListSetKbdItemPos(list_w, position)
 Widget list_w;
 int position;

XmListGetKbdItemPos() returns the position of the item that has the location cursor, while
XmListSetKbdItemPos() provides a way to specify the position of this item.

The XmListPosToBounds() and XmListYToPos() functions in Motif 1.2 provide a way to translate list items
to x,y coordinates and vice versa. XmListPosToBounds() returns the bounding box of the item at a specified
position in a List. This routine takes the following form:

 Boolean
 XmListPosToBounds(list_w, position, x, y, width, height)
 Widget list_w;
 int position;
 Position *x;
 Position *y;
 Dimension *width;
 Dimension *height;

This routine returns True if the item at the specified position is visible and False otherwise. If the item is visible,
the return parameters specify the bounding box of the item. This information can be useful if you need to perform
additional event processing or draw special graphics for the item. The XmListYToPos() routine returns the
position of the List item at a specified y−coordinate. This function takes the following form:

 int
 XmListYToPos(list_w, y)
 Widget list_w;
 Position y;

The position information returned by this routine can be useful if you are processing events that report a pointer
position and you need to convert the location of the event into an item position.

13.5 List Callback Routines

While the callback routines associated with the List widget are not affected by whether the List is scrollable, they do
depend on the selection policy currently in use. There is a separate callback resource for each selection policy, plus a
callback for the default action. The default action is invoked when the left mouse button is double−clicked on an item
or the RETURN key is pressed. The callback resources are:

 XmNbrowseSelectionCallback
 XmNdefaultActionCallback
 XmNextendedSelectionCallback
 XmNmultipleSelectionCallback
 XmNsingleSelectionCallback

13.5.1 The Default Action

In all of the selection modes there is the concept of the default action. This term refers to the action that is taken when
the user double clicks the left mouse button on an item or presses the RETURN key when an item has the location
cursor. The default action always indicates that the active item should be selected, regardless of the selection policy.

13 The List Widget 13.5 List Callback Routines

361

The XmN-defaultActionCallback is invoked for the default action.

The default selection is activated when the user double clicks on a List item. The time interval between two
consecutive button clicks determines whether the clicks are interpreted as individual clicks or as a double click. You
can set or get the time interval using the XmN-doubleClickInterval resource. The value is stored as
milliseconds, so a value of 500 is half a second. If the resource is not set, the value of the multiClickTime
resource is used instead. This resource is a fundamental X resource that is understood by all X applications; it is not an
Xt or Motif toolkit resource. You should let the user specify the double−click interval in a resource file; the value
should be set using the more global multiClickTime resource.

13.5.2 Browse and Single Selection Callbacks

The browse and single selection modes only allow the selection of a single item. The browsing mode is regarded as a
simpler interface for the user. Interactively, browse selection allows the user to drag the selection over many items;
the selection is not made till the mouse button is released. In the single selection mode, the selection is made as soon
as the mouse bu t ton i s p ressed . Fo r b rowse se lec t i on , t he ca l l back l i s t assoc ia ted w i th t he
XmNbrowseSelectionCallback is used, while the XmNsingleSelectionCallback is used for the single
selection mode.

Keyboard traversal in the List is also different between the two modes. If the user uses the keyboard to move from one
item to the next in single selection mode, the XmNsingleSelectCallback is not invoked until the SPACEBAR
is pressed. In browse selection, the XmNbrowseSelectionCallback is invoked for each item the user traverses.
Since these two modes for the List widget are visually similar, your treatment of the callbacks is very important for
maintaining consistency between Lists that use different selection modes.

A simple example of using callbacks with a List widget is shown in the source code XtSetLanguageProc() is
only available in X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only
available in Motif 1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.
XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* browse.c −− specify a browse selection callback for a simple List.
 */
 #include <Xm/List.h>

 char *months[] = {
 "January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December"
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, list_w;
 XtAppContext app;
 int i, n = XtNumber (months);
 XmStringTable str_list;
 void sel_callback();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

13 The List Widget13.5.2 Browse and Single Selection Callbacks

362

 str_list = (XmStringTable) XtMalloc (n * sizeof (XmString *));

 for (i = 0; i < n; i++)
 str_list[i] = XmStringCreateLocalized (months[i]);

 list_w = XmCreateScrolledList (toplevel, "months", NULL, 0);
 XtVaSetValues (list_w,
 XmNvisibleItemCount, n,
 XmNitemCount, n,
 XmNitems, str_list,
 NULL);
 XtManageChild (list_w);

 XtAddCallback (list_w, XmNdefaultActionCallback, sel_callback, NULL);
 XtAddCallback (list_w, XmNbrowseSelectionCallback, sel_callback, NULL);

 for (i = 0; i < n; i++)
 XmStringFree (str_list[i]);
 XtFree (str_list);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 sel_callback(list_w, client_data, call_data)
 Widget list_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
 char *choice;

 if (cbs−>reason == XmCR_BROWSE_SELECT)
 printf ("Browse selection −− ");
 else
 printf ("Default action −− ");

 XmStringGetLtoR (cbs−>item, XmFONTLIST_DEFAULT_TAG, &choice);
 printf ("selected item: %s (%d)0, choice, cbs−>item_position);
 XtFree (choice);
 }

For this example, we modified our previous example that uses a ScrolledList to display the months of the year. We
have added the same callback routine, sel_callback(), to the XmNbrowseSelectionCallback and
XmNdefaultActionCallback resources. Since the default action may happen for any List widget, it is advisable
to set this callback, even if there are other callbacks. The callback routine prints the type of action performed by the
user and the selection that was made. The callback structure is used to get information about the nature of the List
widget and the selection made.

The List callbacks provide a callback structure of type XmListCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 XmString item;
 int item_length;

13 The List Widget13.5.2 Browse and Single Selection Callbacks

363

 int item_position;
 XmString *selected_items;
 int selected_item_count;
 int *selected_item_positions;
 char selection_type;
 } XmListCallbackStruct;

The reason field specifies the reason that the callback was invoked, which corresponds to the type of action
performed by the user. The possible values for this field are:

 XmCR_BROWSE_SELECT
 XmCR_DEFAULT_ACTION
 XmCR_EXTENDED_SELECT
 XmCR_MULTIPLE_SELECT
 XmCR_SINGLE_SELECT

The reason field is important with List callbacks because not all of the fields in the callback structure are valid for
every reason. For the browse and single selection policies, the reason, event, item, item_length, and
item_position fields are valid. For the default action, all of the fields are valid. List items are stored as compound
strings in the callback structure, so to print an item using printf(), we must convert the string with the compound
string function XmStringGetLtoR().

13.5.3 Multiple Selection Callback

When XmNselectionPolicy is set to XmMULTIPLE_SELECT, multiple items can be selected in the List widget.
When the user selects an item, its selection state is toggled. Each time the user selects an item, the callback routine
associated with the XmNmult ipleSelectionCallback is invoked. the source code shows the
sel_callback() routine that could be used with a multiple selection List. XmFONTLIST_DEFAULT_TAG
replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 void
 sel_callback(list_w, client_data, call_data)
 Widget list_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
 char *choice;
 int i;

 if (cbs−>reason == XmCR_MULTIPLE_SELECT) {
 printf ("Multiple selection −− %d items selected:0,
 cbs−>selected_item_count);
 for (i = 0; i < cbs−>selected_item_count; i++) {
 XmStringGetLtoR (cbs−>selected_items[i], XmFONTLIST_DEFAULT_TAG,
 &choice);
 printf ("%s (%d)0, choice, cbs−>selected_item_positions[i]);
 XtFree (choice);
 }
 }
 else {
 XmStringGetLtoR (cbs−>item, XmFONTLIST_DEFAULT_TAG, &choice);
 printf ("Default action −− selected item %s (%d)0,
 choice, cbs−>item_position);
 XtFree (choice);
 }
 }

13 The List Widget 13.5.3 Multiple Selection Callback

364

The routine tests the callback structure's reason field to determine whether the callback was invoked as a result of a
multiple selection action or the default action. When the reason is XmCR_MULTIPLE_SELECT, we print the list of
selected items by looping through selected_items and selected_item_positions. With this reason, all
of the fields in the callback structure except selection_type are valid. If the reason is
XmCR_DEFAULT_ACTION, there is only one item selected, since the default selection action causes all of the other
items to be deselected.

13.5.4 Extended Selection Callback

With the extended selection model, the user has the greatest flexibility to select and deselect individual items or ranges
of items. The XmNextendedSelectionCallback is invoked whenever the user makes a selection or modifies
the selection. the source code demonstrates the sel_callback() routine that could be used with an extended
selection List. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 void
 sel_callback(list_w, client_data, call_data)
 Widget list_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
 char *choice;
 int i;

 if (cbs−>reason == XmCR_EXTENDED_SELECT) {
 if (cbs−>selection_type == XmINITIAL)
 printf ("Extended selection −− initial selection: ");
 else if (cbs−>selection_type == XmMODIFICATION)
 printf ("Extended selction −− modification of selection: ");
 else /* selection type = XmADDITION */
 printf ("Extended selection −− additional selection: ");
 printf ("%d items selected0, cbs−>selected_item_count);
 for (i = 0; i < cbs−>selected_item_count; i++) {
 XmStringGetLtoR (cbs−>selected_items[i], XmFONTLIST_DEFAULT_TAG,
 &choice);
 printf ("%s (%d)0, choice, cbs−>selected_item_positions[i]);
 XtFree (choice);
 }
 }
 else {
 XmStringGetLtoR (cbs−>item, XmFONTLIST_DEFAULT_TAG, &choice);
 printf ("Default action −− selected item %s (%d)0,
 choice, cbs−>item_position);
 XtFree (choice);
 }
 }

Most of the callback routine is the same as it was for multiple selection mode. With an extended selection callback,
the selection_type field is also valid. This field can have the following values:

 XmINITIAL
 XmMODIFICATION
 XmADDITION

The XmINITIAL value indicates that the selection is an initial selection for the List. All previously−selected items
are deselected and the items selected with this action comprise the entire list of selected items. The value is

13 The List Widget 13.5.4 Extended Selection Callback

365

XmMODIFICATION when the user modifies the selected list by using the SHIFT key in combination with a selection
action. In this case, the selected item list contains some items that were already selected before this action took place.
XmADDITION indicates that the items that are selected are in addition to what was previously selected. The user can
select additional items by using the CTRL key in combination with a selection action. Regardless of the value for
selection_type, the selected_items and selected_item_positions fields always reflect the set of
currently selected items.

13.6 Summary

The List widget is a powerful user interface tool that has a simple design. The programming interface to the widget is
mostly mechanical. The List allows you to present a vast list of choices to the user, although the choices themselves
must be textual in nature. Lists are not suitable for all situations however, as they cannot display choices other than
text (pixmaps cannot be used as selection items) and there is no ability to set color on individual items. Even with
these shortcomings, the List widget is still a visible and intuitive object that can be used in designing a graphical user
interface.

13.7 Exercises

The following exercises expand on some of the concepts presented in this chapter.

Write a program that reads each word from the file /usr/dict/words into a ScrolledList. Provide a TextField
widget whose callback routine searches for the word typed into it from the entries in the List. Once found,
make the List widget scroll so that each item is centered in the ScrolledList's viewport. (Hint: convert the C
string from the TextField into a compound string and use one of the List search routines to find the element.)

•

ScrolledLists frequently confuse the unsuspecting programmer who forgets that the parent of the List widget
is a ScrolledWindow. For example, if you create a ScrolledList as a child of a Form widget, and want to
specify attachment constraints on the ScrolledList, you should set these resources on the ScrolledWindow, not
the List widget. Write a program that places two ScrolledList widgets next to each other in a single Form
widget. (For more information on the role of the ScrolledWindow widget in a ScrolledList object, see the
similar discussion on ScrolledText objects in Chapter 14, Text Widgets, and more discussion in Chapter 9,
ScrolledWindows and ScrollBars.)

•

Consider two List widgets whose items are somewhat dependent on one another. For example, the one List
contains login names and the other List contains the corresponding user−IDs. Write a program where the
XmNdefaultActionCallback routine for each list selects the dependent/corresponding item in the other
list. Since the user ID for "root" is always 0, selecting "root" from the login name list should cause the item 0
in the user−ID list to be selected.

•

13 The List Widget 13.6 Summary

366

14 The Scale Widget

This chapter describes how to use the Scale widget to represent a range of values. The widget can be manipulated to
change the value.

The Scale widget displays a numeric value that falls within upper and lower bounds. The widget allows the user to
change that value interactively using a slider mechanism similar to that of a ScrollBar. This style of interface is useful
when it is inconvenient or inappropriate to have the user change a value using the keyboard. The widget is also
extremely intuitive to use; inexperienced users often understand how a Scale works when they first see one. the figure
shows how a Scale can be used with other widgets in an application.

A Scale widget in an application

A Scale can be oriented either horizontally or vertically. The values given to a Scale are stored as integers, but decimal
representation of values is possible through the use of a resource that allows you to place a decimal point in the value.
A Scale can be put in output−only mode, in which it is sometimes called a gauge. When a Scale is read−only, it
implies that the value is controlled by another widget or that it is being used to report status information specific to the
application. The standard way to create a read−only Scale is to specify that it is insensitive. Unfortunately, this
technique has the side−effect of graying out the widget. One workaround is to create a Scale widget that is sensitive,
but that has a null translation table.

14.1 Creating a Scale Widget

Applications that use the Scale widget must include the header file <Xm/Scale.h>. You can then create a Scale widget
as follows:

 Widget scale;

367

 scale = XtVaCreateManagedWidget ("name",
 xmScaleWidgetClass, parent,

resource−value−list,
 NULL);

Even though the Scale widget functions as a primitive widget, it is actually subclassed from the Manager widget. All
the parts of a Scale are really other primitive widgets, but these subwidgets are not accessible through the Motif
toolkit. The fact that the Scale is a Manager widget means that you can create widgets that are children of a Scale. The
children are arranged so that they are evenly distributed along the vertical or horizontal axis parallel to the slider,
depending on the orientation of the Scale. This technique is used primarily to provide "tick marks" for the Scale, as
we'll describe later. In all other respects, a Scale can be treated just like other primitive widgets. the source code shows
a program that creates some Scale widgets. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

 /* simple_scale.c −− demonstrate a few scale widgets. */

 #include <Xm/Scale.h>
 #include <Xm/RowColumn.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, scale;
 XtAppContext app;
 void new_value(); /* callback for Scale widgets */

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 scale = XtVaCreateManagedWidget ("Days",
 xmScaleWidgetClass, rowcol,
 XtVaTypedArg, XmNtitleString, XmRString, "Days", 5,
 XmNmaximum, 7,
 XmNminimum, 1,
 XmNvalue, 1,
 XmNshowValue, True,
 NULL);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, NULL);

 scale = XtVaCreateManagedWidget ("Weeks",
 xmScaleWidgetClass, rowcol,
 XtVaTypedArg, XmNtitleString, XmRString, "Weeks", 6,
 XmNmaximum, 52,
 XmNminimum, 1,
 XmNvalue, 1,
 XmNshowValue, True,
 NULL);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, NULL);

 scale = XtVaCreateManagedWidget ("Months",
 xmScaleWidgetClass, rowcol,

14 The Scale Widget 14 The Scale Widget

368

 XtVaTypedArg, XmNtitleString, XmRString, "Months", 7,
 XmNmaximum, 12,
 XmNminimum, 1,
 XmNvalue, 1,
 XmNshowValue, True,
 NULL);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, NULL);

 scale = XtVaCreateManagedWidget ("Years",
 xmScaleWidgetClass, rowcol,
 XtVaTypedArg, XmNtitleString, XmRString, "Years", 6,
 XmNmaximum, 20,
 XmNminimum, 1,
 XmNvalue, 1,
 XmNshowValue, True,
 NULL);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, NULL);

 XtManageChild (rowcol);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 new_value(scale_w, client_data, call_data)
 Widget scale_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) call_data;

 printf("%s: %d0, XtName(scale_w), cbs−>value);
 }

The output of this program is shown in the figure.

Output of simple_scale.c

The four Scales represent the number of days, weeks, months, and years, respectively. Each Scale displays a title that
is specified by the XmNtitleString resource. Just as with other Motif widgets that display strings, the
XmNtitleString must be set as a compound string, not a normal C string. The easiest way to make the conversion
is to use the XtVaTypedArg feature, as we've done in this example. The use of this conversion method is described
in detail in Chapter 19, Compound Strings.

14 The Scale Widget 14 The Scale Widget

369

A Scale cannot have a pixmap as its label. Since real estate for the label is limited in a Scale widget, you should take
care to use small strings. If you need to use a longer string, you should include a separator so that the text is printed on
two lines. If the string is too long, the label may be too wide and look awkward as a result. For a horizontal Scale, the
label is displayed beneath the slider, while for a vertical Scale it is shown to the side of the slider.

The maximum and minimum values are set with the XmNmaximum and XmNminimum resources, respectively. The
minimum values are set to 1 for the user's benefit; the minimum value of a Scale defaults to 0. Note that if you set a
minimum value other than 0, you must also provide a default value for XmNvalue that is at least as large as the value
of XmNminimum, as we have done in our example. Each Scale displays its current value because the
XmNshowValue resource is set to True.

14.2 Scale Values

The value of a Scale can only be stored as an integer. This restriction is largely based on the fact that variables of type
float and double cannot be passed through XtVaSetValues(), XtVaGetValues(), or any of the widget
creation functions. While the Xt functions mentioned do allow the passing of the address of a variable of type float
or double, the Scale widget does not support this type of value representation. If you need to represent fractional
values, you must use the XmNdecimalPoints resource. This resource specifies the number of places to move the
decimal point to the left in the displayed value, which gives the user the impression that the value displayed is
fractional.

For example, a Scale widget used to display the value of a barometer might range from 29 to 31, with a granularity of
1−100th. The necessary widget could be created as shown in the following code fragment:

 XtVaCreateManagedWidget ("barometer", xmScaleWidgetClass, rowcol,
 XtVaTypedArg, XmNtitleString, XmRString,
 "Barometric0ressure", 19,
 XmNmaximum, 3100,
 XmNminimum, 2900,
 XmNdecimalPoints, 2,
 XmNvalue, 3000,
 XmNshowValue, True,
 NULL);

The value for XmNdecimalPoints is 2, so that the value displayed is 30.00, rather than 3000. If you are using a
Scale to represent fractional values, it is probably a good idea to set XmNshowValue to True since fine tuning is
probably necessary.

There is no limit to the values that can be specified for the XmNmaximum, XmNvalue, and XmNminimum resources,
provided they can be represented by the int type, which includes negative numbers. In the previous example, the
initial value of the Scale (XmNvalue) is set arbitrarily; the value must be set within the minimum and maximum
values. If the value of the Scale is retrieved using XtVaGetValues() or through a callback routine, the integer
value is returned. To get the appropriate decimal value, you need to divide the value by 10 to the power of the value of
XmNdecimalPoints. For example, since XmNdecimalPoints is 2, the value needs to be divided by 10 to the
power of 2, or 100.

The value of a Scale can be set and retrieved using XtVaSetValues() and XtVaGetValues() on the
XmNvalue resource. Motif also provides the functions XmScaleSetValue() and XmScaleGetValue() to
serve the same purpose. These functions take the following form:

 void
 XmScaleSetValue (scale_w, value)

14 The Scale Widget 14.2 Scale Values

370

 Widget scale_w;
 int value;

 void
 XmScaleGetValue (scale_w, value)
 Widget scale_w;
 int *value;

The advantage of using the Motif convenience routines, rather than the Xt routines, is that the Motif routines
manipulate data in the widget directly, rather than using the set and get methods of the Scale. As a result, there is less
overhead involved, although the added overhead of the Xt methods are negligible.

14.3 Scale Orientation and Movement

A Scale can be either vertical or horizontal and the maximum and minimum values can be on either end of the Scale.
By default, as shown in the examples so far, the Scale is oriented vertically with the maximum on the top and the
minimum on the bottom. The XmN-orientation resource can be set to XmHORIZONTAL to produce a horizontal
Scale. The XmNprocessingDirection resource controls the location of the maximum and minimum values. The
possible values for the resource are:

 XmMAX_ON_TOP
 XmMAX_ON_BOTTOM
 XmMAX_ON_LEFT
 XmMAX_ON_RIGHT

Unfortunately, you cannot set the processing direction unless you know the orientation of the Scale, so if you
hard−code one resource, you should set both of them. If the Scale is oriented vertically, the default value is
XmMAX_ON_TOP, but if it is horizontal, the default depends on the value of XmNstringDirection. If you use a
font that is read from right to left, then the maximum value is displayed on the left rather than on the right.

As the user drags the slider, the value of the Scale changes incrementally in the direction of the movement. If the user
clicks the middle mouse button inside the Scale widget, but not on the slider itself, the slider moves to the location of
the click. Unfortunately, in a small Scale widget, the slider takes up a lot of space, so this method provides very poor
control for moving the slider close to its current location.

If the user clicks the left mouse button inside the slider area, but not on the slider itself, the slider moves in increments
determined by the value of XmNscaleMultiple. The value of this resource defaults to the difference between the
maximum and minimum values divided by 10. As of Release 1.2 of the Motif toolkit, you should set
XmNscaleMultiple explicitly if the difference between XmNmaximum and XmNminimum is less than 10.
Otherwise, incremental scaling won't work. For example, a Scale widget whose maximum value is 250 has a scale
increment of 25. If the user presses the left mouse button over the area above or below the slider, the Scale's value
increases of decreases by 25. If the button is held down, the movement continues until the button is released, even if
the slider moves past the location of the pointer.

14.4 Scale Callbacks

The Scale widget provides two cal lbacks that can be used to monitor the value of the Scale. The
XmNdragCallback callback routines are invoked whenever the user drags the slider. This action does not mean
that the value of the Scale has actually changed or that it will change; it just indicates that the slider is being moved.

The XmNvalueChangedCallback is invoked when the user releases the slider, which results in an actual change

14 The Scale Widget 14.3 Scale Orientation and Movement

371

of the Scale's value. It is possible for the XmNvalueChangedCallback to be called without the
XmNdragCallback having been called. For example, when the user adjusts the Scale using the keyboard or moves
the s l i de r i nc rementa l l y by c l i ck ing in the s l i de r a rea , bu t no t on the s l i de r i t se l f , on ly the
XmNvalueChangedCallback is invoked.

These callback routines take the form of an XtCallbackProc, just like any other callback. As with all Motif
c a l l b a c k r o u t i n e s , M o t i f d e f i n e s a c a l l b a c k s t r u c t u r e f o r t h e S c a l e w i d g e t c a l l b a c k s . T h e
XmScaleCallbackStruct is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 int value;
 } XmScaleCallbackStruct;

The reason field of this structure is set to XmCR_DRAG or XmCR_VALUE_CHANGED, depending on the action that
invoked the callback. The value field represents the current value of the Scale widget.

the source code shows another example of how the Scale widget can be used. In this case, we create a color previewer
that uses Scales to control the red, green, and blue values of the color that is being edited. This example demonstrates
how the XmNdragCallback can be used to automatically adjust colors as the slider is being dragged. The
XmNvalueChangedCallback is also used to handle the cases where the user adjusts the Scale without dragging
the slider. For a discussion of the Xlib color setting routines used in this program, see Volume One, Xlib
Programming Manual. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4.

 /* color_slide.c −− Use scale widgets to display the different
 * colors of a colormap.
 */
 #include <Xm/LabelG.h>
 #include <Xm/Scale.h>
 #include <Xm/RowColumn.h>
 #include <Xm/DrawingA.h>

 Widget colorwindow; /* the window the displays a solid color */
 XColor color; /* the color in the colorwindow */

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, scale;
 XtAppContext app;
 void new_value();
 XtVarArgsList arglist;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 if (DefaultDepthOfScreen (XtScreen (toplevel)) < 2) {
 puts ("You must be using a color screen.");
 exit (1);
 }

 color.flags = DoRed | DoGreen | DoBlue;

14 The Scale Widget 14.3 Scale Orientation and Movement

372

 /* initialize first color */
 XAllocColor (XtDisplay (toplevel),
 DefaultColormapOfScreen (XtScreen (toplevel)), &color);

 rowcol = XtVaCreateManagedWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel, NULL);

 colorwindow = XtVaCreateManagedWidget ("colorwindow",
 widgetClass, rowcol,
 XmNheight, 100,
 XmNbackground, color.pixel,
 NULL);

 /* use rowcol again to create another RowColumn under the 1st */
 rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, rowcol,
 XmNorientation, XmHORIZONTAL,
 NULL);

 arglist = XtVaCreateArgsList (NULL,
 XmNshowValue, True,
 XmNmaximum, 255,
 XmNscaleMultiple, 5,
 NULL);

 scale = XtVaCreateManagedWidget ("Red",
 xmScaleWidgetClass, rowcol,
 XtVaNestedList, arglist,
 XtVaTypedArg, XmNtitleString, XmRString, "Red", 4,
 XtVaTypedArg, XmNforeground, XmRString, "Red", 4,
 NULL);
 XtAddCallback (scale, XmNdragCallback, new_value, DoRed);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, DoRed);

 scale = XtVaCreateManagedWidget ("Green",
 xmScaleWidgetClass, rowcol,
 XtVaNestedList, arglist,
 XtVaTypedArg, XmNtitleString, XmRString, "Green", 6,
 XtVaTypedArg, XmNforeground, XmRString, "Green", 6,
 NULL);
 XtAddCallback (scale, XmNdragCallback, new_value, DoGreen);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, DoGreen);

 scale = XtVaCreateManagedWidget ("Blue",
 xmScaleWidgetClass, rowcol,
 XtVaNestedList, arglist,
 XtVaTypedArg, XmNtitleString, XmRString, "Blue", 5,
 XtVaTypedArg, XmNforeground, XmRString, "Blue", 5,
 NULL);
 XtAddCallback (scale, XmNdragCallback, new_value, DoBlue);
 XtAddCallback (scale, XmNvalueChangedCallback, new_value, DoBlue);

 XtFree (arglist);

 XtManageChild (rowcol);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 new_value(scale_w, client_data, call_data)

14 The Scale Widget 14.3 Scale Orientation and Movement

373

 Widget scale_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 int rgb = (int) client_data;
 XmScaleCallbackStruct *cbs = (XmScaleCallbackStruct *) call_data;
 Colormap cmap = DefaultColormapOfScreen (XtScreen (scale_w));

 switch (rgb) {
 case DoRed :
 color.red = (cbs−>value << 8);
 break;
 case DoGreen :
 color.green = (cbs−>value << 8);
 break;
 case DoBlue :
 color.blue = (cbs−>value << 8);
 }

 /* reuse the same color again and again */
 XFreeColors (XtDisplay (scale_w), cmap, &color.pixel, 1, 0);
 if (!XAllocColor (XtDisplay (scale_w), cmap, &color)) {
 puts ("Couldn't XAllocColor!");
 exit(1);
 }
 XtVaSetValues (colorwindow, XmNbackground, color.pixel, NULL);
 }

The output of this program is shown in the figure. Obviously, a black and white book makes it difficult to show how
this application really looks. However, when you run the program, you should get a feel for using Scale widgets.

Output of color_slide.c

One interesting aspect of the color_slide.c program is the use of XtVaCreateArgsList(). We use this function
to build a single argument list that we use repeatedly. If we didn't use the function, we would have to duplicate the
argument list for each call to XtVaCreateManagedWidget(). The function allocates and returns a pointer to an
object of type XtVarArgsList. This type is an opaque pointer to an array of XtVaTypedArgList objects,

14 The Scale Widget 14.3 Scale Orientation and Movement

374

which means that you can specify normal resource−value pairs or the quadruplet used by XtVaTypedArg. We use
the latter form to specify resource values that are not in the appropriate type, so that the toolkit handles the type
conversion. For a discussion on type conversion and the use of XtVaTypedArg, see Volume Four, X Toolkit
Intrinsics Programming Manual.

14.5 Scale Tick Marks

The Motif Style Guide suggests that a Scale widget can have "tick marks" that represent the incremental positions of
the Scale. The Scale widget does not provide these marks by default, but you can add them yourself by creating
Labels as children of a Scale widget, as demonstrated in the source code Each of the Label gadgets are given the same
name (a dash), which is used as the actual label since the XmNlabelString resource is not set. Obviously, in a
more complex application, the Labels should specify information that helps the user to read the Scale.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* tick_marks.c −− demonstrate a scale widget with tick marks. */

 #include <Xm/Scale.h>
 #include <Xm/LabelG.h>

 #define MAX_VAL 10 /* arbitrary value */

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, scale;
 XtAppContext app;
 int i;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 scale = XtVaCreateManagedWidget ("load",
 xmScaleWidgetClass, toplevel,
 XtVaTypedArg, XmNtitleString, XmRString, "Process Load", 13,
 XmNmaximum, MAX_VAL * 100,
 XmNminimum, 100,
 XmNvalue, 100,
 XmNdecimalPoints, 2,
 XmNshowValue, True,
 NULL);

 for (i = 0; i < MAX_VAL; i++)
 XtVaCreateManagedWidget ("−", xmLabelGadgetClass, scale, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output of this program is shown in the figure.

14 The Scale Widget 14.5 Scale Tick Marks

375

Output of tick_marks.c

The Scale can have any kind of widget as a child, but it is common to use Labels to represent tick marks. All of the
children are evenly distributed along the axis of the slider; no other layout method is possible. As you can see in the
figure, the tick marks are placed all the way to the left of the Scale widget to leave space for the value indicator. It is
not possible to force the tick marks up against the Scale by using the XmNalignment resource of the Labels or to
control the layout of the tick marks in any way.

14.6 Summary

The Scale widget is a simple widget, both in concept and in practical use. In this chapter, we have showed a few
possible uses of the Scale to represent a range of values. The range of a Scale, as well as its orientation, are
customizable. The widget also provides callbacks that allow an application to keep track of the value of the Scale as
the user changes it. These features make the Scale quite versatile.

14 The Scale Widget 14.6 Summary

376

15 Text Widgets

This chapter explains how the Text and TextField widgets can be used to provide text−entry capabilities in an
application. These widgets can be used for a variety of purposes, from a simple data−entry field to a full−fledged text
editor. The chapter describes the selection mechanisms provided by the widgets and how they can be used to
communicate with other applications via the clipboard. The widgets also allow the programmer to control the format
of the data that is entered by the user.

Despite all that can be done with menus, buttons, and lists, there are times when the user can best interact with an
application by typing at the keyboard. The Text widget is usually the best choice for providing this style of interface,
as it provides full−featured text editing capabilities. The Text widget can be used anywhere the user might be expected
to type free−form text, such as in a compose window in a mail application. Unlike standard text editors, the Text
widget supports the point−and−click model that people expect from GUI−based applications. The TextField widget
provides a single−line data entry field with the same set of editing commands as the Text widget, but it requires less
overhead. Text widgets can also be used in output−only mode to display more textual information than is practical
with a label or a button.

Even though the text widgets allow for complex interaction, they still provide simple mechanisms for program
control. The widgets have resources that access the text, as well as control their behavior. They also provide callback
routines that allow an application to intervene on actions that add text, delete text, or move the insertion cursor. The
widgets support keyboard management methods that control the editing style, paging style, character positioning, and
line−wrapping. There are also convenience routines that enable quick and simple access to the clipboard.

The text widgets do have their limitations. For example, they do not support multiple colors or fonts, so a single
widget can only use one color and one font. There is no support for text formatting such as paragraph specifications,
automatic line numbering, or indentation, so you cannot create WYSIWYG documents. WYSIWYG stands for What
You See Is What You Get. This term is used to describe page formatting programs that can produce camera−ready
documents that match what is displayed on the screen. The Text widget is not a terminal emulator; it cannot be used to
run interactive programs. The widgets cannot display multi−media objects either, which means that it is not possible
to insert graphics into the text stream.

There are some cases where a text widget is not the most appropriate user−interface element, even though you are
displaying text. For example, a Text widget should not be used to display a list whose items can be individually
selected; that is the job of the List widget. Text that cannot be edited, or selected should be displayed in a Label
widget. Chapter 11, Labels and Buttons, and Chapter 12, The List Widget, describe the appropriate uses of these
components.

If you have not used the Motif Text widget, you should familiarize yourself with one before getting too involved in
this chapter. Running some of our introductory examples should provide an adequate platform for experimentation.
the figure shows an application that uses several Text widgets. Two widgets are used for single−line data entry. The
widget with the ScrollBars attached to it is used for editing multiple lines.

377

An editor application with two different styles of Text widgets

The Text widget supports both single−line and multiline editing. In single−line mode, which is the default mode,
newlines are ignored. However, single−line text entry is usually done with the TextField widget class. This widget
class is a completely separate class, not a subclass, of Text that is lighter−weight because it only supports single−line
text editing. The TextField widget was added to the toolkit in Motif 1.1; in early versions of that release the widget
had a number of bugs that made it difficult to use. These bugs have been fixed in later releases. Although they are two
separate widget classes, the Text and TextField widgets provide many of the same resources and convenience
routines. We will point out the differences as we go, but keep in mind that there are two widget classes so you don't
get confused as we discuss them throughout this chapter.

Since the TextField widget cannot handle multiline editing, you must use the Text widget for this purpose. When
multiple lines are used for editing, the number of lines typically grows and shrinks dynamically as the user edits the
text. The Text widget is often used in a scrollable window, so that the user can view different portions of the
underlying text. The combination of a Text widget and a ScrolledWindow widget is called a ScrolledText object. This
object is not a widget class, although there is a convenience routine, XmCreateScrolledText(), that allows you
to create both widgets at once.

15.1 Interacting With Text Widgets

The Text and TextField widgets are highly configurable in terms of appearance and behavior. Given the level of
sophistication for both the programmer and the user, the widgets should not be taken lightly or underestimated. The
ease of configurability should not tempt you to enforce your personal ideas about how a text editor should work. The
best thing to do with text widgets is configure them as minimally as possible to suit the needs of your program. You
should let the user have control over as many details of their display and operation as possible. This laissez−faire
approach ensures that your application is more compatible with other Motif programs.

15.1.1 Inserting Text

The user interface for the text widgets follows the point−and−click model of interaction. The insertion cursor indicates
the position where the next character that is typed will be inserted. In Motif 1.2, the insertion position is marked by an
I−beam cursor. Using the left mouse button, the user can click on a new location in the widget to move the insertion
cursor there, so text may be inserted at any location in the widget.

15 Text Widgets 15.1 Interacting With Text Widgets

378

In Motif 1.1, the text widgets used two different cursors. The I−beam was used to mark the insertion position, while a
caret (^) was used as the destination cursor when it was separate from the insertion cursor. The destination cursor
showed the last position that text was inserted, edited, or selected. Having two separate cursors was confusing for
users and programmers, so the model has been simplified for Motif 1.2 to use only the I−beam cursor.

The text widgets have predefined action routines that allow the user to perform simple editing operations such as
moving one character to the right or deleting backwards to the beginning of the line. The user can specify translations
in a resource file that modify the input behavior of the widgets. The widgets are modeless, so they are always in
text−insertion mode. In Motif 1.2, there is an action that puts the Text widget in overstrike mode, while in Motif 1.1, it
is programmatically possible to emulate such a mode using multiple action routines.

The user can use the action routines provided by the widgets to set up the translation table to mimic an editor such as
emacs. The Text widget does not insert nonprintable characters, so users typically bind control−character sequences to
editing action routines. An editor like vi cannot be emulated because there is no distinction between command mode
and text−entry mode.

15.1.2 Selecting Text

Users have become accustomed to the ability to cut and paste text between windows in GUI−based applications. Cut
and paste is more difficult for the programmer to implement with the X Window System than a system where a single
vendor controls all of the variables, because the nature of X requires a more general solution . For example,
applications running on the same display may actually be executing on different systems; these systems may have
different byte orders or other differences in the underlying data format. Currently, only text selections are
implemented, which makes byte order irrelevant. However, the mechanism is designed to allow transparent transfer of
any kind of data. In order to insulate cut and paste operations from dependencies like these, all communication
between applications is implemented via the X server. Data that is cut is stored in a property on the X server. A
property is simply a named piece of data associated with a window and stored on the server.

The Interclient Communications Conventions Manual Reprinted as Appendix L in Volume Zero, X Protocol
Reference Manual. (ICCCM) defines a set of standard property names to be used for operations such as cut and paste
and lays out rules for how applications should interact with these properties. According to the ICCCM, text that is
selected is typically stored in the PRIMARY property. The SECONDARY property is defined as an alternate storage
area for use by applications that wish to support more than one simultaneous selection operation or that wish to
support operations requiring two selections, such as switching the contents of the two selections. The CLIPBOARD
property is defined as a longer−term holding area for data that is actually cut (rather than simply copied) from the
application's window. When we refer to the primary, secondary, or clipboard selection, we mean the property of the
same name.

The most common implementation of the selection mechanism is provided by the X Toolkit Intrinsics. The low−level
routines that are used to implement selections are described in detail in Volume Four, X Toolkit Intrinsics
Programming Manual. In general, applications such as xterm and widgets such as the Motif Text widget encapsulate
this functionality in action routines that are invoked by the user with mouse button or key combinations.

The user can select text in a Motif Text widget by pressing the left mouse button and dragging the pointer across the
text. The selected text is displayed in reverse video. When the button is released, the text widget has ownership of the
selection, but no text is copied. The selection can be extended either by pressing the SHIFT key and then dragging the
pointer with the left mouse button down, or by pressing any of the arrow keys while holding down the SHIFT key. In
addition to the click−and−drag technique for text selection, the Text widget also supports multiple−clicking
techniques: double−clicking selects a word, triple−clicking selects the current line, and quadruple−clicking selects all
of the text in the widget. An important constraint imposed by the ICCCM is that only one window may own a
selection property at one time, which means that once the user makes another primary selection, the original selection

15 Text Widgets 15.1.2 Selecting Text

379

is lost.

The user can copy text directly from the primary selection into the Text widget by clicking the middle mouse button at
the location where the text is to be inserted. This action is sometimes called stuffing the selection into the widget. The
user can stuff text at any location in the text stream, as long as the location is not inside the current selection. The text
is copied only when the middle mouse button is clicked, which is defined as a quick succession of press and release
actions. The operation does not take place simply because the middle mouse button is pressed, as this action is used
for drag and drop operations.

In Motif 1.2, the Text and TextField widgets support the drag−and−drop model of transferring textual data. Once text
has been selected in a widget, the selection can be dragged by pressing the middle mouse button over the selection and
dragging the pointer. The text is transferred when the user releases the middle mouse button with the pointer over
another location in the same widget or over another text widget. By default, the text is moved, which means that the
original text is deleted once the transfer is complete. The user can force a copy operation by holding down the
CONTROL key while dragging the pointer and releasing the mouse button. For more information on drag and drop,
see Chapter 18, Drag and Drop.

The secondary selection is used by the Motif text widgets to copy text directly within a widget. The user performs this
type of operation by first selecting the location where the copied text is to be placed; clicking the left mouse button
places the insertion point. Then the text that is to be copied is selected by pressing and dragging the middle mouse
button while the ALT key is pressed. The selected text is underlined rather than highlighted in reverse video. When
the button is released, the selected text is immediately stuffed at the location of the insertion cursor. Unlike the
primary selection, which may be retrieved many times, the secondary selection is immediate and can only be stuffed
once.

The third location for holding text is the clipboard selection. The clipboard selection is designed to be used as a
longer−term storage area for data. For example, MIT provides a client called xclipboard that asserts ownership of the
CLIPBOARD property and provides a user interface to it. xclipboard not only allows a selection to survive the
termination of the window where the data was originally selected, but it also allows for the storage of multiple
selections. The user can view all of the selections before deciding which one to paste.

OSF's implementation of the clipboard is incompatible with xclipboard. If xclipboard is running, any Motif routines
that attempt to store data on the clipboard will not succeed. The Motif routines temporarily try to lock the clipboard,
and xclipboard will not give up its own lock. Motif treats the clipboard as a two−item cache. Only Motif applications
that use the clipboard routines described in Chapter 17, The Clipboard, can interoperate using this selection. The
advantage of the Motif implementation is that it provides functionality far beyond that provided by the standard MIT
clients. With xterm and the Athena widgets, selections can really only be used for copy−and−paste operations; the
selected text is unchanged. The Motif Text widget, by contrast, allows you to cut, copy, clear, or type over a selection.
While there is a translation and action−based interface defined for these operations, it is typically not implemented.

As described in Chapter 2, The Motif Programming Model, Motif defines translations in terms of virtual key
bindings. By default, the virtual keys osfCut, osfCopy, osfPaste, et. al., are not bound to any actual keys. If a user
wants to use these keys, he must specify the bindings in a .motifbind file in his home directory. The interface for these
features is usually provided by menu items associated with the Text widget, as we will demonstrate in this chapter.

When text is selected in a Text widget, it is automatically stored in the primary selection. When one of the Text
widget functions, such as XmTextCut(), is used, the text is also stored in the clipboard selection. Most users will be
completely unaware that there are separate holding areas for selected text. If your application gets heavily into cutting
and pasting, you may find that the fusion of the primary and clipboard selections in the convenience routines is
confusing. You should be careful to implement the selection operations so that the different properties are transparent
to the user.

15 Text Widgets 15.1.2 Selecting Text

380

The reference pages for the Text and TextField widgets (in Volume Six B, Motif Reference Manual; Section 2, Motif
and Xt Widget Classes) lists the default translations for the widgets. See Volume Four, X Toolkit Intrinsics
Programming Manual, for a description of how to programmatically alter translation tables; see Volume Three, X
Window System User's Guide, for a description of how a user can customize widget translations. See Chapter 17, The
Clipboard, for a discussion of the lower−level Motif clipboard functions.

15.2 Text Widget Basics

In order to understand the complexities of the Text and TextField widgets, you need to know about some of the basic
resources and functions that they provide. This section describes the fundamentals of working with text widgets,
including how to create the widgets, how to work with the textual data, and how to control simple aspects of
appearance and behavior. Applications that wish to use the Text widget need to include the file <Xm/Text.h>.
T e x t F i e l d w i d g e t s r e q u i r e t h e f i l e < X m / T e x t F . h > . Y o u c a n c r e a t e a T e x t w i d g e t u s i n g
XtVaCreateManagedWidget() as usual:

 Widget text_w;

 text_w = XtVaCreateManagedWidget("name",
 xmTextWidgetClass, parent,

resource−value−list,
 NULL);

To create a TextField widget instead, specify the class as xmTextFieldWidgetClass.

15.2.1 The Textual Data

The XmNvalue resource of the Text and TextField widgets provides the most basic means of access to the internal
text storage for the widgets. Unlike the other widgets in the Motif toolkit that use text, the text widgets do not use
compound strings for their values. Instead, the value is specified as a regular C string, as shown in the source code
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* simple_text.c −− Create a minimally configured Text widget */
 #include <Xm/Text.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 XtVaCreateManagedWidget ("text", xmTextWidgetClass, toplevel,
 XmNvalue, "Now is the time...",
 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

This short program simply creates a Text widget with the initial value shown in the figure.

15 Text Widgets 15.2 Text Widget Basics

381

Output of simple_text.c

In Motif 1.2, both widgets also provide the XmNvalueWcs resource for storing a wide−character representation of
the text value. For more information on using the text widgets in an internationalized application, see Section
#stexti18n. The initial value of the XmNvalue resource may be set either when the widget is created or by using
XtVaSetValues() after the widget has been created. The value of the resource always represents the entire text of
the widget. You can also use a Motif convenience routine, XmTextSetString(), to set the text value. This routine
takes the following form:

 void
 XmTextSetString(text_w, value)
 Widget text_w;
 char *value;

This routine works for both Text and TextField widgets. The TextField widget has a corresponding routine,
XmTextFieldSetString(), but it only works for TextField widgets. If you are using both types of text widgets
in an application, we recommend using the Text widget routines to manipulate all of the widgets. Since these routines
work with both types of widgets, you don't need to keep track of the widget types.

Although the convenience routine and XtVaSetValues() produce the same results, the convenience routine may
be more efficient since it accesses the internals of the widget directly, while the XtVaSetValues() method
involves going through Xt. On the other hand, if you are setting a number of resources at the same time, the
XtVaSetValues() method is better because all of the resources can be set in a single function call. Whichever
function you use, the text value is copied into the internals of the widget, and the displayed value is changed
accordingly.

If, for whatever reason, you are making multiple changes in a short period of time to the text in a Text widget, you
may have problems with visual flashing in the widget. With Motif 1.2, you can solve this problem by calling
XmTextDisableRedisplay() to turn off visual updating in the widget. After the call, the appearance of the
widget remains unchanged until XmTextEnableRedisplay() is called. You can access the textual data in a Text
widget using XtVaGetValues() or XmTextGetString(). XmTextGetString() allocates enough space
(using XtMalloc()) for all of the text in the widget and returns a pointer to the allocated data. You can modify the
returned data any way you like, and then you must free it using XtFree() when you are done. The code fragment
below demonstrates the use of XmTextGetString():

 char *text;

 if (text = XmTextGetString (text_w)) {
 /* manipulate text in whatever way is necessary */
 ...
 /* free text or there will be a memory leak */
 XtFree (text);
 }

XmTextGetString() works with both Text and TextField widgets, while the corresponding TextField routine,
XmTextFieldGetString(), only works with TextField widgets. In Motif 1.2, you can also use

15 Text Widgets 15.2 Text Widget Basics

382

XmTextGetSubstring() to get a copy of a portion of the text in a Text widget.

The alternative to XmTextGetString() is the Xt function XtVaGetValues(). The Text widget responds to
XtVaGetValues() by allocating memory and returning a copy of the text. As a result, this data must be freed after
use. This use of the GetValues() method is different from most other resources. For most resources,
XtVaGetValues() returns a pointer to internal data that should be treated as read−only data. In order to avoid
memory leaks, you need to be sure to free the memory that is allocated by XtVaGetValues() for the XmNvalue
resource, as shown in the following code fragment:

 char *text;

 XtVaGetValues (text_w, XmNvalue, &text, NULL);
 /* manipulate text in whatever way is necessary */
 ...
 /* free text or there will be a memory leak */
 XtFree (text);

Getting the value of a Text widget can be an expensive operation if the widget contains a large amount of text. In all
situations, whenever text is retrieved from the Text widget with any function, the length of time the data is valid is
only guaranteed until the next Xt call into the same Text widget; what any particular call might do to the internal text
stream is undefined, and that information will not be reflected in the current character pointer handle you may have.

A Text widget may contain an arbitrarily large amount of text, assuming that there is enough memory on the computer
running the client application. The text for a widget is not stored on the X server; only the client computer stores
widget−specific information. The server displays a bitmap rendition of what the Text widget chooses to show. The
XmNmaxLength resource specifies the upper limit on the number of characters the user can type into a Text widget.
The default value of this resource is the largest integer for the particular system, so it is likely that the user's computer
will run out of memory before the Text widget's maximum capacity is reached. You can lower the value of the
resource to limit the number of characters that the user can input to a particular Text widget.

The Text widget does not use a temporary file to store its data. All of the data resides in memory on the machine, so
you cannot use a Text widget to browse or edit a file directly. Instead, you load the contents of a file into a Text
widget and allow the user to edit the internal buffer. The application controls when to rewrite files with updated data.
An application can also provide an interface that allows the user to control this action. Applications that use Text
widgets to edit vital information should make provisions for data recovery if the system fails or the application
terminates unexpectedly. The Text widget does not support this type of recovery.

15.2.2 Single and Multiple Lines

In the source code the Text widget provides a single−line text entry area that is 20 columns wide; it is shown in the
figure. Both the single−line editing style and the width are default values. The width of each column is based on the
font that is used for the text. Since the widget uses the single−line editing style, nothing happens when the user presses
RETURN in the widget. If the user types more text than the widget can display, the text scrolls to the left. Since
newlines are not interpreted when they are typed by the user, textual data is always a single line. It is possible to set
XmNvalue to a string that contains newline characters in a single−line Text widget, but the interaction with the user
is undefined, and the widget produces confusing behavior. The user can resize the widget to make it appear large
enough to display multiple lines, but this action does not affect the operation of the widget or the way it handles input.

Multiline editing allows the user to enter newlines into a Text widget and provides the capability to edit a large
amount of text. The switch from single−line to multiline causes a number of changes in the behavior of the widget.
For example, now widget geometry must be considered in order to determine the amount of text that is visible at one
time. The Text widget may need to be placed in a ScrolledWindow, so that the user can view all of the text.

15 Text Widgets 15.2.2 Single and Multiple Lines

383

Single or multiline editing is controlled through the XmNeditMode resource. The value of the resource can be either
XmSINGLE_LINE_EDIT or XmMULTI_LINE_EDIT. While the two editing modes are quite different in concept, it
should be quite intuitive when to use the different modes. Single−line text entry areas are commonly used to prompt
for file and directory names, short phrases, or single words. They are also useful for command−line entry in
applications that were originally based on a tty−style interface. Multiline editing is used for editing files or other large
quantities of text.

15.2.3 Scrollable Text

The layout of a multiline Text widget can be difficult to manage, especially if the text is editable by the user. An
application needs to decide how many lines of text are displayed, how to handle the layout when the user adds new
text, and how to deal with resizing the Text widget. The easiest way to manage an editable multiline Text widget is to
create it as part of a ScrolledText compound object. The ScrolledText object is not a widget class in and of itself, but
rather a compound object that is composed of a Text widget and a ScrolledWindow widget.

When you create a ScrolledText object, the ScrolledWindow automatically handles scrolling the text in the Text
widget. Basically, the two widget classes have hooks and procedures that allow them to cooperate intelligently with
each other. As of Motif 1.2, the performance of the ScrolledText object has improved considerably. One unfortunate
side−effect of the performance improvement is that subclasses of the Text widget may not work under Motif 1.2, due
to the addition of a new data structure. In previous releases, scrolling operations could be quite slow when the Text
widget contained a large amount of text.

You can create a ScrolledText object using the Motif convenience routine XmCreateScrolledText(), which
takes the following form:

 Widget
 XmCreateScrolledText(parent, name, arglist, argcount)
 Widget parent;
 char *name;
 ArgList arglist;
 Cardinal argcount;

This routine is not a variable−argument list function; it uses the argument−list style of setting resources with the
XtSetArg() macro.

XmCreateScrolledText() creates a ScrolledWindow widget and a Text widget as its child. The routine returns
a handle to the Text widget; you can get a handle to the ScrolledWindow using the function XtParent(). When
you are laying out an application that uses ScrolledText objects, you should be sure to use XtParent() to get the
ScrolledWindow widget, since that is the widget that you need to position.

For purposes of specifying resources, the ScrolledWindow takes the name of the Text widget with the suffix SW. For
example, if the name of the Text widget is name, its ScrolledWindow parent widget has the name nameSW.

If you specify an argument list in a call to XmCreateScrolledText(), the resources are set for the Text widget
or the ScrolledWindow as appropriate. The routine also sets some resources for the ScrolledWindow so that scrolling
is handled automatically. You should be sure to set the XmNeditMode resource to XmMULTI_LINE_EDIT, since it
doesn't make sense to have a single−line Text widget in a ScrolledWindow. If you don't set the resource, the Text
widget defaults to single−line editing mode. The behavior of a single−line Text widget (or a TextField widget) in a
ScrolledWindow is undefined.

XmCreateScrolledText() is adequate for most situations, but you can also create the two widgets separately, as
shown in the following code fragment:

15 Text Widgets 15.2.3 Scrollable Text

384

 Widget scrolled_w, text_w;

 scrolled_w = XtVaCreateManagedWidget ("scrolled_w",
 xmScrolledWindowWidgetClass, parent,
 XmNscrollingPolicy, XmAPPLICATION_DEFINED,
 XmNvisualPolicy, XmVARIABLE,
 XmNscrollBarDisplayPolicy, XmSTATIC,
 XmNshadowThickness, 0,
 NULL);

 text_w = XtVaCreateManagedWidget ("text",
 xmTextWidgetClass, scrolled_w,
 XmNeditMode, XmMULTI_LINE_EDIT,
 ...
 NULL);

We create the ScrolledWindow widget with the same resource setting that the Motif function uses. Since we are
creating the ScrolledWindow ourselves, we can give it our own name. The Text widget itself is created as a child of
the ScrolledWindow. In this situation, it is clear that the parent of the ScrolledWindow controls the position of both of
the widgets.

This creation method makes the programmer responsible for managing both of the widgets. You may also need to
handle the case in which the widgets are destroyed. When you call XmCreateScrolledText(), the routine
installs an XmNdestroyCallback on the Text widget that destroys the ScrolledWindow parent. When you create
the widgets yourself, you also need to be sure that they are destroyed together, either by destroying them explicitly or
installing a callback routine on the Text widget. Unless you are creating and destroying ScrolledText objects
dynamically, this issue should not be a concern.

the source code shows a simple file browser that displays the contents of a file using a ScrolledText object. The user
can specify a file by typing a filename in the TextField widget below the Filename: prompt. The user can also select a
file from the FileSelectionDialog that is popped up by the Open entry on the File menu. The specified file is displayed
immediately in the Text widget. XtSetLanguageProc() is only available in X11R5; there is no corresponding
f u n c t i o n i n X 1 1 R 4 . X m S t r i n g C r e a t e L o c a l i z e d () i s o n l y a v a i l a b l e i n M o t i f 1 . 2 ;
XmStringCreateSimple() is the corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces
XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* file_browser.c −− use a ScrolledText object to view the
 * contents of arbitrary files chosen by the user from a
 * FileSelectionDialog or from a single−line text widget.
 */
 #include <X11/Xos.h>
 #include <Xm/Text.h>
 #include <Xm/TextF.h>
 #include <Xm/FileSB.h>
 #include <Xm/MainW.h>
 #include <Xm/RowColumn.h>
 #include <Xm/LabelG.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <stdio.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget top, main_w, menubar, menu, rc, text_w, file_w;
 XtAppContext app;

15 Text Widgets 15.2.3 Scrollable Text

385

 XmString file, open, exit;
 extern void read_file(), file_cb();
 Arg args[10];
 int n;

 XtSetLanguageProc (NULL, NULL, NULL);

 /* initialize toolkit and create toplevel shell */
 top = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 /* MainWindow for the application −− contains menubar
 * and ScrolledText/Prompt/TextField as WorkWindow.
 */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, top, NULL);

 /* Create a simple MenuBar that contains one menu */
 file = XmStringCreateLocalized ("File");
 menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
 XmVaCASCADEBUTTON, file, 'F',
 NULL);
 XmStringFree (file);

 /* Menu is "File" −− callback is file_cb() */
 open = XmStringCreateLocalized ("Open...");
 exit = XmStringCreateLocalized ("Exit");
 menu = XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, open, 'O', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, exit, 'x', NULL, NULL,
 NULL);
 XmStringFree (open);
 XmStringFree (exit);

 /* Menubar is done −− manage it */
 XtManageChild (menubar);

 rc = XtVaCreateWidget ("work_area", xmRowColumnWidgetClass, main_w, NULL);
 XtVaCreateManagedWidget ("Filename:", xmLabelGadgetClass, rc,
 XmNalignment, XmALIGNMENT_BEGINNING,
 NULL);
 file_w = XtVaCreateManagedWidget ("text_field",
 xmTextFieldWidgetClass, rc, NULL);

 /* Create ScrolledText −− this is work area for the MainWindow */
 n = 0;
 XtSetArg(args[n], XmNrows, 12); n++;
 XtSetArg(args[n], XmNcolumns, 70); n++;
 XtSetArg(args[n], XmNeditable, False); n++;
 XtSetArg(args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg(args[n], XmNcursorPositionVisible, False); n++;
 text_w = XmCreateScrolledText (rc, "text_w", args, n);
 XtManageChild (text_w);

 /* store text_w as user data in "File" menu for file_cb() callback */
 XtVaSetValues (menu, XmNuserData, text_w, NULL);
 /* add callback for TextField widget passing "text_w" as client data */
 XtAddCallback (file_w, XmNactivateCallback, read_file, text_w);

 XtManageChild (rc);

15 Text Widgets 15.2.3 Scrollable Text

386

 /* Store the filename text widget to ScrolledText object */
 XtVaSetValues (text_w, XmNuserData, file_w, NULL);

 XmMainWindowSetAreas (main_w, menubar, NULL, NULL, NULL, rc);
 XtRealizeWidget (top);
 XtAppMainLoop (app);
 }

 /* file_cb() −− "File" menu item was selected so popup a
 * FileSelectionDialog.
 */
 void
 file_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget dialog;
 Widget text_w;
 extern void read_file();
 int item_no = (int) client_data;

 if (item_no == 1)
 exit (0); /* user chose Exit */

 if (!dialog) {
 Widget menu = XtParent (widget);
 dialog = XmCreateFileSelectionDialog (menu, "file_sb", NULL, 0);

 /* Get the text widget handle stored as "user data" in File menu */
 XtVaGetValues (menu, XmNuserData, &text_w, NULL);
 XtAddCallback (dialog, XmNokCallback, read_file, text_w);
 XtAddCallback (dialog, XmNcancelCallback, XtUnmanageChild, NULL);
 }
 XtManageChild (dialog);

 XtPopup (XtParent (dialog), XtGrabNone);
 XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
 }

 /* read_file() −− callback routine when the user selects OK in the
 * FileSelection Dialog or presses Return in the single−line text widget.
 * The specified file must be a regular file and readable.
 * If so, it's contents are displayed in the text_w provided as the
 * client_data to this function.
 */
 void
 read_file(widget, client_data, call_data)
 Widget widget; /* file selection box or text field widget */
 XtPointer client_data;
 XtPointer call_data;
 {
 char *filename, *text;
 struct stat statb;
 FILE *fp;
 Widget file_w;
 Widget text_w = (Widget) client_data;
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) call_data;

15 Text Widgets 15.2.3 Scrollable Text

387

 if (XtIsSubclass (widget, xmTextFieldWidgetClass)) {
 filename = XmTextFieldGetString (widget);
 file_w = widget; /* this *is* the file_w */
 }
 else {
 /* file was selected from FileSelectionDialog */
 XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &filename);
 /* the user data stored the file_w widget in the text_w */
 XtVaGetValues (text_w, XmNuserData, &file_w, NULL);
 }

 if (!filename || !*filename) { /* nothing typed? */
 if (filename)
 XtFree (filename);
 return;
 }

 /* make sure the file is a regular text file and open it */
 if (stat (filename, &statb) == −1 ||
 (statb.st_mode & S_IFMT) != S_IFREG ||
 !(fp = fopen(filename, "r"))) {
 if ((statb.st_mode & S_IFMT) == S_IFREG)
 perror (filename); /* send to stderr why we can't read it */
 else
 fprintf (stderr, "%s: not a regular file0, filename);
 XtFree (filename);
 return;
 }

 /* put the contents of the file in the Text widget by allocating
 * enough space for the entire file, reading the file into the
 * allocated space, and using XmTextFieldSetString() to show the file.
 */
 if (!(text = XtMalloc ((unsigned)(statb.st_size + 1)))) {
 fprintf (stderr, "Can't alloc enough space for %s", filename);
 XtFree (filename);
 fclose (fp);
 return;
 }

 if (!fread (text, sizeof (char), statb.st_size + 1, fp))
 fprintf (stderr, "Warning: may not have read entire file!0);

 text[statb.st_size] = 0; /* be sure to NULL−terminate */

 /* insert file contents in Text widget */
 XmTextSetString (text_w, text);

 /* make sure text field is up to date */
 if (file_w != widget) {
 /* only necessary if activated from FileSelectionDialog */
 XmTextFieldSetString (file_w, filename);
 XmTextFieldSetCursorPosition (file_w, strlen(filename));
 }

 /* free all allocated space and */
 XtFree (text);
 XtFree (filename);
 fclose (fp);
 }

15 Text Widgets 15.2.3 Scrollable Text

388

The output of the program is shown in the figure.

Output of file_browser.c

We use the convenience routine XmCreateScrolledText() to create a ScrolledText area. We specify that the
Text widget displays 12 lines by 70 columns of text by setting the XmNrows and XmNcolumns resources. These
settings are used only at initialization. Once the application is up and running, the user can resize the window and
effectively change those dimensions.

The XmNeditable resource is set to False to prevent the user from editing the contents of the Text widget. Since
we do not provide a way to write changes back to the file, we don't want to mislead the user into thinking that the file
is editable. Since a noneditable Text widget should not display an insertion cursor, we remove it by setting
XmNcursorPositionVisible to False.

The FileSelectionDialog is created and managed when the user selects the Open button from the File menu. The user
can exit the program by selecting the Exit button from this menu. The read_file() routine is activated when the
user presses the OK button in the FileSelectionDialog or enters RETURN in the TextField widget. This function gets
the specified file and checks its type. If the file chosen is not a regular file (e.g., if it is a directory, device, tty, etc.) or
if it cannot be opened, an error is reported and the function simply returns. If you are unfamiliar with the use of the
stat() system call, or any other aspect of UNIX programming used in examples in this book, a good source of
information is the Nutshell Handbook Using C on the UNIX System, by Dave Curry (O'Reilly & Associates, 1988).

Assuming that the file checks out, its contents are placed in the Text widget. Rather than loading the file by reading
each line using a function like fgets(), we allocate enough space to contain the entire file and read it all in with one
call to fread(). The text is then loaded into the Text widget using XmTextSetString(). The ScrollBars are
updated automatically and the text is positioned so that the beginning of the file is displayed. In file_browser.c, the
ScrolledText object has two ScrollBars that are installed automatically. The vertical ScrollBar is needed in case the
text exceeds 12 lines; the horizontal ScrollBar is needed in case any of those lines are wider than 70 columns. Most
users are accustomed to having Text windows be a fixed width (typically 80 columns), especially if they have ever
used an ASCII terminal. However, it can be annoying to have text that is scrollable in the horizontal direction, since
you need to see the entire line to read smoothly through a page of text.

15 Text Widgets 15.2.3 Scrollable Text

389

The XmNscrollHorizontal resource controls whether or not a horizontal ScrollBar is displayed. If the resource
is set to False, the ScrollBar is not displayed, but that does not stop text from being displayed beyond the visible
area. In order to have text wrap appropriately, the XmNwordWrap resource must be set to True. When this resource
is set, the Text widget breaks lines at spaces, tabs, and newlines. While line breaking is fine for previewing files and
other output−only Text widgets, you should not enforce such a policy for Text widgets that are used for text editing,
as the user may want to edit wide files.

The XmNscrollVertical resource controls whether or not a vertical ScrollBar is displayed. This resource
defaults to True when a Text widget is created as a child of a ScrolledWindow. The XmNscrollLeftSide and
XmNscrollTopSide resources take Boolean values that control the location of the ScrollBars within the
ScrolledWindow. By default, XmNscrollTopSide is set to False, which causes the ScrollBar to be placed below
the Scro l ledWindow. The defau l t va lue o f XmNscro l lLef tS ide depends upon the va lue o f
XmNstringDirection. These two resources should not be set by the application, but left to users to specify
themselves. The XmNresizeWidth and XmNresizeHeight resources control whether or not a Text widget
should resize itself vertically or horizontally in order to display the entire text stream. Both of the resources default to
False. If XmNresizeWidth is set to True and new text is added such that the number of columns needs to grow,
the width of the widget grows to contain the new text. Similarly, if XmNresizeHeight is set to True and the
number of lines increases, the height of the widget increases so that it can display all of the lines. These resources
have no effect in a ScrolledText object, since the ScrollBars are managing the widget's size. Also, if line breaking is
active, XmNresizeWidth has no effect.

In most cases, it is not appropriate to set these resources, as it is regarded as poor user−interface design to have a Text
widget that dynamically resizes as the text is being edited. It is also impolite for a window to resize itself except as the
result of an explicit user action. One example of an acceptable use of these resources involves using a Text widget to
display text for a help dialog. In this situation, the Text widget can resize itself silently before it is mapped to the
screen, so that by the time it is visible, its size is constant.

15.2.4 Text Positions

A position in a Text widget specifies the number of characters from the beginning of the text in the widget, where the
first character position is defined as zero (0). All whitespace and newline characters are considered part of the text and
are counted as single characters. For example, in the figure, the insertion cursor in the TextField widget is at position
14. When the user types in a Text widget, the new text is always added at the position of the insertion cursor and the
insertion cursor is advanced. If the user does not move the cursor, it is always positioned at the end of the text in the
widget.

You can set the position of the insertion cursor explicitly using XmTextSetInsertionPosition(), which takes
the following form:

 void
 XmTextSetInsertionPosition(text_w, position)
 Widget text_w;
 XmTextPosition position;

This function is identical to XmTextSetCursorPosition(). The XmTextPosition type is a long value, so
it can represent all of the positions in a Text widget. You can get the current cursor position using
XmTextGetInsertionPosition() or XmTextGetCursorPosition(). As with most of the Text widget
functions, there are corresponding TextField functions for setting and getting the position of the insertion cursor. The
TextField routines only work with TextField widgets, while the Text routines work with both Text and TextField
widgets.

15 Text Widgets 15.2.4 Text Positions

390

the source code shows an application that uses these routines as part of a search operation. The program searches the
Text widget for a specified pattern and then positions the insertion cursor so that the pattern is displayed.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* search_text.c −− demonstrate how to position a cursor at a
 * particular location. The position is determined by a pattern
 * match search.
 */
 #include <Xm/Text.h>
 #include <Xm/TextF.h>
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <X11/Xos.h> /* for the index() function */

 Widget text_w, search_w, text_output;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol_v, rowcol_h;
 XtAppContext app;
 int i, n;
 void search_text();
 Arg args[10];

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcol_v = XtVaCreateWidget ("rowcol_v",
 xmRowColumnWidgetClass, toplevel, NULL);

 rowcol_h = XtVaCreateWidget ("rowcol_h",
 xmRowColumnWidgetClass, rowcol_v,
 XmNorientation, XmHORIZONTAL,
 NULL);
 XtVaCreateManagedWidget ("Search Pattern:",
 xmLabelGadgetClass, rowcol_h, NULL);
 search_w = XtVaCreateManagedWidget ("search_text",
 xmTextFieldWidgetClass, rowcol_h, NULL);
 XtManageChild (rowcol_h);

 text_output = XtVaCreateManagedWidget ("text_output",
 xmTextWidgetClass, rowcol_v,
 XmNeditable, False,
 XmNcursorPositionVisible, False,
 XmNshadowThickness, 0,
 XmNhighlightThickness, 0,
 NULL);

 n = 0;
 XtSetArg (args[n], XmNrows, 10); n++;
 XtSetArg (args[n], XmNcolumns, 80); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNscrollHorizontal, False); n++;
 XtSetArg (args[n], XmNwordWrap, True); n++;
 text_w = XmCreateScrolledText (rowcol_v, "text_w", args, n);
 XtManageChild (text_w);

15 Text Widgets 15.2.4 Text Positions

391

 XtAddCallback (search_w, XmNactivateCallback, search_text, NULL);

 XtManageChild (rowcol_v);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* search_text() −− called when the user activates the TextField. */
 void
 search_text(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *search_pat, *p, *string, buf[32];
 XmTextPosition pos;
 int len;
 Boolean found = False;

 /* get the text that is about to be searched */
 if (!(string = XmTextGetString (text_w)) || !*string) {
 XmTextSetString (text_output, "No text to search.");
 XtFree (string); /* may have been ""; free it */
 return;
 }
 /* get the pattern we're going to search for in the text. */
 if (!(search_pat = XmTextGetString (search_w)) || !*search_pat) {
 XmTextSetString (text_output, "Specify a search pattern.");
 XtFree (string); /* this we know is a string; free it */
 XtFree (search_pat); /* this may be "", XtFree() checks.. */
 return;
 }
 len = strlen (search_pat);

 /* start searching at current cursor position + 1 to find
 * the −next− occurrance of string. we may be sitting on it.
 */
 pos = XmTextGetCursorPosition (text_w);
 for (p = &string[pos+1]; p = index (p, *search_pat); p++)
 if (!strncmp (p, search_pat, len)) {
 found = True;
 break;
 }
 if (!found) { /* didn't find pattern? */
 /* search from beginning till we've passed "pos" */
 for (p = string;
 (p = index (p, *search_pat)) && p − string <= pos; p++)
 if (!strncmp (p, search_pat, len)) {
 found = True;
 break;
 }
 }
 if (!found)
 XmTextSetString (text_output, "Pattern not found.");
 else {
 pos = (XmTextPosition)(p − string);
 sprintf (buf, "Pattern found at position %ld.", pos);
 XmTextSetString (text_output, buf);
 XmTextSetInsertionPosition (text_w, pos);

15 Text Widgets 15.2.4 Text Positions

392

 }
 XtFree (string);
 XtFree (search_pat);
 }

In this example, the user can search for strings in a ScrolledText, as shown in the figure.

Output of search_text.c

This program doesn't provide a way to load a file, so if you want to experiment, you need to type or paste some text
into the widget. Once there is some text in the widget, type a string pattern in the Search Pattern TextField widget
and press RETURN to activate the search. The text is searched starting at the position immediately following the
current cursor position. If the search routine reaches the end of the text before it finds the pattern, it resumes searching
from the beginning of the text and continues until it finds the pattern or reaches the cursor position. If the routine finds
the pattern, it moves the insertion point to that location using XmTextSetInsertionPosition(). Otherwise,
the routine prints an error message and does not move the cursor.

The search_text() routine shown in the source code searches the text using various string routines. In Motif 1.2,
there is a new Text routine that provides the same functionality. XmTextFindString() searches a Text widget for
a specified string. This routine takes the following form:

 Boolean
 XmTextFindString(text_w, start, string, direction, position)
 Widget text_w;
 XmTextPosition start;
 char *string;
 XmTextDirection direction;
 XmTextPosition *position;

The start argument specifies the starting position for the search, while direction indicates whether the routine
searches forward or backward in the text. This parameter can have the value XmTEXT_FORWARD or
XmTEXT_BACKWARD. The routine returns True if it finds the string, and in this case, the position parameter
returns the position where the string starts in the text. If the string is not found, the routine returns False, and the
value of position is undefined. It is easy to rewrite search_text() to take advantage of
XmTextFindString(). In Section #stexteditor, we implement a full text editor and use XmTextFindString()
to handle the various search operations.

15 Text Widgets 15.2.4 Text Positions

393

The text_output widget in search_text.c is also a Text widget, even though it looks more like a Label widget. By
setting XmNshadowThickness to 0 and XmNeditable to False, we create the Text widget that doesn't look
like a normal Text widget, and the user cannot edit the text. We demonstrate this technique not to advocate such
usage, but to point out the versatility of this widget class.

If you paste a large amount of text into the main Text widget and search repeatedly for a common pattern, you should
notice that the Text widget may scroll automatically to make the specified text visible. This action is controlled by the
XmNautoShowCursorPosition resource. This resource has a default value of True, which means that the Text
widget adjusts the visible text to make sure that the cursor is always visible. When the resource is set to False, the
widget does not scroll to compensate for the cursor's invisibility. This resource also works in single−line Text widgets
and TextField widgets; these widgets may scroll their displays horizontally to display the insertion cursor.

It is easy to scroll a Text widget to a particular position in the text stream by setting the cursor position and then
calling XmTextShowPosition(). This routine takes the following form:

 void
 XmTextShowPosition(text_w, position)
 Widget text_w;
 XmTextPosition position;

To scroll to the end of the text, you need to scroll to the last position, which can be retrieved using
XmTextGetLastPosition(). It is also possible to perform relative scrolling using the function
XmTextScroll(), which takes the following form:

 void
 XmTextScroll(text_w, lines)
 Widget text_w;
 int lines;

A positive value for lines causes a Text widget to scroll upward by that many lines, while a negative value causes
downward scrolling. The Text widget does not have to be a child of ScrolledWindow for this routine to work; the
widget simply adjusts the viewable text.

Now that we have a routine that searches for text, the next logical step is to implement a function that performs a
search−and−replace operation. Motif makes this task fairly easy by providing the XmTextReplace() routine,
which takes the following form:

 void
 XmTextReplace(text_w, from_pos, to_pos, value)
 Widget text_w;
 XmTextPosition from_pos;
 XmTextPosition to_pos;
 char *value;

This function identifies the text to be replaced in the Text widget starting at the position from_pos and ending at,
but not including, the position to_pos. This text is replaced by the text in value. If value is NULL or an empty
string, the text between the two positions is simply deleted. If you want to remove all of the text from the widget, call
XmTextSetString() with a NULL string as the text value.

To add search−and−replace functionality to the program in the source code we need to add a new TextField widget
that prompts for the replacement text and provide a callback routine for the widget. the source code shows the
additional code that is necessary.

15 Text Widgets 15.2.4 Text Positions

394

 Widget text_w, search_w, replace_w, text_output;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 ...
 replace_w = XtVaCreateManagedWidget ("replace_text",
 xmTextFieldWidgetClass, rowcol_h, NULL);

 XtAddCallback (replace_w, XmNactivateCallback, search_and_replace, NULL);
 ...
 }

 void
 search_and_replace(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *search_pat, *p, *string, *new_pat, buf[32];
 XmTextPosition pos;
 int search_len, pattern_len;
 int nfound = 0;

 string = XmTextGetString (text_w);
 if (!*string) {
 XmTextSetString (text_output, "No text to search.");
 XtFree (string);
 return;
 }

 search_pat = XmTextGetString (search_w);
 if (!*search_pat) {
 XmTextSetString (text_output, "Specify a search pattern.");
 XtFree (string);
 XtFree (search_pat);
 return;
 }

 new_pat = XmTextGetString (replace_w);
 search_len = strlen (search_pat);
 pattern_len = strlen (new_pat);
 /* start at beginning and search entire Text widget */
 for (p = string; p = index (p, *search_pat); p++)
 if (!strncmp (p, search_pat, search_len)) {
 nfound++;
 /* get the position where pattern was found */
 pos = (XmTextPosition)(p−string);
 /* replace the text from our position + strlen (new_pat) */
 XmTextReplace (text_w, pos, pos + search_len, new_pat);
 /* "string" has changed −− we must get the new version */
 XtFree (string); /* free the one we had first... */
 string = XmTextGetString (text_w);
 /* continue search for next pattern −after− replacement */
 p = &string[pos + pattern_len];
 }
 if (!nfound)
 strcpy (buf, "Pattern not found.");
 else
 sprintf (buf, "Made %d replacements.", nfound);

15 Text Widgets 15.2.4 Text Positions

395

 XmTextSetString (text_output, buf);
 XtFree (string);
 XtFree (search_pat);
 XtFree (new_pat);
 }

In this routine, the pattern search starts at the beginning of the text and searches all of the text in the widget. We are
not interested in the cursor position and do not attempt to move it. The main loop of the function only needs to find
the specified pattern and replace each occurrence with the new text. After each call to XmTextReplace(), we
reread the text, since the old value is no longer valid. As with the search_text() routine, we could easily use
XmTextFindString() to search for the pattern, as we do in the text editor in Section #stexteditor.

15.2.5 Output−only Text

The Text and TextField widgets can be used in an output−only mode by setting the XmN-editable resource to
False. If the user tries to edit the text in a read−only widget, the widget beeps and does not allow the modification.
We used an output−only Text widget in our file browsing application.

Our next example addresses a common need for many developers: a method for displaying text messages while an
application is running. These messages may include status messages about application actions, as well as error
messages from Xlib, Xt, and functions internal to the application. The message area is an important part of the main
window of many applications, as discussed in Chapter 4, The Main Window. While a message area can be
-implemented using a Label widget, an output−only ScrolledText object is better suited for use as a message area
because the user can scroll back to previous messages.

the source code shows the wprint() function that we wrote to handle displaying messages. The function acts like
printf() in that it takes variable arguments and understands the standard string formatting characters. The output
goes to a ScrolledText widget so the user can review previous messages. All new text is appended to the end of the
output, so it is immediately visible and the user does not have to manually scroll to the end of the display.

 #include <stdio.h>
 #include <varargs.h> /* or <stdarg.h> */

 /* global variable */
 Widget text_output;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Arg args[10];
 int n;

 ...

 /* Create output_text as a ScrolledText window */
 n = 0;
 XtSetArg(args[n], XmNrows, 6); n++;
 XtSetArg(args[n], XmNcolumns, 80); n++;
 XtSetArg(args[n], XmNeditable, False); n++;
 XtSetArg(args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg(args[n], XmNwordWrap, True); n++;
 XtSetArg(args[n], XmNscrollHorizontal, False); n++;
 XtSetArg(args[n], XmNcursorPositionVisible, False); n++;
 text_output = XmCreateScrolledText(rowcol, "text_output", args, n);
 XtManageChild (text_output);

15 Text Widgets 15.2.5 Output−only Text

396

 ...
 }

 /*VARARGS*/
 void
 wprint(va_alist)
 va_dcl
 {
 char msgbuf[256];
 char *fmt;
 static XmTextPosition wpr_position;
 va_list args;

 va_start (args);
 fmt = va_arg (args, char *);
 #ifndef NO_VPRINTF
 (void) vsprintf (msgbuf, fmt, args);
 #else /* !NO_VPRINTF */
 {
 FILE foo;
 foo._cnt = 256;
 foo._base = foo._ptr = msgbuf; /* (unsigned char *) ?? */
 foo._flag = _IOWRT+_IOSTRG;
 (void) _doprnt (fmt, args, &foo);
 foo._ptr = ' '; / plant terminating null character */
 }
 #endif /* NO_VPRINTF */
 va_end (args);

 XmTextInsert (text_output, wpr_position, msgbuf);
 wpr_position = wpr_position + strlen (msgbuf);
 XtVaSetValues (text_output, XmNcursorPosition, wpr_position, NULL);
 XmTextShowPosition (text_output, wpr_position);
 }

Since the wprint() function acts like printf(), it takes a variable−length argument list, which requires the
inclusion of either <varargs.h> or <stdarg.h>. If you have access to the source code for X, you could include
<X11/VarargsI.h> instead. This file is used by the X Toolkit whenever variable−length argument lists are used; it
includes the appropriate file for the current operating system. The function wprint() takes va_alist as its only
parameter. This argument is a pointer to the first of a list of arguments passed to the function; it is declared as
va_dcl in accordance with the standards for functions that take variable−length argument lists.

The va_start() and va_arg() macros are used to extract the first parameter from the argument list. Since
wprint() is supposed to act like printf(), we know that the first parameter is going to be a char pointer. The
call to va_arg() causes fmt to point to the format string, which may or may not contain % formatting characters
that expand to other strings depending on the other arguments to the function.

The rest of the arguments are read and parsed by either vsprintf() or _doprnt(), depending on the C library
that you are using. vsprintf() is a varargs version of sprintf() that exists on most modern UNIX machines.
System V has vsprintf(), as does SunOS, but Ultrix and older BSD machines typically use _doprnt(). If your
machine does not have vsprintf(), you can use _doprnt() as shown in the source code Both of these functions
consume all of the arguments in the list and leave the result in msgbuf.

Now that we have the complete string in msgbuf, we can append it to the existing text in the Text widget. We keep
track of the end of text_output with wpr_position. Each time msgbuf is concatenated to the end of the text,
the value of wpr_position is incremented appropriately. The new text is added using the convenience routine

15 Text Widgets 15.2.5 Output−only Text

397

XmTextInsert(), which takes the following form:

 void
 XmTextInsert(text_w, position, string)
 Widget text_w;
 XmTextPosition position;
 char *string;

The function simply inserts the given text at the specified position. Finally, we call XmTextShowPosition() to
make the end position visible within the Text widget. This routine may cause the Text widget to adjust its text so that
the new text is visible, as a convenience to the user so that he does not have to scroll the window to view new
messages.

The routines in the source code show how wprint() can be used to reset the error handling functions for Xlib and
Xt so that the messages are printed in a Text widget rather than to stderr.

 extern void wprint();

 static void
 x_error(dpy, err_event)
 Display *dpy;
 XErrorEvent *err_event;
 {
 char buf[256];

 XGetErrorText (dpy, err_event−>error_code, buf, (sizeof buf));

 wprint("X Error: <%s>0, buf);
 }

 static void
 xt_error(message)
 char *message;
 {
 wprint ("Xt Error: %s0, message);
 }

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;

 ...

 /* catch Xt errors */
 XtAppSetErrorHandler (app, xt_error);
 XtAppSetWarningHandler (app, xt_error);

 /* and Xlib errors */
 XSetErrorHandler (x_error);

 ...
 }

Using XtAppSetErrorHandler(), XtAppSetWarningHandler(), and XSetErrorHandler(), we send
all X−related error messages to a Text widget through wprint(). You can also use wprint() to send any
application−specific messages to the ScrolledText area.

15 Text Widgets 15.2.5 Output−only Text

398

15.3 Text Clipboard Functions

Both the Text widget and the TextField widget have convenience routines that support communication with the
clipboard. Using these functions, you can implement the standard cut, copy, and paste functionality, as well as support
communication with other windows or applications on the desktop. If you are not familiar with the clipboard and how
it works, see Chapter 17, The Clipboard. Briefly, the clipboard is one of three transient locations where arbitrary data
such as text can be stored so that other windows or applications can copy the data. For the Text widget, we are only
interested in copying textual data and providing visual feedback within the widget. The Text widget can send and
receive data from all three of the locations, depending on the interface style that you are using.

As described earlier in this chapter, the user typically selects text by pressing the first mouse button and dragging the
pointer across the text. When text is selected, it is rendered in reverse video and automatically copied into the primary
selection. Now the user can paste text from the primary selection into any Text widget on the desktop by pressing the
middle mouse button. The insertion cursor is moved to the location of the button press, and the data is automatically
copied into the Text widget at this position. This functionality works by default within the Text widget. However, the
actions operate on the primary selection, not the clipboard selection. Furthermore, the actions only allow you to copy
data to and from the selection, not cut it or clear it.

To provide these features, most applications provide other user−interface controls, such as a PulldownMenu and
appropriate menu items, that call Text widget clipboard routines. These routines store text on the clipboard. They also
allow the user to move text between the clipboard and the primary selection, as well as between windows that are
interested only in the clipboard selection. Typical menu entries include Cut, Copy, Paste, and Clear. the source code
demonstrates these common editing actions. The application creates a MenuBar with an Edit PulldownMenu that
contains actions that operate on the Text widget. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* cut_paste.c −− demonstrate the text functions that handle
 * clipboard operations. These functions are convenience routines
 * that relieve the programmer of the need to use clipboard functions.
 * The functionality of these routines already exists in the Text
 * widget, yet it is common to place such features in the interface
 * via the MenuBar's "Edit" pulldown menu.
 */
 #include <Xm/Text.h>
 #include <Xm/LabelG.h>
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>

 Widget text_w, text_output;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w, menubar, rowcol_v;
 XtAppContext app;
 void cut_paste();
 XmString label, cut, clear, copy, paste;
 Arg args[10];
 int n;

 XtSetLanguageProc (NULL, NULL, NULL);

15 Text Widgets 15.3 Text Clipboard Functions

399

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 main_w = XtVaCreateWidget ("main_w",
 xmMainWindowWidgetClass, toplevel, NULL);

 /* Create a simple MenuBar that contains a single menu */
 label = XmStringCreateLocalized ("Edit");
 menubar = XmVaCreateSimpleMenuBar (main_w, "menubar",
 XmVaCASCADEBUTTON, label, 'E',
 NULL);
 XmStringFree (label);

 cut = XmStringCreateLocalized ("Cut"); /* create a simple */
 copy = XmStringCreateLocalized ("Copy"); /* pulldown menu that */
 clear = XmStringCreateLocalized ("Clear"); /* has these menu */
 paste = XmStringCreateLocalized ("Paste"); /* items in it. */
 XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 0, cut_paste,
 XmVaPUSHBUTTON, cut, 't', NULL, NULL,
 XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
 XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
 NULL);
 XmStringFree (cut);
 XmStringFree (clear);
 XmStringFree (copy);
 XmStringFree (paste);

 XtManageChild (menubar);

 /* create a standard vertical RowColumn... */
 rowcol_v = XtVaCreateWidget ("rowcol_v",
 xmRowColumnWidgetClass, main_w, NULL);

 text_output = XtVaCreateManagedWidget ("text_output",
 xmTextWidgetClass, rowcol_v,
 XmNeditable, False,
 XmNcursorPositionVisible, False,
 XmNshadowThickness, 0,
 XmNhighlightThickness, 0,
 NULL);

 n = 0;
 XtSetArg (args[n], XmNrows, 10); n++;
 XtSetArg (args[n], XmNcolumns, 80); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNscrollHorizontal, False); n++;
 XtSetArg (args[n], XmNwordWrap, True); n++;
 text_w = XmCreateScrolledText (rowcol_v, "text_w", args, n);
 XtManageChild (text_w);

 XtManageChild (rowcol_v);
 XtManageChild (main_w);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* cut_paste() −− the callback routine for the items in the edit menu */
 void

15 Text Widgets 15.3 Text Clipboard Functions

400

 cut_paste(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Boolean result = True;
 int reason = (int) client_data;
 XEvent *event = ((XmPushButtonCallbackStruct *) call_data)−>event;
 Time when;

 XmTextSetString (text_output, NULL); /* clear message area */

 if (event != NULL) {
 switch (event−>type) {
 case ButtonRelease :
 when = event−>xbutton.time;
 break;
 case KeyRelease :
 when = event−>xkey.time;
 break;
 default:
 when = CurrentTime;
 break;
 }
 }

 switch (reason) {
 case 0 :
 result = XmTextCut (text_w, when);
 break;
 case 1 :
 result = XmTextCopy (text_w, when);
 break;
 case 2 :
 result = XmTextPaste (text_w);
 case 3 :
 XmTextClearSelection (text_w, when);
 break;
 }
 if (result == False)
 XmTextSetString (text_output, "There is no selection.");
 else
 XmTextSetString (text_output, NULL);
 }

The application creates a MainWindow widget, so that it can contain the MenuBar. The MenuBar and the
PulldownMenu are created using their respective convenience routines, as described in Chapter 4, The Main Window,
and Chapter 15, Menus. The output of the program is shown in the figure.

15 Text Widgets 15.3 Text Clipboard Functions

401

Output of cut_paste.c

Again, you need to enter some text or paste it from another window if you want to experiment with this application.
The main window contains the same Text widgets used in previous examples. The Edit PulldownMmenu allows the
user to interact with the clipboard. The cut_paste() routine is the callback function for all of the menu items in
the Edit menu. This function uses four Text convenience routines to work with the clipboard: XmTextCut(),
XmTextCopy(), XmTextPaste(), and XmTextClearSelection(). These routines take the following form:

 Boolean
 XmTextCut(text_w, time)
 Widget text_w;
 Time time;

 Boolean
 XmTextCopy(text_w, time)
 Widget text_w;
 Time time;

 Boolean
 XmTextPaste(text_w)
 Widget text_w;

 void
 XmTextClearSelection(text_w, time)
 Widget text_w;
 Time time;

XmTextCopy() copies the text that is selected in the Text widget and places it on the clipboard. XmTextCut() is
similar to XmTextCopy(), except that the Text widget that owns the selection is instructed to delete the text once it
has been copied to the clipboard. The deletion is handled by sending a DELETE protocol request to the window
holding the selection. This protocol is not the same as the WM_DELETE protocol, which indicates that a window is
being deleted. See Chapter 16, Interacting With the Window Manager, for more information on window manager
protocols. The time parameters should not be set to CurrentTime to avoid race conditions with other clipboard
operations that may be occurring at the same time. Since the clipboard routines are called by menu item callback
routines, you can use the time field of the XEvent that is passed in the callback structure, as we do in the source
code Both XmTextCopy() and XmTextCut() return True if the operation succeeds. False may be returned if
there is no selected text or an error occurs in attempting to communicate with the clipboard.

15 Text Widgets 15.3 Text Clipboard Functions

402

XmTextPaste() gets the current selection from the clipboard and inserts it at the location of the insertion cursor. If
there is some selected text in the Text widget, that text is replaced by the selection from the clipboard.
XmTextPaste() returns True if there is a selection on the clipboard that can be retrieved.

XmTextClearSelection() deselects the text selection in the Text widget. If there is no selected text, nothing
happens. The routine does not provide any feedback or return any value. Any text that is held on the clipboard or in a
selection property remains.

One additional convenience routine that operates on the selection is XmTextRemove(). This function is like
XmTextCut(), in that it removes the selected text from a Text widget, but it does not place the text on the clipboard.

15.3.1 Getting the Selection

You can get the selected text from a Text widget using XmTextGetSelection(), which takes the following form:

 char *
 XmTextGetSelection(text_w)
 Widget text_w;

This routine returns allocated data that contains the selected text. This text must be freed using XtFree() when you
are through using it. The routine returns NULL if there is no text selected in the Text widget.

XmTextGetSelectionPosition() provides information about the selected text in a Text widget. This routine
takes the following form:

 Boolean
 XmTextGetSelectionPosition(text_w, left, right)
 Widget text_w;
 XmTextPosition *left;
 XmTextPosition *right;

If XmTextGetSelectionPosition() returns True, the values for left and right specify the boundaries of
the selected text. If the routine returns False, the widget does not contain any selected text, and the values for left
and right are undefined.

15.3.2 Modifying the Selection Mechanisms

The Text widget supports multi−clicking techniques for selecting increasingly large chunks of text. The default
multi−clicking actions in the Text widget are shown in tab(@), linesize(2); l | l l | l. User Action@Text Widget Action
_
Single click@Resets insertion cursor to position Double click@Selects a word (bounded by whitespace) Triple
click@Selects a line (bounded by newlines) Quadruple click@Selects all of the text
_ These default actions can be modified using the XmNselectionArray and XmN-selectionArrayCount
resources. The XmNselectionArray resource specifies an array of XmTextScanType values, where
XmTextScanType is an enumerated type defined as follows:

 typedef enum {
 XmSELECT_POSITION,
 XmSELECT_WHITESPACE,
 XmSELECT_WORD,
 XmSELECT_LINE,
 XmSELECT_PARAGRAPH
 XmSELECT_ALL,

15 Text Widgets 15.3.1 Getting the Selection

403

 } XmTextScanType;

XmSELECT_WHITESPACE works in the same way as XmSELECT_WORD. Each successive button click in a Text
widget selects the text according to the corresponding item in the array. The default array is defined as follows:

 static XmTextScanType sarray[] = {
 XmSELECT_POSITION, XmSELECT_WORD, XmSELECT_LINE, XmSELECT_ALL
 };

You should keep the items in the array in ascending order, so as not to confuse the user. The following code fragment
shows an acceptable change to the array:

 static XmTextScanType sarray[] = {
 XmSELECT_POSITION, XmSELECT_WORD, XmSELECT_LINE, XmSELECT_PARAGRAPH,
 XmSELECT_ALL
 };
 ...
 XtVaSetValues (text_w,
 XmNselectionArray, selectionArray,
 XmNselectionArrayCount, 5,
 NULL);

The maximum time interval between button clicks in a multi−click action is specified by the multiClickTime
resource. This resource is maintained by the X server and set for all applications; it is not a Motif resource. The value
o f t h e r e s o u r c e c a n b e r e t r i e v e d u s i n g X t G e t M u l t i C l i c k T i m e () a n d c h a n g e d w i t h
XtSetMultiClickTime(). For more discussion on this value, see Chapter 11, Labels and Buttons.

The XmNselectThreshold resource can be used to modify the behavior of click−and−drag actions. This resource
specifies the number of pixels that the user must move the pointer before a character can be selected. The default
value is 5, which means that the user must move the mouse at least 5 pixels before the Text widget decides whether or
not to select a character. This threshold is used throughout a selection operation to determine when characters are
added or deleted from the selection. If you are using an extremely large font, you may want to increase the value of
this resource to cut down on the number of calculations that are necessary to determine if a character should be added
or deleted from the selection.

15.4 A Text Editor

Before we describe the Text widget callback routines, we are going to present an example that combines all the
information covered so far. The example is a full−featured text editor built from the examples presented so far in this
chapter. You should recognize most of the code in the example; the code that you don't recognize should be
understandable from the context in which it is used. The output of the program is shown in the figure; the code is
shown in the source code XtSetLanguageProc() is only available in X11R5; there is no corresponding function
in X11R4. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in
Motif 1.2. XmTextFindString() is only available in Motif 1.2; there is no corresponding function in Motif 1.1,
so you have to implement your own search capabilities.

15 Text Widgets 15.4 A Text Editor

404

Output of editor.c

 /* editor.c −− create a full−blown Motif editor application complete
 * with a menubar, facilities to read and write files, text search
 * and replace, clipboard support and so forth.
 */
 #include <Xm/Text.h>
 #include <Xm/TextF.h>
 #include <Xm/LabelG.h>
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/Form.h>
 #include <Xm/FileSB.h>
 #include <X11/Xos.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/stat.h>

 Widget text_edit, search_text, replace_text, text_output;

 #define FILE_OPEN 0
 #define FILE_SAVE 1
 #define FILE_EXIT 2

 #define EDIT_CUT 0
 #define EDIT_COPY 1
 #define EDIT_PASTE 2
 #define EDIT_CLEAR 3

 #define SEARCH_FIND_NEXT 0
 #define SEARCH_SHOW_ALL 1
 #define SEARCH_REPLACE 2
 #define SEARCH_CLEAR 3

 main(argc, argv)
 int argc;
 char *argv[];

15 Text Widgets 15.4 A Text Editor

405

 {
 XtAppContext app_context;
 Widget toplevel, main_window, menubar, form, search_panel;
 void file_cb(), edit_cb(), search_cb();
 Arg args[10];
 int n = 0;
 XmString open, save, exit, exit_acc, file, edit, cut,
 clear, copy, paste, search, next, find, replace;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app_context, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 XmRepTypeInstallTearOffModelConverter ();

 main_window = XtVaCreateWidget ("main_window",
 xmMainWindowWidgetClass, toplevel, NULL);

 /* Create a simple MenuBar that contains three menus */
 file = XmStringCreateLocalized ("File");
 edit = XmStringCreateLocalized ("Edit");
 search = XmStringCreateLocalized ("Search");
 menubar = XmVaCreateSimpleMenuBar (main_window, "menubar",
 XmVaCASCADEBUTTON, file, 'F',
 XmVaCASCADEBUTTON, edit, 'E',
 XmVaCASCADEBUTTON, search, 'S',
 NULL);
 XmStringFree (file);
 XmStringFree (edit);
 XmStringFree (search);

 /* First menu is the File menu −− callback is file_cb() */
 open = XmStringCreateLocalized ("Open...");
 save = XmStringCreateLocalized ("Save...");
 exit = XmStringCreateLocalized ("Exit");
 exit_acc = XmStringCreateLocalized ("Ctrl+C");
 XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, open, 'O', NULL, NULL,
 XmVaPUSHBUTTON, save, 'S', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c", exit_acc,
 NULL);
 XmStringFree (open);
 XmStringFree (save);
 XmStringFree (exit);
 XmStringFree (exit_acc);

 /* ...create the "Edit" menu −− callback is edit_cb() */
 cut = XmStringCreateLocalized ("Cut");
 copy = XmStringCreateLocalized ("Copy");
 clear = XmStringCreateLocalized ("Clear");
 paste = XmStringCreateLocalized ("Paste");
 XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, edit_cb,
 XmVaPUSHBUTTON, cut, 't', NULL, NULL,
 XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
 XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
 NULL);
 XmStringFree (cut);

15 Text Widgets 15.4 A Text Editor

406

 XmStringFree (copy);
 XmStringFree (paste);

 /* create the "Search" menu −− callback is search_cb() */
 next = XmStringCreateLocalized ("Find Next");
 find = XmStringCreateLocalized ("Show All");
 replace = XmStringCreateLocalized ("Replace Text");
 XmVaCreateSimplePulldownMenu (menubar, "search_menu", 2, search_cb,
 XmVaPUSHBUTTON, next, 'N', NULL, NULL,
 XmVaPUSHBUTTON, find, 'A', NULL, NULL,
 XmVaPUSHBUTTON, replace, 'R', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, clear, 'C', NULL, NULL,
 NULL);
 XmStringFree (next);
 XmStringFree (find);
 XmStringFree (replace);
 XmStringFree (clear);

 XtManageChild (menubar);

 /* create a form work are */
 form = XtVaCreateWidget ("form",
 xmFormWidgetClass, main_window, NULL);

 /* create horizontal RowColumn inside the form */
 search_panel = XtVaCreateWidget ("search_panel",
 xmRowColumnWidgetClass, form,
 XmNorientation, XmHORIZONTAL,
 XmNpacking, XmPACK_TIGHT,
 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);
 /* Create two TextField widgets with Labels... */
 XtVaCreateManagedWidget ("Search Pattern:",
 xmLabelGadgetClass, search_panel, NULL);
 search_text = XtVaCreateManagedWidget ("search_text",
 xmTextFieldWidgetClass, search_panel, NULL);
 XtVaCreateManagedWidget (" Replace Pattern:",
 xmLabelGadgetClass, search_panel, NULL);
 replace_text = XtVaCreateManagedWidget ("replace_text",
 xmTextFieldWidgetClass, search_panel, NULL);
 XtManageChild (search_panel);

 text_output = XtVaCreateManagedWidget ("text_output",
 xmTextFieldWidgetClass, form,
 XmNeditable, False,
 XmNcursorPositionVisible, False,
 XmNshadowThickness, 0,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);

 n = 0;
 XtSetArg (args[n], XmNrows, 10); n++;
 XtSetArg (args[n], XmNcolumns, 80); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
 XtSetArg (args[n], XmNtopWidget, search_panel); n++;

15 Text Widgets 15.4 A Text Editor

407

 XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
 XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
 XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
 XtSetArg (args[n], XmNbottomWidget, text_output); n++;
 text_edit = XmCreateScrolledText (form, "text_edit", args, n);
 XtManageChild (text_edit);

 XtManageChild (form);
 XtManageChild (main_window);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app_context);
 }

 /* file_select_cb() −− callback routine for "OK" button in
 * FileSelectionDialogs.
 */
 void
 file_select_cb(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 char buf[256], *filename, *text;
 struct stat statb;
 long len;
 FILE *fp;
 int reason = (int) client_data;
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) call_data;

 if (!XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &filename))
 return; /* must have been an internal error */

 if (*filename == NULL) {
 XtFree (filename);
 XBell (XtDisplay (text_edit), 50);
 XmTextSetString (text_output, "Choose a file.");
 return; /* nothing typed */
 }

 if (reason == FILE_SAVE) {
 if (!(fp = fopen (filename, "w"))) {
 perror (filename);
 sprintf (buf, "Can't save to %s.", filename);
 XmTextSetString (text_output, buf);
 XtFree (filename);
 return;
 }
 /* saving −− get text from Text widget... */
 text = XmTextGetString (text_edit);
 len = XmTextGetLastPosition (text_edit);
 /* write it to file (check for error) */
 if (fwrite (text, sizeof (char), len, fp) != len)
 strcpy (buf, "Warning: did not write entire file!");
 else {
 /* make sure a newline terminates file */
 if (text[len−1] != '0)
 fputc ('0, fp);
 sprintf (buf, "Saved %ld bytes to %s.", len, filename);
 }

15 Text Widgets 15.4 A Text Editor

408

 }
 else { /* reason == FILE_OPEN */
 /* make sure the file is a regular text file and open it */
 if (stat (filename, &statb) == −1 ||
 (statb.st_mode & S_IFMT) != S_IFREG ||
 !(fp = fopen (filename, "r"))) {
 perror (filename);
 sprintf (buf, "Can't read %s.", filename);
 XmTextSetString (text_output, buf);
 XtFree (filename);
 return;
 }
 /* put the contents of the file in the Text widget by
 * allocating enough space for the entire file, reading the
 * file into the space, and using XmTextSetString() to show
 * the file.
 */
 len = statb.st_size;
 if (!(text = XtMalloc ((unsigned)(len+1)))) /* +1 for NULL */
 sprintf (buf, "%s: XtMalloc(%ld) failed", len, filename);
 else {
 if (fread (text, sizeof (char), len, fp) != len)
 sprintf (buf, "Warning: did not read entire file!");
 else
 sprintf (buf, "Loaded %ld bytes from %s.", len, filename);
 text[len] = 0; /* NULL−terminate */
 XmTextSetString (text_edit, text);
 }
 }
 XmTextSetString (text_output, buf); /* purge output message */

 /* free all allocated space. */
 XtFree (text);
 XtFree (filename);
 fclose (fp);
 XtUnmanageChild (dialog);
 }

 /* popdown_cb() −− callback routine for "Cancel" button. */
 void
 popdown_cb (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XtUnmanageChild (w);
 }

 /* file_cb() −− a menu item from the "File" pulldown menu was selected */
 void
 file_cb(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget open_dialog, save_dialog;
 Widget dialog = NULL;
 XmString button, title;
 int reason = (int) client_data;

 if (reason == FILE_EXIT)

15 Text Widgets 15.4 A Text Editor

409

 exit (0);

 XmTextSetString (text_output, NULL); /* clear message area */

 if (reason == FILE_OPEN && open_dialog)
 dialog = open_dialog;
 else if (reason == FILE_SAVE && save_dialog)
 dialog = save_dialog;

 if (dialog) {
 XtManageChild (dialog);
 /* make sure that dialog is raised to top of window stack */
 XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
 return;
 }

 dialog = XmCreateFileSelectionDialog (text_edit, "Files", NULL, 0);
 XtAddCallback (dialog, XmNcancelCallback, popdown_cb, NULL);
 XtAddCallback (dialog, XmNokCallback, file_select_cb, reason);
 if (reason == FILE_OPEN) {
 button = XmStringCreateLocalized ("Open");
 title = XmStringCreateLocalized ("Open File");
 open_dialog = dialog;
 }
 else { /* reason == FILE_SAVE */
 button = XmStringCreateLocalized ("Save");
 title = XmStringCreateLocalized ("Save File");
 save_dialog = dialog;
 }
 XtVaSetValues (dialog,
 XmNokLabelString, button,
 XmNdialogTitle, title,
 NULL);
 XmStringFree (button);
 XmStringFree (title);
 XtManageChild (dialog);
 }

 /* search_cb() −− a menu item from the "Search" pulldown menu selected */
 void
 search_cb(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *search_pat, *p, *string, *new_pat, buf[256];
 XmTextPosition pos = 0;
 int len, nfound = 0;
 int search_len, pattern_len;
 int reason = (int) client_data;
 Boolean found = False;

 XmTextSetString (text_output, NULL); /* clear message area */

 if (reason == SEARCH_CLEAR) {
 pos = XmTextGetLastPosition (text_edit);
 XmTextSetHighlight (text_edit, 0, pos, XmHIGHLIGHT_NORMAL);
 return;
 }

 if (!(string = XmTextGetString (text_edit)) || !*string) {

15 Text Widgets 15.4 A Text Editor

410

 XmTextSetString (text_output, "No text to search.");
 return;
 }
 if (!(search_pat = XmTextGetString (search_text)) || !*search_pat) {
 XmTextSetString (text_output, "Specify a search pattern.");
 XtFree (string);
 return;
 }

 new_pat = XmTextGetString (replace_text);
 search_len = strlen (search_pat);
 pattern_len = strlen (new_pat);

 if (reason == SEARCH_FIND_NEXT) {
 pos = XmTextGetCursorPosition (text_edit) + 1;
 found = XmTextFindString (text_edit, pos, search_pat,
 XmTEXT_FORWARD, &pos);
 if (!found)
 found = XmTextFindString (text_edit, 0, search_pat,
 XmTEXT_FORWARD, &pos);
 if (found)
 nfound++;
 }
 else { /* reason == SEARCH_SHOW_ALL || reason == SEARCH_REPLACE */
 do {
 found = XmTextFindString (text_edit, pos, search_pat,
 XmTEXT_FORWARD, &pos);
 if (found) {
 nfound++;
 if (reason == SEARCH_SHOW_ALL)
 XmTextSetHighlight (text_edit, pos, pos + search_len,
 XmHIGHLIGHT_SELECTED);
 else
 XmTextReplace (text_edit, pos, pos + search_len, new_pat);
 pos++;
 }
 }
 while (found);
 }

 if (nfound == 0)
 XmTextSetString (text_output, "Pattern not found.");
 else {
 switch (reason) {
 case SEARCH_FIND_NEXT :
 sprintf (buf, "Pattern found at position %ld.", pos);
 XmTextSetInsertionPosition (text_edit, pos);
 break;
 case SEARCH_SHOW_ALL :
 sprintf (buf, "Found %d occurrences.", nfound);
 break;
 case SEARCH_REPLACE :
 sprintf (buf, "Made %d replacements.", nfound);
 }
 XmTextSetString (text_output, buf);
 }
 XtFree (string);
 XtFree (search_pat);
 XtFree (new_pat);
 }

15 Text Widgets 15.4 A Text Editor

411

 /* edit_cb() −− the callback routine for the items in the edit menu */
 void
 edit_cb(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Boolean result = True;
 int reason = (int) client_data;
 XEvent *event = ((XmPushButtonCallbackStruct *) call_data)−>event;
 Time when;

 XmTextSetString (text_output, NULL); /* clear message area */

 if (event != NULL &&
 reason == EDIT_CUT || reason == EDIT_COPY || reason == EDIT_CLEAR) {
 switch (event−>type) {
 case ButtonRelease :
 when = event−>xbutton.time;
 break;
 case KeyRelease :
 when = event−>xkey.time;
 break;
 default:
 when = CurrentTime;
 break;
 }
 }

 switch (reason) {
 case EDIT_CUT :
 result = XmTextCut (text_edit, when);
 break;
 case EDIT_COPY :
 result = XmTextCopy (text_edit, when);
 break;
 case EDIT_PASTE :
 result = XmTextPaste (text_edit);
 case EDIT_CLEAR :
 XmTextClearSelection (text_edit, when);
 break;
 }
 if (result == False)
 XmTextSetString (text_output, "There is no selection.");
 }

15.5 Text Callbacks

The Text and TextField widgets use callback routines in the same way as other Motif widgets. The widgets provide
callbacks for a number of different purposes, such as text modification, activation, and selection ownership. Some of
the routines, such as those that monitor keyboard input, may be invoked rather frequently. In the next few sections, we
introduce several of the callback routines for the widgets.

15.5.1 The Activation Callback

We begin by exploring the callback routine that is most commonly used for single−line Text widgets and TextField
widgets. This callback is the XmNactivateCallback, which is invoked when the user presses RETURN in a
TextField widget or a single−line Text widget. The callback is not called for multiline Text widgets. The callback

15 Text Widgets 15.5 Text Callbacks

412

routine for an XmN-activateCallback receives the common XmAnyCallbackStruct as the call_data
parameter to the function. The callback reason is always XmCR_ACTIVATE. the source code shows a callback
function for some TextField widgets. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

 /* text_box.c −− demonstrate simple use of XmNactivateCallback
 * for TextField widgets. Create a rowcolumn that has rows of Form
 * widgets, each containing a Label and a Text widget. When
 * the user presses Return, print the value of the text widget
 * and move the focus to the next text widget.
 */
 #include <Xm/TextF.h>
 #include <Xm/LabelG.h>
 #include <Xm/Form.h>
 #include <Xm/RowColumn.h>

 char *labels[] = { "Name:", "Address:", "City:", "State:", "Zip:" };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, text_w, form, rowcol;
 XtAppContext app;
 int i;
 void print_result();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel, NULL);

 for (i = 0; i < XtNumber (labels); i++) {
 form = XtVaCreateWidget ("form", xmFormWidgetClass, rowcol,
 XmNfractionBase, 10,
 NULL);
 XtVaCreateManagedWidget (labels[i],
 xmLabelGadgetClass, form,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 3,
 XmNalignment, XmALIGNMENT_END,
 NULL);
 text_w = XtVaCreateManagedWidget ("text_w",
 xmTextFieldWidgetClass, form,
 XmNtraversalOn, True,
 XmNrightAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 4,
 NULL);

 /* When user hits return, print the label+value of text_w */
 XtAddCallback (text_w, XmNactivateCallback,
 print_result, labels[i]);

15 Text Widgets 15.5 Text Callbacks

413

 XtManageChild(form);
 }
 XtManageChild (rowcol);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* preint_result() −− callback for when the user hits return in the
 * TextField widget.
 */
 void
 print_result(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *value = XmTextFieldGetString (text_w);
 char *label = (char *) client_data;

 printf ("%s %s0, label, value);
 XtFree (value);

 XmProcessTraversal (text_w, XmTRAVERSE_NEXT_TAB_GROUP);
 }

The program displays a data form using a RowColumn widget that manages several rows of Form widgets. Each Form
contains a Label and a TextField widget, as shown in the figure.

When the user enters a value for a field and presses RETURN, the print_result() callback routine is invoked.
The routine prints the value of the f ield and advances the keyboard focus to the next widget using
XmProcessTraversal(). This function takes a widget and a traversal direction as its two parameters. We use the
XmTRAVERSE_NEXT_TAB_ GROUP direction because each TextField widget is a tab group in and of itself, so we
need to move to the next tab group, rather than to the next item in the same tab group. See Section #skeybtrav, for
more information on tab groups.

Output of text_box.c

When a single−line Text widget or a TextField widget is used as part of a predefined Motif dialog, the
XmNactivateCallback for the widget is automatically hooked up to the OK button in the dialog. As a result, the

15 Text Widgets 15.5 Text Callbacks

414

same callback is called when the user presses RETURN in the widget or when the user selects the OK button. This
convenience can confuse an unsuspecting programmer who may find that his callback is being invoked twice. It is
also possible to overestimate what the Motif toolkit is going to do and expect a callback to be invoked when it isn't.
The point is to be sure to verify that these callbacks are getting called at the appropriate times. See Chapter 6,
Selection Dialogs, for examples of this feature in SelectionDialogs, PromptDialogs, and CommandDialogs.

15.5.2 Text Modification Callbacks

In this section, we discuss the callback routines that can be used to monitor and control text modification. Monitoring
occurs both when the user types into a Text widget and when the text is changed using a convenience routine such as
XmTextInsert(). These callbacks work for both single−line and multiline Text widgets, as well as TextField
widgets. Since the text in a widget is modified by each keystroke, the modification callbacks are invoked quite
frequently.

There are two callbacks for text modification: XmNmodifyVerifyCallback is called before the text is modified,
and XmNvalueChangedCallback is called after the text has been changed. Depending on the needs of an
application, either or both callbacks may be used on the same widget. You should never call XtVaSetValues() in
one of these callbacks on the widget that is being modified because the state of the widget is unstable during these
callbacks. Avoid adding or deleting callbacks or changing resources, especially the XmNvalue resource, in a callback
routine. If a recursive loop occurs, you may get very unpredictable results.

Installing an XmNmodifyVerifyCallback function is useful when you need to monitor or change the user's input
before it actually gets inserted into a Text widget. In the source code we demonstrate using this callback to convert
text to uppercase. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4.

 /* allcaps.c −− demonstrate the XmNmodifyVerifyCallback for
 * Text widgets by using one to convert all typed input to
 * capital letters.
 */
 #include <Xm/Text.h>
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <ctype.h>

 void allcaps();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, text_w, rowcol;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 XtVaCreateManagedWidget ("Enter Text:",
 xmLabelGadgetClass, rowcol, NULL);

15 Text Widgets 15.5.2 Text Modification Callbacks

415

 text_w = XtVaCreateManagedWidget ("text_w",
 xmTextWidgetClass, rowcol, NULL);

 XtAddCallback (text_w, XmNmodifyVerifyCallback, allcaps, NULL);

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* allcaps() −− convert inserted text to capital letters. */
 void
 allcaps(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 int len;
 XmTextVerifyCallbackStruct *cbs =
 (XmTextVerifyCallbackStruct *) call_data;

 if (cbs−>text−>ptr == NULL)
 return;

 /* convert all input to upper−case if necessary */
 for (len = 0; len < cbs−>text−>length; len++)
 if (islower (cbs−>text−>ptr[len]))
 cbs−>text−>ptr[len] = toupper (cbs−>text−>ptr[len]);
 }

The program creates a RowColumn widget that contains a Label and a Text widget, as shown in the figure.

Output of allcaps.c

The Text widget uses the allcaps() routine as its XmNmodifyVerifyCallback function. The routine is
actually quite simple, but there are a lot of details to examine. The call_data parameter to the function is of type
XmTextVerifyCallbackStruct. This data structure provides information about the modification that may be
done to the text. The data structure is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Boolean doit;
 XmTextPosition currInsert, newInsert;
 XmTextPosition startPos, endPos;
 XmTextBlock text;
 } XmTextVerifyCallbackStruct;

15 Text Widgets 15.5.2 Text Modification Callbacks

416

With an XmNmodifyVerifyCallback, the reason field has the value XmCR_MODIFYING_TEXT_VALUE.
The event field contains the XEvent that caused the callback to be invoked; this field is NULL if the modification is
being done by a convenience routine that modifies the text. The values for currInsert and newInsert are
always the same for a modification callback. These fields specify the location of the insertion cursor, so they are only
different for the XmNmotionVerifyCallback when the user moves the insertion point.

The values for startPos and endPos indicate the range of text that is affected by the modification. For insertion,
these values are always the same. However, for text deletion or replacement, the values specify the beginning and end
of the text about to be deleted. For example, if the user selects some text and presses the BACKSPACE key, the
startPos and endPos values indicate the boundaries of the text about to be deleted. We discuss text deletion in
detail in an upcoming section.

The text field points to a data structure that describes the text about to be added to the widget. The field is a pointer
of type XmTextBlock, which is defined as follows:

 typedef struct {
 char *ptr;
 int length;
 XmTextFormat format;
 } XmTextBlockRec, *XmTextBlock;

The text being added is accessible through ptr; it is dynamically allocated using XtMalloc() for each callback
invocation. The ptr field is not NULL−terminated, so you should not use strlen() or strcpy() to copy the
data. The length is stored in the length field, so if you want to copy the text, you should use strncpy(). If the
user is deleting text, length is 0. While ptr should also be NULL in this case, the field isn't always set this way, so
you shouldn't rely on it. The format field specifies the width of the text characters and can have the value FMT8BIT
or FMT16BIT.

Let's review the simple case of adding new text, as demonstrated in the source code When new text is inserted into the
Text widget, the values for currInsert, newInsert, startPos, and endPos all have the same value, which is
the position in the widget where the new text will be added. Since the new text has not yet been added to the value of
the widget, the application can change the value of ptr in the text block. In the allcaps() routine, we modify the
input to be all capital letters by looping through the valid bytes in the ptr field of the text block that is going to be
added, as shown in the following fragment:

 for (len = 0; len < cbs−>text−>length; len++)
 if (islower (cbs−>text−>ptr[len]))
 cbs−>text−>ptr[len] = toupper (cbs−>text−>ptr[len]);

The islower() and toupper() macros are found in the <ctype.h> header file.

Since allcaps() is called each time new text is added to the widget, you might wonder how length can ever be
more than one. If the user pastes a block of text into the widget, the entire block is added at once, so ptr points to that
text, and length specifies the amount of text. Our loop handles both single−character typing and text−block paste
operations. the source code demonstrates how an application can modify the text that is entered by a user before it is
displayed. An application may also want to filter the new text and prevent certain characters from being inserted. The
easiest way to prevent a text modification is to set the doit field in the XmTextVerifyCallbackStruct to
False. When the modification callback routine returns, the Text widget checks this field. If it has been set to False,
the widget discards the new text, and the widget is left unmodified.

When a text modification is vetoed, the Text widget can sound the console bell to provide audio feedback informing
the user that the input has been rejected. This action is dependent on the value of the XmNverifyBell resource. The

15 Text Widgets 15.5.2 Text Modification Callbacks

417

default value is based on the value of the XmNaudibleWarning resource of the VendorShell, so it is set to True
by default. You should allow a user to set this resource in a resource file, so he can turn off error notification if he
doesn't want it. If you hard−code the resource value, users cannot control this feature. You should provide
documentation with your application that explains how to set this resource or provide a way to set the value from the
application.

the source code demonstrates a modification callback routine that filters input and prevents certain characters from
being entered. The check_zip() routine would be used as the XmNmodifyVerifyCallback for a Text widget
that prompts for a ZIP code. We want the user to type only digits; all other input should be ignored. We also want to
keep the user from typing a string that is longer than five digits.

 /* check_zip() −− limit the user to entering a ZIP code. */
 void
 check_zip(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmTextVerifyCallbackStruct *cbs =
 (XmTextVerifyCallbackStruct *) call_data;
 int len = XmTextGetLastPosition (text_w);

 if (cbs−>startPos < cbs−>currInsert) /* backspace */
 return;

 if (len == 5) {
 cbs−>doit = False;
 return;
 }
 /* check that the new additions won't put us over 5 */
 if (len + cbs−>text−>length > 5) {
 cbs−>text−>ptr[5 − len] = 0;
 cbs−>text−>length = strlen (cbs−>text−>ptr);
 }
 for (len = 0; len < cbs−>text−>length; len++) {
 /* make sure all additions are digits. */
 if (!isdigit (cbs−>text−>ptr[len])) {
 /* not a digit−− move all chars down one and
 * decrement cbs−>text−>length.
 */
 int i;
 for (i = len; (i+1) < cbs−>text−>length; i++)
 cbs−>text−>ptr[i] = cbs−>text−>ptr[i+1];
 cbs−>text−>length−−;
 len−−;
 }
 }
 if (cbs−>text−>length == 0)
 cbs−>doit = False;
 }

The first thing we do in check_zip() is to see if the user is backspacing, in which case we simply return. If text is
not being deleted, then new text is definitely being added. Since the length of the current text is not available in the
callback structure, we call XmTextGetLastPosition() to determine it. If the string is already five digits long,
we don't want to add more digits, so we set doit to False and return.

Otherwise, we loop through the length of the new text and check for characters that are not digits. If any exist, we

15 Text Widgets 15.5.2 Text Modification Callbacks

418

remove them by shifting all of the characters that follow down one place, overwriting the undesirable character. If we
loop through all of the characters and find that none of them are digits, the length ends up being zero, so we set doit
to False. A modification callback can determine if the user is backspacing or deleting a large block of text by
checking to see if startPos is less than currInsert. Alternatively, the routine could check to see if
text−>length is 0. For backspacing, the values differ by one. If the user selects a large block of text and deletes
the selection, the XmNmodifyVerifyCallback is invoked once to delete the text and may be invoked a second
time if the user has typed new text to replace the selected text.

Our next example program demonstrates how to process character deletions in a text modification callback. the source
code creates a single−line Text widget that prompts the user for a password. We don't provide any encryption for the
password; we simply mask what the user is typing by displaying an asterisk (*) for each character. The actual text is
stored in a separate internal variable. The challenge for this application is to capture the input text, store it internally,
and modify the output, even for backspacing. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

 /* password.c −− prompt for a password. All input looks like
 * a series of *'s. Store the actual data typed by the user in
 * an internal variable. Don't allow paste operations. Handle
 * backspacing by deleting all text from insertion point to the
 * end of text.
 */
 #include <Xm/Text.h>
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <ctype.h>

 void check_passwd();
 char *passwd; /* store user−typed passwd here. */

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, text_w, rowcol;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 XtVaCreateManagedWidget ("Password:",
 xmLabelGadgetClass, rowcol, NULL);
 text_w = XtVaCreateManagedWidget ("text_w",
 xmTextWidgetClass, rowcol, NULL);

 XtAddCallback(text_w, XmNmodifyVerifyCallback, check_passwd, NULL);
 XtAddCallback(text_w, XmNactivateCallback, check_passwd, NULL);

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

15 Text Widgets 15.5.2 Text Modification Callbacks

419

 /* check_passwd() −− handle the input of a password. */
 void
 check_passwd(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *new;
 int len;
 XmTextVerifyCallbackStruct *cbs =
 (XmTextVerifyCallbackStruct *) call_data;

 if (cbs−>reason == XmCR_ACTIVATE) {
 printf ("Password: %s0, passwd);
 return;
 }

 if (cbs−>startPos < cbs−>currInsert) { /* backspace */
 cbs−>endPos = strlen (passwd); /* delete from here to end */
 passwd[cbs−>startPos] = 0; /* backspace−−terminate */
 return;
 }

 if (cbs−>text−>length > 1) {
 cbs−>doit = False; /* don't allow "paste" operations */
 return; /* make the user *type* the password! */
 }

 new = XtMalloc (cbs−>endPos + 2); /* new char + NULL terminator */
 if (passwd) {
 strcpy (new, passwd);
 XtFree (passwd);
 } else
 new[0] = NULL;
 passwd = new;
 strncat (passwd, cbs−>text−>ptr, cbs−>text−>length);
 passwd[cbs−>endPos + cbs−>text−>length] = 0;

 for (len = 0; len < cbs−>text−>length; len++)
 cbs−>text−>ptr[len] = '*';
 }

As you can see in the figure, the Text widget only displays asterisks, no matter what the user has typed.

Output of password.c

W e u s e t h e c h e c k _ p a s s w d () f u n c t i o n f o r b o t h t h e X m N a c t i v a t e C a l l b a c k a n d t h e
XmNmodifyVerifyCallback callbacks. When the user presses RETURN, the routine prints what has been typed
to stdout. If the user is not backspacing through the text, we know we can add the new text to passwd, which is

15 Text Widgets 15.5.2 Text Modification Callbacks

420

the internal variable we use to store the text. Once the new text has been copied, we convert it into asterisks, so that
the user cannot see what has been typed.

We need to handle two different cases for deletion. If the insertion cursor is at the end of the typed string and the user
backspaces, we simply allow the action. If the user clicks somewhere in the middle of the string and then backspaces,
we delete all of the characters from that point in the string to the end, since the user cannot see the characters that he is
deleting.

To handle the different forms of text deletion, we test to see if startPos is less than currInsert. Since
startPos and endPos specify the range of text that is being deleted, we can change these values and effectively
delete more text than the user originally intended. By setting endPos to the string length of the internal variable
passwd, we handle both of the cases that we just described. If we had wanted to, we could also have set startPos
to 0 and deleted all of the text. We can expand on the ZIP code example that we used for filtering non−digits from
typed input by providing an input field for an area code and phone number. The format for a US phone number is as
follows:

 123−456−7890

We want to filter out all non−digits for a phone number, but we also want to add the dash character (−) automatically
as it is needed. For example, after the user enters three digits, the Text widget should automatically insert a dash, so
that the next character expected from the user is still a digit. Similarly, when the user backspaces and deletes a dash
character, the widget should delete the preceding digit as well. shows how the interaction should work.

tab(@), linesize(2); l | l n | n. User Types@Text Widget Displays
_
4@4 1@41 5@415− 4@415−4 T{ BACKSPACE T}@415− T{ BACKSPACE T}@41
_ We can continue to use the same type of algorithm that we used in check_zip() to filter digits, and we can use
some of the code from check_passwd() to handle backspacing. The only remaining problem is adding the
necessary dash characters. Since we are using US phone numbers, we know that the dashes should occur after the
third and seventh digits. Therefore, when currInsert is either 2 or 6, the new digit should be added first, followed
by the dash. the source code shows the program that implements this functionality. XtSetLanguageProc() is
only available in X11R5; there is no corresponding function in X11R4.

 /* prompt_phone.c −− a complex problem for XmNmodifyVerifyCallback.
 * Prompt for a phone number by filtering digits only from input.
 * Don't allow paste operations and handle backspacing.
 */
 #include <Xm/Text.h>
 #include <Xm/LabelG.h>
 #include <Xm/RowColumn.h>
 #include <ctype.h>

 void check_phone();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, text_w, rowcol;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

15 Text Widgets 15.5.2 Text Modification Callbacks

421

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 XtVaCreateManagedWidget ("Phone Number:",
 xmLabelGadgetClass, rowcol, NULL);
 text_w = XtVaCreateManagedWidget ("text_w",
 xmTextWidgetClass, rowcol, NULL);

 XtAddCallback (text_w, XmNmodifyVerifyCallback, check_phone, NULL);

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* check_phone() −− handle phone number input. */
 void
 check_phone(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char c;
 int len = XmTextGetLastPosition(text_w);
 XmTextVerifyCallbackStruct *cbs =
 (XmTextVerifyCallbackStruct *) call_data;

 /* no backspacing or typing in the middle of string */
 if (cbs−>currInsert < len) {
 cbs−>doit = False;
 return;
 }

 if (cbs−>text−>length == 0) { /* backspace */
 if (cbs−>startPos == 3 || cbs−>startPos == 7)
 cbs−>startPos−−; /* delete the hyphen too */
 return;
 }

 if (cbs−>text−>length > 1) { /* don't allow clipboard copies */
 cbs−>doit = False;
 return;
 }

 /* don't allow non−digits or let the input exceed 12 chars */
 if (!isdigit (c = cbs−>text−>ptr[0]) || len >= 12)
 cbs−>doit = False;
 else if (len == 2 || len == 6) {
 cbs−>text−>ptr = XtRealloc (cbs−>text−>ptr, 2);
 cbs−>text−>length = 2;
 cbs−>text−>ptr[0] = c;
 cbs−>text−>ptr[1] = '−';
 }
 }

There are a couple of ways that you could think to add the dashes. One way would be to use the
XmNvalueChangedCallback to keep track of the phone number after it has been entered and then use

15 Text Widgets 15.5.2 Text Modification Callbacks

422

XmTextInsert() to add the dashes when appropriate. The problem with this approach is that XmTextInsert()
activates the XmNmodifyVerifyCallback function again, so the dash would be subject to the input filtering.

A s a r e s u l t , t h e o n l y w a y t o h a n d l e t h e s i t u a t i o n i s t o a c t u a l l y a d d t h e d a s h e s i n t h e
XmN-modifyVerifyCallback routine at the same time the digits are added. This approach involves modifying
the ptr and length fields of the XmTextBlock structure in the XmTextVerifyCallbackStruct. The
check_phone() routine checks the current length of the phone number. If it is either two or six characters long, the
routine reallocates ptr to hold two characters, adds the dash, and increments length to account for the dash.

When the Text widget adds the digit and the dash, it positions the insertion cursor at the end of the new text. Prior to
Motif 1.2, the position of the insertion cursor was not affected by the amount of text that was added. The workaround
to this problem was to use the XmNvalueChangedCallback and call XmTextSetInsertionPosition().
Although we haven't demonstrated its use, the XmNvalueChangedCallback is useful when you need to keep
track of the changes in a Text widget, but you don't need to monitor or change the input before it is displayed. This
callback is invoked after the text has been modified in any way, which means that it is called for each insertion and
deletion. The call_data parameter to the routine is of type XmAnyCallbackStruct; the reason field is
always XmCR_VALUE_CHANGED.

The check_phone() routine is fairly simple, in that it only allows text insertions and deletions that occur when the
insertion cursor is at the end of the text. While it is possible to handle modifications in the middle of the text, the code
quickly becomes a large bowl of spaghetti. We do not allow clipboard copies of more than one character at a time for
the same reason. Our routine is sufficient for demonstration purposes, but for a real application, you should handle
these cases.

15.5.3 The Cursor Movement Callback

The XmNmotionVerifyCallback can be used to monitor the position of the insertion cursor. This callback is
invoked when the user moves the location cursor using the mouse or the arrow keys, when the user drags the mouse or
multi−clicks to extend the text selection, or when the application calls a Text widget function that moves the cursor or
adds, deletes, or replaces text. However, if the cursor does not move as a result of a function being called, the callback
is not invoked. The XmNmotionVerifyCallback allows an application to intercept and prevent cursor
movement.

The XmNmotionVerifyCallback uses the XmTextVerifyCallbackStruct as its callback structure, just
l i k e t h e X m N m o d i f y V e r i f y C a l l b a c k . H o w e v e r , f o r m o t i o n c a l l b a c k s , t h e r e a s o n i s
XmCR_MOVING_INSERT_CURSOR and the startPos, endPos, and text fields are invalid. The doit field can
be set to False to reject requests to reposition the insertion cursor.

If the cursor motion occurs as a result of a user action, the event field should point to an XEvent structure
describing the action that caused the cursor position to be modified, When the cursor moves as a result of an
application action, the field should be set to NULL. However, the event field is currently set to NULL regardless of
what caused the cursor motion. This bug makes it impossible to tell the difference between a cursor motion performed
by the user and one caused by the application.

We can use the XmNmotionVerifyCallback to tie up a loose end in prompt_phone.c. To make the text
verification simpler, we don't want to allow the user to move the insertion cursor except by entering digits or
backspacing. the source code shows a new version of the check_phone() routine that prevents cursor movement.

 main(argc, argv)
 int argc;
 char *argv[];

15 Text Widgets 15.5.3 The Cursor Movement Callback

423

 {
 Widget text_w;

 ...
 XtAddCallback (text_w, XmNmodifyVerifyCallback, check_phone, NULL);
 ...
 }

 /* check_phone() −− handle phone number input. */
 void
 check_phone(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char c;
 int len = XmTextGetLastPosition (text_w);
 XmTextVerifyCallbackStruct *cbs =
 (XmTextVerifyCallbackStruct *) call_data;

 if (cbs−>reason == XmCR_MOVING_INSERT_CURSOR) {
 if (cbs−>newInsert != len)
 cbs−>doit = False;
 return;
 }

 /* no backspacing, typing or stuffing in middle of string */
 if (cbs−>currInsert < len) {
 cbs−>doit = False;
 return;
 }

 if (cbs−>text−>length == 0) { /* backspace */
 if (cbs−>startPos == 3 || cbs−>startPos == 7)
 cbs−>startPos−−; /* delete the hyphen too */
 return;
 }

 if (cbs−>text−>length > 1) { /* don't allow clipboard copies */
 cbs−>doit = False;
 return;
 }

 /* don't allow non−digits or let the input exceed 12 chars */
 if (!isdigit (c = cbs−>text−>ptr[0]) || len >= 12)
 cbs−>doit = False;
 else if (len == 2 || len == 6) {
 cbs−>text−>ptr = XtRealloc (cbs−>text−>ptr, 2);
 cbs−>text−>length = 2;
 cbs−>text−>ptr[0] = c;
 cbs−>text−>ptr[1] = '−';
 }
 }

We check the value of newInsert against the length of the current string to determine whether or not the intended
cursor position is at the end of the text string. If it is not, we set doit to False to prevent the cursor movement. The
XmNmotionVerifyCallback function can also be used to monitor pointer dragging for text selections.

15 Text Widgets 15.5.3 The Cursor Movement Callback

424

15.5.4 Focus Callbacks

The XmNfocusCallback and XmNlosingFocusCallback callback routines can be used to monitor when a
Text widget gains and loses the keyboard focus. A Text widget can receive the input focus if the user intentionally
shifts the focus to the widget or if the application moves the focus using XmProcessTraversal(). When a
widget gains the input focus and the insertion cursor is not visible, we can make it visible and cause the widget to
automatically scroll to the current cursor location by installing an XmNfocusCallback routine that calls
XmTextShowCursorPosition(), as shown in the following code fragment:

 {
 Widget text_w;
 extern void gain_focus();

 ...
 text_w = XmCreateScrolledText(...);
 XtAddCallback(text_w, XmNfocusCallback, gain_focus, NULL);
 ...
 }

 void
 gain_focus(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmTextShowCursorPosition (text_w, XmTextGetCursorPosition (text_w));
 }

The XmNfocusCallback is passed a callback structure of type XmAnyCallbackStruct with the callback
reason set to XmCR_FOCUS.

The XmNlosingFocusCallback callback can be used to monitor when the Text widget loses its focus. The
callback structure passed to the callback function is an XmTextVerifyCallbackStruct. All of the fields except
the text field are valid, and the reason field is set to XmCR_LOSING_FOCUS.

15.6 Text Widget Internationalization

In Motif 1.2, the Text and TextField widgets have been modified to support internationalized input and output. The
internationalization capabilities of the widgets are layered on top of the functionality provided in X11R5, which is
based on the ANSI−C locale model. An internationalized application uses a library that reads a locale database at
runtime to get information about the user's language environment. An application that uses the X Toolkit establishes
its language environment (or locale) by registering a language procedure using XtSetLanguageProc(), as
explained in Section #slangproc. See Volume Four, X Toolkit Intrinsics Programming Manual, for more information
on the localization of an Xt−based application.

15.6.1 Text Representation

One of the important characteristics of a locale is the encoding used to represent the character set for the locale. A
character set is simply a set of characters, while an encoding is a numeric representation of these characters. A charset
(not the same as a character set) is an encoding in which all of the characters use the same number of bits. The
Latin−1 charset (ISO8859−1) defines an encoding for all of the characters used in Western languages. However, not
all languages can be represented by a single charset. Japanese text commonly contains words written using the Latin
alphabet, as well as phonetic characters from the katakana and hirigana alphabets, and ideographic kanji characters.

15 Text Widgets 15.5.4 Focus Callbacks

425

Each of these character sets has its own charset. The phonetic and Latin charsets are 8−bits wide, while the
ideographic charset is 16−bits wide. Since the charsets must be combined into a single encoding for Japanese text, the
encoding uses shift sequences to specify the character set for each character in a string.

When an encoding contains shift sequences and characters of nonuniform width, strings can still be stored in a
standard NULL−terminated array of characters; this representation is known as a multibyte string. Strings can also be
stored using a wide−character type (wchar_t in ANSI−C) in which each character has a fixed size and occupies one
array element. ANSI−C provides functions that convert between multibyte and wide−character strings and the text
output routines in X11R5 support both types of strings. Multibyte strings are usually more compact than
wide−character strings, but wide−character strings are easier to work with. If an internationalized application performs
any text manipulation, it must take care to handle all strings properly. Fortunately, many applications can do
internationalized text input and output without performing any manipulations on the text.

Multibyte strings are NULL−terminated, while there is no single convention for the termination of wide−character
strings. The following C string−handling routines are safe to use with multibyte strings: strcat(), strcmp(),
strcpy(), strlen(), and strncmp(). The string comparison routines are only useful to check for
byte−for−byte equality; use strcoll() to compare strings for sorting. None of the C string−handling routines work
with wide−character strings.

Multibyte strings can be written to a file or an output stream. If the terminal is operating in the current locale, printing
a multibyte string to stdout or stderr causes the correct text to be displayed. Multibyte strings can also be read
from a file or the stdin input stream. If the file is encoded in the current locale, or the terminal is operating in the
current locale, the strings that are read are meaningful. For a more complete description of working with multibyte
and wide−character strings, see Volume One, Xlib Programming Manual.

The Motif 1.2 Text and TextField widgets provide two resources for specifying their textual data: XmNvalue and
XmNvalueWcs. The XmNvalue resource specifies the text string as a char* value, so it can be used to set the
value of the widget to a multibyte string. XmN-valueWcs specifies the string as a wchar_t* value, so it is used to
set the value to a wide−character string. This resource cannot be specified in a resource file. If XmNvalue and
XmNvalueWcs are both defined, the value of XmNvalueWcs takes precedence.

Regardless of which resource you set, the widgets store the text internally as a multibyte string. The widgets take care
of converting between multibyte strings and wide−character strings when necessary. As a result, you can set the text
string using the XmNvalue resource and retrieve it with XtVaGetValues() using the XmNvalueWcs resource.

The Text widget provides the following convenience routines for manipulating the text value as a wide−character
string:

 XmTextFindStringWcs()
 XmTextGetSelectionWcs()
 XmTextGetStringWcs()
 XmTextGetSubstringWcs()
 XmTextInsertWcs()
 XmTextReplaceWcs()
 XmTextSetStringWcs()

These routines work for both Text and TextField widgets. The TextField also provides corresponding functions that
only work with TextField widgets. All of these routines function identically to their regular character string
counterparts, except that they take or return wide−character string values. If you have specified the text string using
XmNvalue, you can still use the wide−character string routines because they handle any necessary string
conversions. For more information on the different wide−character routines, see Volume Six B, Motif Reference
Manual.

15 Text Widgets 15.5.4 Focus Callbacks

426

T h e w i d g e t s a l s o p r o v i d e a w i d e − c h a r a c t e r v e r s i o n o f t h e t e x t m o d i f i c a t i o n c a l l b a c k ,
XmN-modifyVerifyCallbackWcs. This callback is invoked before the value of the widget is modified, so an
application can use it to monitor changes in the widget. The callback is -passed a callback structure of type
XmTextVerifyCallbackStructWcs, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Boolean doit;
 XmTextPosition currInsert, newInsert;
 XmTextPosition startPos, endPos;
 XmTextBlockWcs text;
 } XmTextVerifyCallbackStructWcs;

With this structure the reason field has the value XmCR_MODIFYING_TEXT_VALUE. All of the fields have the
same meaning as the fields in the regular XmTextVerifyCallbackStruct, except that the text field is a
pointer of type XmTextBlockWcs. This structure is defined as follows:

 typedef struct {
 wchar_t *wcsptr;
 int length;
 } XmTextBlockRecWcs, *XmTextBlockWcs;

If callback routines are registered for both the XmN-modifyVerifyCallback and the
-XmNmodifyVerifyCallbackWcs, the routines for the XmNmodifyVerifyCallback are invoked first. The
resulting data, which may have been modified, is passed to the XmN-modifyVerifyCallbackWcs routines.

15.6.2 Text Output

The Text and TextField widgets do not use compound strings, so their text output functionality is based directly on
Xlib's internationalized text output capabilities. To support languages that use multiple charsets, X11R5 introduced
the XFontSet abstraction for its text output routines. An XFontSet contains all of the fonts necessary to display
text in the current locale. The new text output routines work with font sets, so they can render text for locales that
require multiple charsets. See Volume One, Xlib Programming Manual, for more information on internationalized
text output.

Each of the widgets has a XmNfontList resource for specifying the font that it uses. Since the widgets do not use
compound strings, they cannot use font list tags to display text using different fonts as decribed in Section #sfonttag.
However, the font list can specify a font set, so the widgets can display text using multiple character sets in a locale
that requires them. The widgets pick a font by searching the font l ist for a font set that has the tag
XmFONTLIST_DEFAULT_TAG. If the search finds such a font set, it is used. Otherwise, the widgets use the first font
set specified in the font list. If the font list does not contain a font set, the first font is used. If you specify a font list
entry with the tag XmFONTLIST_DEFAULT_TAG, make sure that it is appropriate for the encoding of the current
locale.

15.6.3 Text Input

Converting user keystrokes into text in the encoding of the current locale is the most difficult task of
internationalization. An internationalized program cannot assume any particular mapping between keystrokes and
input characters, since it must run in any locale on a single workstation, using a single keyboard. The mapping
between keystrokes and Japanese characters is very different and much more complex than the mapping between
keystrokes and Latin characters, for example. When there are more characters in the codeset of a locale than there are

15 Text Widgets 15.6.2 Text Output

427

keys on a keyboard, some sort of input method is required for mapping between multiple keystrokes and input
characters.

All of the characters for English can be entered using the standard keyboard; the SHIFT key makes it possible to enter
both lowercase and uppercase letters as well as the number and punctuation characters. For many European languages,
the most common accented characters may appear directly on a keyboard, but there are still a number of other
characters that cannot be entered with any single shifted or unshifted keystroke. In these cases, the input method is
typically implemented in the keyboard hardware using a special key that puts the keyboard in "compose" mode in
which one or more of the following keystrokes are combined into a single character.

The Asian ideographic languages are what make internationalized text input complicated. Japanese and Korean both
have phonetic alphabets that are small enough to be mapped onto a keyboard. While it is sometimes adequate to leave
text in this representation, the user usually wants the final text to be in the full ideographic language. Input methods
for these languages often have the user type the phonetic symbols for a particular word or words and then signal that
the composition or pre−editing is complete. At this point, the input method can look up the string of phonetic
characters in a dictionary and convert it to the equivalent character or characters in the ideographic language. Multiple
characters can have the same phonetic representation, so the user may still have to select the desired character.

Since input methods can be large and complex and they vary from locale to locale, it does not make sense to link
every application with a generic input method that is localized at runtime. The X Input Method (XIM) abstraction in
X11R5 supports the model of an input manager that is run as a separate process and that communicates with the X
server and with the application. An application that needs to use an input method calls XOpenIM() to establish a
connection to the input method that is appropriate for the current locale.

An input method needs to provide feedback to the user, so X defines three areas for interaction:

The status area is an output−only window that displays information about the state of the input method
interaction.

•

The pre−edit area displays the intermediate text while the user is composing a character.•
The auxiliary area is used to display any dialog boxes or popup menus that are needed by the input method.•

An application generally provides the status and pre−edit areas to the input method, which is responsible for their
contents. The auxiliary area is managed entirely by the input method. The location of the pre−edit area depends on the
interaction style used between the input method and the application. X defines the following four interaction styles:

The root−window style, where the input method displays the pre−edit data in a window that is a child of the
root window.

•

The off−the−spot style, in which the input method displays the data at a fixed location in the application
window, often at the bottom of the window.

•

The over−the−spot style, where the input method displays the data in a window of its own that is placed over
the current insertion point.

•

The on−the−spot style, in which the input method directs the application to display the pre−edit data, so the
application can display the data however it wants.

•

An application must choose an interaction style that is supported by the input method and it must provide the pre−edit
and status areas as required by that style.

Just as the X server can display multiple windows for a single client, an input method can maintain multiple input
contexts for an application. A text editor that supports multiple editing windows within a single top−level window
could create an input context for each window or share a single context among all of the windows. The function
XCreateIC() creates an X Input Context (XIC) that keeps track of information about the input context, such as the

15 Text Widgets 15.6.2 Text Output

428

interaction style, the windows used for the pre−edit and status areas, and the font set for the text.

When an application gets a KeyPress event, it needs to use that event in a call to XmbLookupString() or
XwcLookupString() to get the multibyte or wide−character string encoded in the current locale. These routines
are analogous to XLookupString(), but this routine can only return Latin−1 strings, so it is not appropriate for
internationalized input.

The support for input methods in Xlib is designed to be incorporated within toolkits and widgets. Accordingly, the
internationalized text input capabilities of the Motif Text and TextField widgets are layered on top of the input method
mechanism. Fortunately, the widgets encapsulate most of the lower−level functionality, so you don't need to
understand the details of the Xlib implementation. For a more complete description of the Xlib functionality, see
Volume One, Xlib Programming Manual.

Motif leaves it to the hardware vendors to supply input methods, so the toolkit does not provide any itself. If you need
to provide internationalized text input, consult the documentation for your system for information about the input
methods that it supports. Alternately, you can build one of the contributed input methods provided as part of X11R5.
R5 as shipped from MIT contains two separate implementations of the input method facilities. The Xsi
implementation is the default on all but Sony machines, which use the Ximp implementation. Each implementation
defines its own protocol for communication between Xlib and input methods. Ximp and Xsi each come with
contributed input methods that are not compatible with each other. For X11R6, the X Consortium is planning to
standardize the input method implementation, so you may want to enquire about the status of that effort before putting
any significant effort into a product that uses one of these implementations.

When you create an editable Text or TextField widget, it automatically provides a connection to the input method for
the current locale. The VendorShell widget plays a role in internationalization as it defines the XmNinputMethod
and XmNpreeditType resources for specifying the input method and the interaction style, respectively. A Text or
TextField widget is always created as an ancestor of a VendorShell, so the widget can access these resources to set up
the connection to the input method. The resources are defined by the VendorShell because it handles the geometry
management of the pre−edit and status areas for the input method.

The XmNinputMethod resource specifies the input method portion of the locale modifier that is set before an input
method is opened. The format of the value for this resource is vendor−defined. The XmNpreeditType resource sets
the interaction style used by the input method. The syntax, possible values, and default value of this resource are also
vendor−dependent.

Motif only supports the over−the−spot, off−the−spot, and root−window interaction styles. Under the off−the−spot
style, the VendorShell positions the pre−edit and status areas below the application's main window but inside the
shell. The VendorShell handles the geometry management for the areas and places a separator between the main
window and the input method area. If the application sets or gets the XmNheight of the shell using
XtVaSetValues() or XtVaGetValues(), the height includes the height of the input method area. With the
over−the−spot style, the VendorShell still displays the status area at the bottom of the application's top−level window,
but the pre−edit area is positioned over the insertion cursor in the Text widget. The Text widget passes the insertion
position to the input method, so that the pre−edit area moves as with the insertion cursor.

The Motif toolkit implements its internationalized text input functionality using the following undocumented public
routines:

 XmImRegister()
 XmImUnregister()
 XmImSetFocusValues()
 XmImSetValues()
 XmImUnsetFocus()

15 Text Widgets 15.6.2 Text Output

429

 XmImGetXIM()
 XmImMbLookupString()
 XmImVaSetFocusValues()
 XmImVaSetValues()

These routines simplify the interaction with the lower−level XIM and XIC constructs provided by Xlib. If you need to
provide text input in another widget, such as a DrawingArea, you have to handle opening an input method, creating an
input context, and obtaining input from the input method yourself. If you have access to the source code, you may
want to investigate these routines. The only danger is that because the routines are undocumented, they may change in
the next release of Motif.

15.7 Summary

The Motif Text and TextField widgets can be used to provide an application with sophisticated text entry capabilities.
The widgets come with a full set of convenience routines that make it easy to perform a number of standard text
editing tasks. However, these widgets work best when they are left alone to do their jobs. While they are highly
configurable, the little bits of fine tuning you add may cause your code to grow twice as much to accommodate the
new features and the necessary error checking.

15.8 Exercises

The following exercises are designed to expand on the ideas described in this chapter and introduce some new
directions for using Text widgets.

Using the XmNmodifyVerifyCallback, you can add more data to a Text widget than what is typed by
the user. This technique is useful for supporting advanced editing features such as file or word completion.
The user should be able to enter the leading part of a word and then type a special character that completes the
word automatically, based on a predefined list of words in /usr/dict/words. Write an
XmNmodifyVerifyCallback routine that checks each character that is typed and, upon receipt of the
special character, looks backwards in the text until it finds whitespace and checks this word against the words
in the list. If there is a match, modify the text to complete the work.

•

The function XmTextHighlight() can be used to highlight text in the same fashion as if the user had
selected it. This routine is useful for emphasizing different pieces of text. Based upon the previous exercise,
write a simple spell−checker program. Use a PushButton or a menu item to get all of the text from a Text
widget and check the words against /usr/dict/words. Highlight all of the words that are not found in the
dictionary so that the user can find them quickly.

•

Modify the allcaps.c program to use the XmNgainFocusCallback and XmN-losingFocusCallback
callback routines. When the widget loses the focus, all of the characters should be converted to lowercase, and
when the input focus is gained, the characters should revert to uppercase.

•

The XmNsource resource specifies an XmTextSource, which is an internal object that contains all of the
information about the text in a Text widget. You can set or get the value for this resource using
XtVaSetValues() and XtVaGetValues(). Since the data type is opaque to the programmer, you
cannot create your own source, but you can get one from an existing Text widget. By getting the XmNsource
from one Text widget and setting it in another, you can have two Text widgets that edit the same text. Write a
program that does just that.

•

15 Text Widgets 15.7 Summary

430

16 Menus

This chapter describes the different types of menus provided by the Motif toolkit. It also presents a number of ways to
create menus in an application and talks about the issues involved in designing menu systems.

Menus provide the user with a set of choices in an application without complicating its normal visual appearance.
These convenient mini−toolboxes are essential for the user who, like an auto mechanic that is busy working under the
car, needs quick and convenient access to her tools without having to look or move away from her work. The Motif
Style Guide provides for three different types of menus: PulldownMenus, PopupMenus, and OptionMenus. Despite
the differences between the three types of menus, they all provide simple and convenient access to application
functionality.

16.1 Menu Types

PulldownMenus that are posted from the MenuBar are the most common menus in an application. the figure shows an
example of a PulldownMenu. The menu pops up when the user presses the first mouse button on a CascadeButton.
The button that posts the menu is typically user−settable, since left−handed users may want to reverse the default
button bindings. As described in Chapter 4, The Main Window, CascadeButtons may be displayed as titles in a
MenuBar or as menu items in a PulldownMenu. When the CascadeButton is a child of a MenuBar, the menu drops
down below the button when the user clicks on it. When the CascadeButton is an item in an existing menu, the new
menu pops up to the right of the item; it is sometimes referred to as a cascading menu or a pullright menu.

A PulldownMenu

Under certain conditions, it may be inconvenient for the user to stop what she is doing, move the mouse to the
MenuBar to pull down a menu, and then move the mouse back to where she was working. Having to move the mouse
away, even to another part of the same window, can reduce productivity. A PopupMenu is one solution to this
problem as it can provide immediate access to application functionality. PopupMenus are posted using the third mouse
button and can be displayed anywhere in an application. Rather than having to move the mouse, the user can simply

431

press the third mouse button to cause a PopupMenu to appear on the spot. This type of menu does not need to be
associated with a visible user−interface element. In fact, PopupMenus are usually popped up from a work area or
another region that is not affiliated with a user−interface component like a PushButton or CascadeButton. The only
drawback to this design is that there is no indication to the novice user that the menu exists. the figure shows a
PopupMenu.

A PopupMenu

The OptionMenu combines the strengths of a PulldownMenu and a PopupMenu. Like a PulldownMenu, it is posted
from a CascadeButton, but like a PopupMenu, it can be placed where it is needed. The CascadeButton is used to
display the default choice for the menu. When the user presses the button, the alternate choices are displayed in a
menu, as shown in the figure. Like a PulldownMenu, an OptionMenu is invoked using the first mouse button, but it is
displayed on top of its associated CascadeButton rather than below it.

16 Menus 16 Menus

432

An OptionMenu

The use of the third mouse button to activate PopupMenus is in sharp contrast to PulldownMenus and OptionMenus,
which are always invoked by the first mouse button. It may seem confusing to the user that some menus are invoked
by the first button while others are invoked by the third. However, there is some consistency in the fact that
PulldownMenus and OptionMenus are always attached to CascadeButtons, and buttons are always activated by the
first mouse button. By specifying that PopupMenus use the third mouse button, the first mouse button is free to be
used for other activities in an application work area, which is important since PopupMenus can be popped up
anywhere in an application.

When the user posts a menu, it is only displayed until the user makes a selection, and then it is removed. In Motif 1.2,
a menu can have an additional feature that allows it to be torn off, so that it remains posted in its own window. The
tear−off functionality is activated by a special tear−off button in the menu. The button displays a dashed line to
indicate that you can tear off the menu, like you would tear a coupon out of a newspaper. When the user presses the
tear−off button, the menu is placed in a separate window, and the user can make as many selections as she would like.
the figure shows a PulldownMenu that provides the tear−off capability.

A Pulldown Menu with tear−off functionality

To make menus even more convenient to use, menu items can have mnemonics and accelerators associated with
them. These devices are keyboard equivalents that allow the user to activate menu items using the keyboard rather
than the mouse. For example, in the figure, the underlined letter in each menu item is its mnemonic. While the menu is
posted, the user can type the specified character to activate that menu item. Accelerators are keystroke combinations

16 Menus 16 Menus

433

that invoke a menu item even when the menu is not displayed. Accelerators typically use the CTRL or ALT key to
distinguish them from ordinary keystrokes that are sent to the application. For example, again in the figure, the
Ctrl+C accelerator allows the user to exit the application without accessing the menu.

Before we plunge into the details of menu creation, a word of warning to experienced X Toolkit programmers is in
order. Motif does not use Xt's normal methods for creating and managing menus. In fact, you cannot use the standard
Xt methods for menu creation or management without virtually reimplementing the Motif menu design. If you need to
port an Athena or OPEN LOOK−based application to Motif, you will probably have to reimplement your menu
design. In Xt, you would typically create an OverrideShell that contains a generic manager widget, followed by a set
of PushButtons. To display the menu, you would pop up the shell using XtPopup(). The Motif toolkit abstracts the
menu creation and management process using routines that make the shell opaque to the programmer.

16.2 Creating Simple Menus

In Chapter 4, The Main Window, we used the simple menu creation routines to build the MenuBar and its associated
PulldownMenus. These routines are designed to be plug−and−play convenience routines; their only requirements are
compound strings for the menu labels and a single callback function that is invoked when the user activates any of the
menu items.

XmVaCreateSimpleMenuBar() creates a MenuBar, while XmVaCreateSimplePulldownMenu()
generates a PulldownMenu and its associated items. These functions take a variable−length argument list of
parameters that specify either the CascadeButtons for the MenuBar or the menu items for the PulldownMenu. You can
also pass RowColumn−specific resource/value pairs to configure the RowColumn widget that manages the items in
the menu. The functions are front ends for more primitive routines that actually create the underlying widgets, so they
are convenient for many simple menu creation needs. You should review Chapter 4, The Main Window, for more
information on how to use these functions.

Mot i f a lso prov ides s imple creat ion rout ines for creat ing PopupMenus and Opt ionMenus. Both
XmVaCreateSimplePopupMenu() and XmVaCreateSimpleOptionMenu() are very similar to the routines
for creating PulldownMenus, so much of the information in Chapter 4 also applies to these functions.

16.2.1 Popup Menus

T h e o n l y d i f f e r e n c e b e t w e e n X m V a C r e a t e S i m p l e P u l l d o w n M e n u () a n d
XmVa-CreateSimplePopupMenu() is that the latter routine does not have a button parameter for specifying
the CascadeButton used to display the menu. Since PopupMenus are not associated with CascadeButtons, this
parameter isn ' t necessary . the source code demonst ra tes the creat ion o f a s imple PopupMenu.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* simple_popup.c −− demonstrate how to use a simple popup menu.
 * Create a main window that contains a DrawingArea widget, which
 * displays a popup menu when the user presses the third mouse button.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/DrawingA.h>

 main(argc, argv)
 int argc;
 char *argv[];

16 Menus 16.2 Creating Simple Menus

434

 {
 XmString line, square, circle, exit, exit_acc;
 Widget toplevel, main_w, drawing_a, popup_menu;
 void popup_cb(), input();
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a MainWindow widget that contains a DrawingArea in
 * its work window.
 */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);
 /* Create a DrawingArea −− no actual drawing will be done. */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, main_w,
 XmNwidth, 500,
 XmNheight, 500,
 NULL);

 line = XmStringCreateLocalized ("Line");
 square = XmStringCreateLocalized ("Square");
 circle = XmStringCreateLocalized ("Circle");
 exit = XmStringCreateLocalized ("Exit");
 exit_acc = XmStringCreateLocalized ("Ctrl+C");
 popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,
 XmVaPUSHBUTTON, line, 'L', NULL, NULL,
 XmVaPUSHBUTTON, square, 'S', NULL, NULL,
 XmVaPUSHBUTTON, circle, 'C', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c", exit_acc,
 NULL);
 XmStringFree (line);
 XmStringFree (square);
 XmStringFree (circle);
 XmStringFree (exit);
 XmStringFree (exit_acc);

 /* after popup menu is created, add callback for all input events */
 XtAddCallback (drawing_a, XmNinputCallback, input, popup_menu);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* input() −− called in responses to events in the DrawingArea;
 * button−3 pops up menu.
 */
 void
 input(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget popup = (Widget) client_data;
 XmDrawingAreaCallbackStruct *cbs =

16 Menus 16.2 Creating Simple Menus

435

 (XmDrawingAreaCallbackStruct *) call_data;

 if (cbs−>event−>xany.type != ButtonPress ||
 cbs−>event−>xbutton.button != 3)
 return;

 /* Position the menu where the event occurred */
 XmMenuPosition (popup, (XButtonPressedEvent *) (cbs−>event));
 XtManageChild (popup);
 }

 /* popup_cb() −− invoked when the user selects an item in the popup menu */
 void
 popup_cb(menu_item, client_data, call_data)
 Widget menu_item;
 XtPointer client_data;
 XtPointer call_data;
 {
 int item_no = (int) client_data;

 if (item_no == 3) /* Exit was selected −− exit */
 exit (0);
 puts (XtName (menu_item)); /* Otherwise, just print the selection */
 }

This program creates a standard MainWindow widget that contains a DrawingArea widget. The program does not do
any drawing; it is just a skeleton that demonstrates how to attach a PopupMenu. The PopupMenu is created using
XmVaCreateSimplePopupMenu() with the DrawingArea widget as its parent. The menu is popped up when the
user presses the third mouse button in the DrawingArea, as shown in the figure.

Output of simple_popup.c

The Motif toolkit does not handle posting a PopupMenu automatically, as it does with PulldownMenus and
OptionMenus, so we must watch for the appropriate events ourselves. We use the XmNinputCallback resource of
the DrawingArea widget to monitor events, as the routine is called whenever a keyboard or mouse action happens in
the widget. In a real application, we would use this routine to handle drawing as well. However, in this case, the
input() routine only looks for ButtonPress events for the third mouse button. The menu is passed as the client
data to input().

If input() sees an appropriate event, it uses the XmMenuPosition() routine to position the menu at the

16 Menus 16.2 Creating Simple Menus

436

coordinates specified in the event data structure. The menu is then popped up using XtManageChild(). As far as
Xt is concerned, this method for popping up a menu is technically incorrect. It is supported by the Motif toolkit to
simplify the PopupMenu interface. For more information, see the discussion on popping up dialog boxes in
Chapter 5, Introduction to Dialogs. The menu contains four items, the last of which has the accelerator
Ctrl<Key>C. Any time the user presses CTRL−C in the application, the callback routine associated with the menu
is called as if the menu had been popped up and the Exit item had been selected. The popup_cb() routine either
prints the name of the menu item or exits, depending on which item the user selected. Note that the name of the menu
item does not correspond to its label. As described in Chapter 4, The Main Window, menu items are automatically
given names of the form button_n, where n is assigned in order of menu item creation, starting at 0 (zero).

16.2.2 Cascading Menus

A cascading menu, or a pullright menu, is implemented as a PulldownMenu displayed from a menu item in another
PulldownMenu or PopupMenu that is already displayed. The menu item that posts the cascading menu must be a
CascadeButton. the source code demonstrates how to add a cascading menu using the simple menu routines. The
program adds a Line Width menu item to the PopupMenu from the source code This menu item is a CascadeButton
that posts a PulldownMenu created with XmVaCreateSimplePulldownMenu(). XtSetLanguageProc() is
only available in X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only
available in Motif 1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* simple_pullright.c −− demonstrate how to make a pullright menu
 * using simple menu creation routines. Create a main window that
 * contains a DrawingArea widget that displays a popup menu when the
 * user presses the third mouse button.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/DrawingA.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XmString line, square, circle, weight, exit, exit_acc;
 XmString w_one, w_two, w_four, w_eight;
 Widget toplevel, main_w, drawing_a, cascade, popup_menu, pullright;
 void popup_cb(), set_width(), input();
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a MainWindow widget that contains a DrawingArea in
 * its work window.
 */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);
 /* Create a DrawingArea −− no actual drawing will be done. */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, main_w,
 XmNwidth, 500,
 XmNheight, 500,
 NULL);

16 Menus 16.2.2 Cascading Menus

437

 line = XmStringCreateLocalized ("Line");
 square = XmStringCreateLocalized ("Square");
 circle = XmStringCreateLocalized ("Circle");
 weight = XmStringCreateLocalized ("Line Width");
 exit = XmStringCreateLocalized ("Exit");
 exit_acc = XmStringCreateLocalized ("Ctrl+C");
 popup_menu = XmVaCreateSimplePopupMenu (drawing_a, "popup", popup_cb,
 XmVaPUSHBUTTON, line, 'L', NULL, NULL,
 XmVaPUSHBUTTON, square, 'S', NULL, NULL,
 XmVaPUSHBUTTON, circle, 'C', NULL, NULL,
 XmVaCASCADEBUTTON, weight, 'W',
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c", exit_acc,
 NULL);
 XmStringFree (line);
 XmStringFree (square);
 XmStringFree (circle);
 XmStringFree (weight);
 XmStringFree (exit);

 /* create pullright for "Line Width" button −− this is the 4th item! */
 w_one = XmStringCreateLocalized (" 1 ");
 w_two = XmStringCreateLocalized (" 2 ");
 w_four = XmStringCreateLocalized (" 4 ");
 w_eight = XmStringCreateLocalized (" 8 ");
 pullright = XmVaCreateSimplePulldownMenu (popup_menu,
 "pullright", 3 /* menu item offset */, set_width,
 XmVaPUSHBUTTON, w_one, '1', NULL, NULL,
 XmVaPUSHBUTTON, w_two, '2', NULL, NULL,
 XmVaPUSHBUTTON, w_four, '4', NULL, NULL,
 XmVaPUSHBUTTON, w_eight, '8', NULL, NULL,
 NULL);
 XmStringFree (w_one);
 XmStringFree (w_two);
 XmStringFree (w_four);
 XmStringFree (w_eight);

 /* after popup menu is created, add callback for all input events */
 XtAddCallback (drawing_a, XmNinputCallback, input, popup_menu);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* input() −− called in responses to events in the DrawingArea;
 * button−3 pops up menu.
 */
 void
 input(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget popup = (Widget) client_data;
 XmDrawingAreaCallbackStruct *cbs =
 (XmDrawingAreaCallbackStruct *) call_data;

 if (cbs−>event−>xany.type != ButtonPress ||
 cbs−>event−>xbutton.button != 3)
 return;

16 Menus 16.2.2 Cascading Menus

438

 /* Position the menu where the event occurred */
 XmMenuPosition (popup, (XButtonPressedEvent *) (cbs−>event));
 XtManageChild (popup);
 }

 /* popup_cb() −− invoked when the user selects an item in the popup menu */
 void
 popup_cb(menu_item, client_data, call_data)
 Widget menu_item;
 XtPointer client_data;
 XtPointer call_data;
 {
 int item_no = (int) client_data;

 if (item_no == 4) /* Exit was selected −− exit */
 exit (0);
 puts (XtName (menu_item)); /* Otherwise, just print the selection */
 }

 /* set_width() −− called when items in the Line Width pullright menu
 * are selected.
 */
 void
 set_width(menu_item, client_data, call_data)
 Widget menu_item;
 XtPointer client_data;
 XtPointer call_data;
 {
 int item_no = (int) client_data;

 printf ("Line weight = %d0, 1 << item_no);
 }

In the call to XmVaCreateSimplePulldownMenu(), the PopupMenu is specified as the parent of the cascading
menu. The button parameter is set to 3 to indicate that the fourth item in the PopupMenu posts the cascading menu.
the figure shows the output of the program.

Output of simple_pullright.c

16 Menus 16.2.2 Cascading Menus

439

16.2.3 Option Menus

An OptionMenu is similar to a PulldownMenu in that they are both associated with CascadeButtons. However, there
are also several major differences between the two types of menus. In an OptionMenu, the CascadeButton is not part
of a MenuBar. Instead, it is created as the child of a RowColumn widget that also contains a Label.

Another difference is that the menu pops up on top of the CascadeButton, instead of dropping down from it. The label
on the CascadeButton is one of the elements in the menu; the CascadeButton displays the current menu selection. The
Motif toolkit handles the management of the PulldownMenu for the OptionMenu, so its handle is not available to you,
nor does it need to be. Because of the design of the OptionMenu, it cannot have cascading menus.

the source code demonstrates the use of XmVaCreateSimpleOptionMenu(). The program uses a DrawingArea
again, but now the user selects the drawing style from an OptionMenu that is displayed above the DrawingArea.

 /* simple_option.c −− demonstrate how to use a simple option menu.
 * Display a drawing area. The user selects the drawing style from
 * the option menu.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/DrawingA.h>
 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XmString draw_shape, line, square, circle;
 Widget toplevel, main_w, rc, sw, drawing_a, option_menu, pb;
 void option_cb(), exit();
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a MainWindow widget that contains a RowColumn
 * widget as its work window.
 */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel, NULL);
 rc = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass, main_w, NULL);

 /* Inside RowColumn is the Exit pushbutton, the option menu and the
 * scrolled window that contains the drawing area.
 */
 pb = XtVaCreateManagedWidget ("Exit", xmPushButtonWidgetClass, rc, NULL);
 XtAddCallback (pb, XmNactivateCallback, exit, NULL);

 draw_shape = XmStringCreateLocalized ("Draw Mode:");
 line = XmStringCreateLocalized ("Line");
 square = XmStringCreateLocalized ("Square");
 circle = XmStringCreateLocalized ("Circle");
 option_menu = XmVaCreateSimpleOptionMenu (rc, "option_menu",
 draw_shape, 'D', 0 /*initial menu selection*/, option_cb,
 XmVaPUSHBUTTON, line, 'L', NULL, NULL,

16 Menus 16.2.3 Option Menus

440

 XmVaPUSHBUTTON, square, 'S', NULL, NULL,
 XmVaPUSHBUTTON, circle, 'C', NULL, NULL,
 NULL);
 XmStringFree (line);
 XmStringFree (square);
 XmStringFree (circle);
 XmStringFree (draw_shape);

 XtManageChild (option_menu);

 /* Create a DrawingArea inside a ScrolledWindow */
 sw = XtVaCreateManagedWidget ("sw",
 xmScrolledWindowWidgetClass, rc,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);
 drawing_a = XtVaCreateManagedWidget ("drawing_area",
 xmDrawingAreaWidgetClass, sw,
 XmNwidth, 500,
 XmNheight, 500,
 NULL);

 XtManageChild (rc);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* option_cb() −− invoked when the user selects an item in the
 * option menu
 */
 void
 option_cb(menu_item, client_data, call_data)
 Widget menu_item;
 XtPointer client_data;
 XtPointer call_data;
 {
 int item_no = (int) client_data;

 puts (XtName (menu_item));
 }

The layout of the application is different from that in the previous examples because we use a separate
ScrolledWindow for the DrawingArea. The RowColumn widget that contains the Exit button, the OptionMenu, and
the ScrolledWindow is the work area for the MainWindow. the figure shows the output of the program both before
and after the OptionMenu is displayed. Notice how the label of the CascadeButton changes as you select alternate
values from the menu.

16 Menus 16.2.3 Option Menus

441

Output of simple_option.c

16.3 Designing Menu Systems

The advantages of the simple menu creation routines are clear. It is easy to create menus with them, the code is
extremely readable, and the job gets done without much room for error. Once the code is written, it is easy to modify
the callback function, labels, mnemonics, and accelerators used by a menu.

There are also some disadvantages to using the simple menu creation functions. One problem is that they require a
great deal of bulk to create a single menu. If an application needs to create a large number of menus, it has to use a lot
of redundant code because the simple creation routines make it difficult to build a looping construct or a function to
automate the process. Since the creation routines name the widgets using non−unique names, it is difficult to specify
labels, mnemonics, and accelerators in a resource file. If these values are set using a creation routine, this point is
irrelevant because the routines hard−code the values. The simple creation routines also make it impossible to specify
different callback functions for menu items.

To get around the shortcomings of the simple creation routines, we are going to build a new system that is just as
simple to use, but more dynamic and easy to modify. Before we can build our new system, we need to examine the
advanced Motif menu creation routines and discuss the overall design of a menu system. We are going to start with
the MenuBar and PulldownMenus because almost every application uses these components. Furthermore, everything
there is to know about menus can be adapted from the design of a menu system that uses these menus.

Let's begin by examining the steps that you need to take to create a MenuBar and its associated PulldownMenus:

Create a RowColumn widget for use as a MenuBar with XmCreateMenuBar().•
Create each PulldownMenu using XmCreatePulldownMenu().•

Create the menu items (PushButtons, ToggleButtons, Separators, etc.) for each PulldownMenu.•
Create a CascadeButton for each menu in the MenuBar and attach the associated PulldownMenu to it.•
Manage the MenuBar with XtManageChild().•

The program in the source code demonstrates these steps by creating a MenuBar that contains a single File
PulldownMenu. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in

16 Menus 16.3 Designing Menu Systems

442

X11R4. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* file_menu.c −− demonstrate how to create a menu bar and pulldown
 * menu using the Motif creation routines.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/CascadeB.h>
 #include <Xm/SeparatoG.h>
 #include <Xm/PushBG.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, MainWindow, MenuBar, FilePullDown;
 XmString label_str;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 MainWindow = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 MenuBar = XmCreateMenuBar (MainWindow, "MenuBar", NULL, 0);

 /* create the "File" Menu */
 FilePullDown = XmCreatePulldownMenu (MenuBar, "FilePullDown", NULL, 0);

 /* create the "File" button (attach Menu via XmNsubMenuId) */
 label_str = XmStringCreateLocalized ("File");
 XtVaCreateManagedWidget ("File",
 xmCascadeButtonWidgetClass, MenuBar,
 XmNlabelString, label_str,
 XmNmnemonic, 'F',
 XmNsubMenuId, FilePullDown,
 NULL);
 XmStringFree (label_str);

 /* Now add the menu items */
 XtVaCreateManagedWidget ("Open",
 xmPushButtonGadgetClass, FilePullDown, NULL);

 XtVaCreateManagedWidget ("Save",
 xmPushButtonGadgetClass, FilePullDown, NULL);

 XtVaCreateManagedWidget ("separator",
 xmSeparatorGadgetClass, FilePullDown, NULL);

 XtVaCreateManagedWidget ("Exit",
 xmPushButtonGadgetClass, FilePullDown, NULL);

 XtManageChild (MenuBar);

16 Menus 16.3 Designing Menu Systems

443

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The code follows the steps that we just outlined. The MenuBar is created as a child of the MainWindow, and the
PulldownMenu is created as a child of the MenuBar. The CascadeButton acts as the File title item in the MenuBar, so
it is also created as the child of the MenuBar. Both the menu title and the PulldownMenu are children of the MenuBar.
The CascadeButton sets its XmNsubMenuId resource to the PulldownMenu so that when the button is selected, it
knows which PulldownMenu to display. When you create a PulldownMenu using the simple menu creation routine, it
sets this resource behind the scenes.

We also set the label of the CascadeButton using the XmNlabelString resource. This value is a compound string,
just as in the simple creation function. If we had not set the label directly, the name of the widget itself would appear
as the label, and we could override it with a specification in a resource file. Since we are not using the simple creation
routine, we can choose whether or not we hard−code the label for the CascadeButton. After we create the items in the
menu, we manage the MenuBar using XtManageChild(). The output of the source code both before and after the
PulldownMenu is posted, is shown in the figure.

Output of file_menu.c

16.3.1 Menu Titles

The titles in a MenuBar are actually the labels of the CascadeButtons. The labels can be specified using the
XmNlabelString resource, either in the application code or in a resource file. Every CascadeButton must have a
submenu associated with it via the XmN-subMenuId resource. When the user selects the CascadeButton, the
associated PulldownMenu is displayed. You should never attach a callback function directly to a CascadeButton in the
MenuBar as it would confuse the user. Callback functions should only be attached to menu items in PulldownMenus
that are posted from the MenuBar.

The PulldownMenu that is associated with a CascadeButton is created using XmCreatePulldownMenu(). This
routine returns the RowColumn widget that manages the menu items. The routine creates the RowColumn as a child
of a MenuShell widget. Since the routine returns the RowColumn widget, the resource list provided to the function
only sets resources for the RowColumn widget, not for the MenuShell that contains it.

16 Menus 16.3.1 Menu Titles

444

Menu titles should not be dynamically created or destroyed. An application should not make the MenuBar disappear
or add new titles to the MenuBar while the application is running. All of the titles in the MenuBar must be available to
the user when the MainWindow is visible. You can, however, deactivate an entire menu by changing the
XmNsensitive resource on the CascadeButton widget that acts as its title, as discussed in Section #smenusens.

16.3.2 Menu Items

The items in a menu are actually the labels of the PushButtons that make up the menu. Unlike the File title item in the
MenuBar, we chose not to use hard−coded values for the menu item strings, so the strings can be set in a resource file.
While our menu only contains PushButton gadgets, a PulldownMenu can also contain ToggleButtons, Separators, and
CascadeButtons.

You can install a callback routine for each of the items in a menu, or you can install an XmN-entryCallback for
the RowColumn widget to act on behalf of all the menu items. This resource specifies a callback function that
overrides the XmNactivateCallback used by Pushbuttons and the XmNvalueChangedCallback used by
ToggleButtons. Using this resource generates a design that is similar to the simple menu routines described earlier.
See Chapter 8, Manager Widgets, for details on this generic RowColumn resource.

As with the title items, menu items should not be dynamically created or destroyed since it may confuse the user.
However, there is one exception to this guideline. If a menu contains items that keep track of a dynamic list of objects,
such as the open files in a text editor, the menu items should change to reflect the current state of the application.

16.3.3 Mnemonics

Mnemonics help users traverse the menu system and select actual menu items without having to use the mouse. In the
source code we used the XmNmnemonic resource to attach the mnemonic "F" to the File menu, which allows the user
to use the key sequence ALT−F to open or close the menu without using the mouse. The XmNmnemonic resource is
defined by the Label class, but it is only used by PushButtons, ToggleButtons, and CascadeButtons when these objects
are used in a menu system.

A mnemonic is represented visually by the underlining of the mnemonic character in the label string. In this case, the
"F" in the word "File" is underlined. If the label does not contain the mnemonic character, there is no visual feedback
for the mnemonic, but it still functions. When a mnemonic is specified, the character can be either uppercase or
lowercase, but the distinction only affects which letter is underlined. For operational purposes, mnemonics are case
insensitive.

Our example only provided a mnemonic for the entire menu, but mnemonics can be set on menu items as well. When
a PulldownMenu is displayed, the user can activate a menu item simply by typing the letter represented by its
mnemonic. (The ALT key is not used once the menu is displayed.) If the user activates a menu item using a
mnemonic, the callback function for the menu is called just as if the user had selected it with the mouse.

Mnemonics are set on MenuBar titles and menu items in the same way. To illustrate, let's add a mnemonic to the Exit
item in our File menu. We can set the mnemonic directly in the declaration of the item, as follows:

 XtVaCreateManagedWidget ("Exit",
 xmPushButtonGadgetClass, FilePullDown,
 XmNmnemonic, 'x',
 NULL);

While this method accomplishes the task, one problem with it is that the mnemonic is hard−coded in the widget, while
the label is not. Consider the following resource specification in a resource file:

16 Menus 16.3.2 Menu Items

445

 *Exit.labelString: Quit

This resource sets the label for the item button to "Quit", but since the mnemonic for the button is hard−coded to "x",
there is visual feedback, and the mnemonic itself is counterintuitive.

The best way to handle this situation is to specify both the label string and the mnemonic in the same place: a resource
file or application code. For example:

 *Exit.labelString: Exit
 *Exit.mnemonic: x

Setting both of these resources in the same way helps ensure that an application has a consistent interface.

16.3.4 Accelerators

The purpose of menu accelerators is to provide the user with the ability to activate menu items in a PulldownMenu
without having to display the menu at all. In Figure 15−1, the Quit menu item displayed the accelerator Ctrl+C to
indicate that the user could press the CTRL−C keyboard sequence to activate that menu item and quit the application.

To install a accelerator on a menu item, use the XmNaccelerator resource to specify the accelerator translation
and XmNacceleratorText to provide visual feedback to the user. A side effect of the implementation of Motif
accelerators is that you cannot install your own accelerators using the standard methods provided by the X Toolkit
Intrinsics (such as XtInstallAccelerators() or XtInstallAllAccelerators()). These functions will
not work, and you may interfere with the Motif accelerator mechanism by attempting to use them. These resources are
defined by the Label class, but they only work for PushButtons and ToggleButtons in menus. The syntax for the
accelerator is exactly the same as for a translation table, except that you do not specify an action function with the
event sequence. The accelerator for the Quit button in Figure 15−1 is specified as "Ctrl<Key>C". (For information
on how to specify translation tables, see Volume Four, X Toolkit Intrinsics Programming Manual.

However, the string that is displayed for the accelerator is not the same as the accelerator translation because it would
be confusing for most users. Instead, you should display something like "^C", "Ctrl−C", or "Ctrl+C", as these
make it reasonably clear what the user is expected to type. (The latter is the convention recommended by the Motif
Style Guide, though all three forms are frequently used.) Since this resource specifies displayable text, you cannot use
a common C string; the text must be given as a compound string.

For example, the following code demonstrates how to install an accelerator for the Exit button in the source code

 char *accel = "Ctrl<Key>C";
 XmString accel_text = XmStringCreateLocalized ("Ctrl+C");

 XtVaCreateManagedWidget ("Exit",
 xmPushButtonGadgetClass, FilePullDown,
 XmNaccelerator, accel,
 XmNacceleratorText, accel_text,
 NULL);

 XmStringFree (accel_text);

As with mnemonics, the resources for the accelerator itself and the text used to display the accelerator can either be set
directly in application code or specified in a resource file. Both of the resources should be specified in the same way,
so that they are always consistent.

16 Menus 16.3.4 Accelerators

446

16.3.5 The Help Menu

Motif specifies various ways for the user to get help. She can use the HELP or F1 keys on the keyboard, the Help
button in a dialog box, or the Help title on the MenuBar. This title provides the highest level of help for your
application, so it should not provide too much detail about lower−level functions in the program. When you create a
PulldownMenu for this title, it should provide items that give the user access to the help system. the figure shows a
common Help menu.

A Help menu from the MenuBar

The choices shown in the figure are recommended by the Motif Style Guide; if they apply to your application, you
should use them. There is usually an item on the Help menu that gives the user a brief overview of how to use the help
system. You should consult the Motif Style Guide for details on what kind of help each of the above selections should
provide. It is usually a good idea to have an item that displays an index of the type of help that is available in an
application. An example of help index dialog is shown in the figure. See Chapter 21, Advanced Dialog Programming,
for a discussion of help dialogs.

16 Menus 16.3.5 The Help Menu

447

A help index dialog

Creating a Help menu is just like creating any other menu, except that once you have created the CascadeButton, you
should set the XmNmenuHelpWidget resource for the MenuBar. This resource specifies which CascadeButton is
placed to the far right in the MenuBar, which is where the Style Guide states that the Help menu must be positioned.
the source code contains a routine that demonstrates how to build a Help menu and attach it to the MenuBar. In this
example, we present an alternate approach to creating MenuBar titles and their associated PulldownMenus.

 void
 BuildHelpMenu(MenuBar)
 Widget MenuBar;
 {
 Widget HelpPullDown, widget;
 int i;
 static char *h_items[] = {
 "On Context", NULL, "On Help", "On Window", "On Keys",
 "Index", "Tutorial", "On Version"
 };

 /* Help menu */
 HelpPullDown = XmCreatePulldownMenu (MenuBar, "HelpPullDown", NULL, 0);
 widget = XtVaCreateManagedWidget ("Help",
 xmCascadeButtonWidgetClass, MenuBar,
 XmNsubMenuId, HelpPullDown,
 NULL);
 /* tell the MenuBar that this is the help widget */
 XtVaSetValues (MenuBar, XmNmenuHelpWidget, widget, NULL);

 /* Now add the menu items to the pulldown menu */
 for (i = 0; i < XtNumber (h_items); i++) {
 if (h_items[i] != NULL) {
 widget = XtVaCreateManagedWidget (h_items[i],
 xmPushButtonGadgetClass, HelpPullDown, NULL);
 XtAddCallback (widget, XmNactivateCallback,
 do_help, h_items[i]);
 }
 else
 widget = XtVaCreateManagedWidget ("sep",
 xmSeparatorGadgetClass, HelpPullDown, NULL);
 }
 }

Much of the work required to create a PulldownMenu is involved in creating the menu items. We can optimize the
code by using a loop that creates individual items based on the names provided in a static array. If you want to add a
new help item to the list, you just need to add its name to the h_items list. A NULL entry causes a Separator gadget
to be added to the menu. In the source code we specify the same callback function for each item in the menu; the
client_data is the same as the name of the menu item. In Section #smenucreate, we expand on this approach to
build arbitrary menus for the MenuBar.

16.3.6 Sensitivity

As we mentioned earlier, MenuBar titles and menu items should not be dynamically created or destroyed. They may,
however, be activated or deactivated using XtSetSensitive(). When a CascadeButton or a menu item is
insensitive, it is grayed out, and the user is unable to display the associated menu or activate the menu item.

16 Menus 16.3.6 Sensitivity

448

For CascadeButtons, insensitivity has the additional effect of preventing the user from accessing any of the items on
the associated menu, including access through mnemonics and accelerators, since the menu cannot be displayed. The
menu and all its items are completely unavailable until the sensitivity of the CascadeButton is reset. An alternate way
to disable an entire menu is to set the PulldownMenu pane insensitive. This approach has the advantage of still
allowing the user to display the menu and see all the items, while making the items unavailable.

For example, take an editor program. If the user is not editing a file, it doesn't make sense to have the Save item in the
File menu be selectable. Once the user starts editing a file, the Save button is sensitized so that the user can select it.
Since the user cannot select the item until its sensitivity is reset, it is important that the application do so at the
appropriate time. Another less realistic example, but one that we can demonstrate, involves a menu item that pops up a
dialog. As long as that dialog is up, the user cannot reselect the menu item again. For purposes of this demonstration,
let's say that the Open item pops up a FileSelectionDialog and desensitizes itself. When the dialog is dismissed, the
menu item is resensitized. This behavior is not a great design. The dialog really should be cached, and the menu item
should remain sensitive. If the item is reselected, the dialog should be remapped or raised to the top of the window
stack, if necessary.

To implement this behavior, we specify a callback routine for the Open menu item that creates a FileSelectionDialog
and sets the item insensitive. We also specify a callback routine for the dialog box that resets the menu item's
sensitivity. The code fragment in the source code shows these callback routines.

 /* reset_sensitive() −− generalized routine that resets the
 * sensitivity on the widget passed as the client_data parameter
 * in a call to XtAddCallback().
 */
 void
 reset_sensitive(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget reset_widget = (Widget) client_data;

 XtSetSensitive (reset_widget, True);
 }

 /* open_callback() −− the callback routine for when the "Open"
 * menu item is selected from the "File" title in the MenuBar.
 */
 void
 open_callback(menu_item, client_data, call_data)
 Widget menu_item;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog, parent = menu_item;

 /* Get the window manager shell widget associated with item */
 while (!XtIsWMShell (parent))
 parent = XtParent (parent);

 /* turn off the sensitivity for the Open button ... */
 XtSetSensitive (menu_item, False);
 dialog = XmCreateFileSelectionDialog (parent, "files", NULL, 0);

 /* Add callback routines to respond to OK button selection here. */

 /* Make sure that if the dialog is popped down or destroyed, the

16 Menus 16.3.6 Sensitivity

449

 * menu_item's sensitivity is reset.
 */
 XtAddCallback (XtParent(dialog), /* dialog's _parent_ */
 XmNpopdownCallback, reset_sensitive, menu_item);
 XtAddCallback (dialog, XmNdestroyCallback, reset_sensitive, menu_item);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

The open_callback() function is called whenever the user activates the Open menu item on the File menu. The
first thing open_callback() does is find the nearest WMShell widget associated with the menu item. We do not
want the MenuShell here, as we need a non−transient widget to act as the parent for the FileSelectionDialog. If the
menu item is used as the parent for the dialog, when the menu is popped down, the dialog is also popped down
because it is a secondary window.

We set the menu item's sensitivity to False, which prevents the user from selecting the item again. In order to be
notified when the FileSelectionDialog is dismissed, we add callback routines for XmNpopdownCallback and
XmNdestroyCallback. In both cases, the Open menu item needs to be reset so that the user can select it again.
The only thing in open_callback() is a callback function that opens the selected file when the user selects the
OK button. This functionality is beyond the scope of this chapter; see Chapter 6, Selection Dialogs, for details.

16.3.7 Tear−Off Menus

Motif 1.2 provides a new feature that allows menus to be torn off and placed in separate windows. From the user's
perspective, tear−off menus make it easy to make repeated menu selections. Normally, when the user posts a menu, it
is only displayed until she makes a selection, and then it is removed. If the menu has been torn off, however, it is
displayed in a separate window, and the user can make as many selections as she wants without having to repost it
each time.

Tear−off behavior is provided for all of the Motif menu types, but the behavior is disabled by default. When tear−off
functionality is enabled in a menu, the first item in the menu is a tear−off button. The button displays a dashed line to
indicate that the user can tear off the menu, much as she would tear a coupon out of a newspaper. If the user selects
the tear−off button, the menu is placed in a separate window with limited window manager decorations. The window
can be moved, so the user can position it in a convenient location. The menu remains torn off until the user cancels the
menu by pressing the ESCAPE key within the window.

Tear−off functionality is controlled by the XmNtearOffModel resource of the RowColumn widget. This resource is
only valid when the RowColumn is being used as a PulldownMenu or a PopupMenu. The resource can have one of
the following values: XmTEAR_OFF_ENABLED or XmTEAR_OFF_DISABLED. By default, the resource is set to
XmTEAR_OFF_DISABLED, so if you want to provide tear−off functionality in the menus in your application, you
must set the resource for all of your menu panes. the figure shows a PulldownMenu both before and after being torn
off.

16 Menus 16.3.7 Tear−Off Menus

450

A PulldownMenu before and after being torn off

Motif does not install a resource converter for the XmNtearOffModel resource, but it does provide one that you can
i n s t a l l i f y o u w a n t t o s p e c i f y t h e r e s o u r c e i n a r e s o u r c e f i l e . T h e
XmRepTypeInstal lTearOffModelConverter() routine instal ls the resource converter for
XmNtearOffModel. This routine does not take any arguments, but it does win the award for the longest function
name in the Motif toolkit. Once the converter is installed, you can use the following resource specification to enable
tear−off functionality for all menus:

 *tearOffModel: TEAR_OFF_ENABLED

The converter is not installed by default for backwards compatibility reasons.

Some applications use menus in such a way that they need to keep track of when the menu is popped up and popped
down. For example, an application might use some ToggleButtons in a PulldownMenu to allow the user to set state
variables for the program. If the application also provides another interface for changing the variables, such as a
command−line, the application needs to know when the menu is popped up so that it can make sure the ToggleButtons
are set appropriately.

Now let's say that this application is recompiled with Motif 1.2. If the resource converter for XmNtearOffModel
were installed, the user could enable tear−off functionality, and that might cause the application to malfunction. If an
application needs to keep track of the comings and goings of menus, it has to do extra work for tear−off menus. Since
the converter is not installed by default, the programmer can decide whether or not to support tear−off functionality in
this case. If the application is modified to support tear−off menus, then it can install the converter and allow the user
to set the resource in a resource file. If your application does not require any special handling of menus, there is no
reason not to enable tear−off functionality for all menus, as it really is a convenience to the user.

The RowColumn widget provides two new callback resources that allow an application to keep track of tear−off
menus. The XmNtearOffMenuActivateCal lback rout ine is cal led when a menu is torn off ;
XmNtearOffMenuDeactivateCallback is called when the torn−off menu is dismissed. These callbacks
provide a way for you to perform any special processing that is necessary for handling tear−off menus.

Motif also provides access to the tear−off button with the XmGetTearOffControl() routine. This routine takes a
menu pane and returns the widget ID of the tear−off button in the menu, if there is one. Otherwise the routine returns

16 Menus 16.3.7 Tear−Off Menus

451

NULL. The tear−off button has a Separator−like appearance; you can specify its background, foreground, and top and
bottom shadow colors using the standard resources, as well as the XmNseparatorType resource. You can also set
these resources in a resource file using the name of the button, which is TearOffControl.

16.4 General Menu Creation Techniques

Now we have addressed each of the fundamental elements of the MenuBar and the resources used to provide the user
with the appropriate feedback. Using this information, we can generalize the way we build MenuBars, enabling us to
create arbitrarily large MenuBars and PulldownMenus using a substantially smaller amount of code.

In the examples that follow, we use many of the recommended elements for a standard Motif MenuBar. You can
adjust the algorithms and data structures to fit the needs of your own application. Although we use hard−coded values
for widget resources, this technique is by no means a requirement, nor should it be construed as recommended usage.
If you choose to specify resources in a resource file, you should write an application defaults file that contains the
appropriate resource values.

16.4.1 Building Pulldown Menus

Let's begin by identifying each of the attributes of a menu item:

Label•
Mnemonic•
Accelerator•
Accelerator text•
Callback routine•
Callback data•

Using this information, we can construct a data structure that describes all of the important aspects of a menu item.
We define the MenuItem structure as follows:

 typedef struct _menu_item {
 char *label; /* the label for the item */
 WidgetClass *class; /* pushbutton, label, separator, ... */
 char mnemonic; /* mnemonic; NULL if none */
 char *accelerator; /* accelerator; NULL if none */
 char *accel_text; /* to be converted to compound string */
 void (*callback)(); /* routine to call; NULL if none */
 XtPointer callback_data; /* client_data for callback() */
 } MenuItem;

To create a PulldownMenu, all we need to do is initialize an array of MenuItem structures and pass it to a routine
that iterates through the array and creates the items using the appropriate information. For example, the following
declaration describes the elements for a File menu:

 MenuItem file_items[] = {
 { "New", &xmPushButtonGadgetClass, 'N',
 NULL, NULL, do_open, NEW },
 { "Open...", &xmPushButtonGadgetClass, 'O',
 NULL, NULL, do_open, OPEN },
 { "Save", &xmPushButtonGadgetClass, 'S',
 NULL, NULL, do_save, SAVE },
 { "Save As...", &xmPushButtonGadgetClass, 'A',
 NULL, NULL, do_save, SAVE_AS },

16 Menus 16.4 General Menu Creation Techniques

452

 { "Print...", &xmPushButtonGadgetClass, 'P',
 NULL, NULL, do_print, NULL },
 { "", &xmSeparatorGadgetClass, NULL,
 NULL, NULL, NULL, NULL },
 { "Exit", &xmPushButtonGadgetClass, 'x',
 "Ctrl<Key>C", "Ctrl+C", do_quit, NULL },
 NULL,
 };

Each element in the MenuItem data structure is filled with default values for each menu item. If a resource value is
not meaningful, or is not going to be hard−coded, we initialize the field to NULL. If you don't need a callback function
or client data for an item, the field may be set to NULL. The only field that cannot be NULL is the widget class. The
final terminating NULL in the label field indicates the end of the list.

We have not specified any accelerators except for the Exit item. The Separator gadget is completely unspecified, since
none of the resources even apply to Separators. This design makes modification and maintenance very simple. If you
want to add an accelerator for the Save item, all you need to do is change the appropriate fields in the data structure,
instead of having to search through the source code looking for where that item is created.

One particular point of interest is the way the WidgetClass field is initialized. It is declared as a pointer to a widget
class rather than just a widget class, so we initialize the field with the address of the widget class variable that is
declared in the widget's header file. The use of &xmPushButtonGadgetClass is one such example. The structure
must be initialized this way because the compiler requires a specific value in order to initialize a static data structure.
The xmPushButtonWidgetClass pointer does not have a value until the program is actually running, but the
address of the variable does have a value. Once the program is running, the pointer can be dereferenced to access the
real PushButton widget class.

Now we can write a routine that uses the MenuItem data structure to create a PulldownMenu. The
BuildPulldownMenu() function is shown in the source code The routine loops through each element in an array
o f p re− in i t i a l i zed Menu I tem s t ruc tu res and c rea tes menu i t ems based on the i n fo rma t ion .
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. The XmNtearOffModel resource is only available in Motif 1.2; it should not
be specified in Motif 1.1.

 Widget
 BuildPulldownMenu(parent, menu_title, menu_mnemonic, tear_off, items)
 Widget parent;
 char *menu_title, menu_mnemonic;
 Boolean tear_off;
 MenuItem *items;
 {
 Widget PullDown, cascade, widget;
 int i;
 XmString str;

 PullDown = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);
 if (tear_off)
 XtVaSetValues (PullDown, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);
 str = XmStringCreateLocalized (menu_title);
 cascade = XtVaCreateManagedWidget (menu_title,
 xmCascadeButtonWidgetClass, parent,
 XmNsubMenuId, PullDown,
 XmNlabelString, str,
 XmNmnemonic, menu_mnemonic,
 NULL);
 XmStringFree (str);

16 Menus 16.4 General Menu Creation Techniques

453

 /* Now add the menu items */
 for (i = 0; items[i].label != NULL; i++) {
 widget = XtVaCreateManagedWidget (items[i].label,
 *items[i].class, PullDown,
 NULL);
 if (items[i].mnemonic)
 XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);
 if (items[i].accelerator) {
 str = XmStringCreateLocalized (items[i].accel_text);
 XtVaSetValues (widget,
 XmNaccelerator, items[i].accelerator,
 XmNacceleratorText, str,
 NULL);
 XmStringFree (str);
 }
 if (items[i].callback)
 XtAddCallback (widget, XmNactivateCallback,
 items[i].callback, items[i].callback_data);
 }
 return cascade;
 }

The function takes five parameters. parent is a handle to a MenuBar widget that must have already been created,
menu_title indicates the title of the menu, menu_mnemonic specifies the mnemonic, tear_off indicates
whether or not the menu can be torn off, and items is an array of MenuItem structures.

The first thing the routine does is create a PulldownMenu. Since the name of this widget is not terribly important, we
use a predefined name, prefixed with an underscore, to indicate that the name is not intended to be referenced in a
resource file. This use of the underscore is our own convention, by the way, not one adopted by the X Toolkit
Intrinsics. We came up with this "unwritten rule" because Xt has no such naming conventions for widgets that do not
wish to have their resources specified externally.

After creating the PulldownMenu, the routine creates the CascadeButton that acts as the title for the menu on the
MenuBar. The name of the widget is taken from the second parameter, menu_title. The routine also sets the
mnemonic and the XmNtearOffModel resource at this point. All MenuBar titles should have mnemonics associated
with them.

Now the function loops through the array of MenuItem structures creating menu items until it finds an entry with a
NULL label name. We use this value as an end−of−menu indicator in our initialization. When each widget is created,
the mnemonic, accelerator, and callback function are added only if they are specified in the MenuItem structure.

BuildPulldownMenu() must be called from another function that passes the appropriate data structures and other
parameters. In our design, this would be the routine that creates the MenuBar itself. the source code shows the code
fo r the Crea teMenuBar () rou t ine . Th is s imp le func t ion c rea tes a MenuBar w idge t , ca l l s
BuildPulldownMenu() for each menu, manages the MenuBar, and returns it to the calling function.

 Widget
 CreateMenuBar(MainWindow)
 Widget MainWindow;
 {
 Widget MenuBar, widget, BuildPulldownMenu();

 MenuBar = XmCreateMenuBar (MainWindow, "MenuBar", NULL, 0);

 (void) BuildPulldownMenu (MenuBar, "File", 'F', True, file_items);

16 Menus 16.4 General Menu Creation Techniques

454

 (void) BuildPulldownMenu (MenuBar, "Edit", 'E', True, edit_items);
 (void) BuildPulldownMenu (MenuBar, "View", 'V', True, view_items);
 (void) BuildPulldownMenu (MenuBar, "Options", 'O', True, options_items);
 widget = BuildPulldownMenu (MenuBar, "Help", 'H', True, help_items);

 XtVaSetValues (MenuBar, XmNmenuHelpWidget, widget, NULL);

 XtManageChild (MenuBar);
 return MenuBar;
 }

Each call to BuildPulldownMenu() passes an array of pre−initialized MenuItem structures. The Help menu is a
special case, so we set the XmNmenuHelpWidget resource to let the MenuBar know which item it is. By setting the
resource to the CascadeButton returned by the function, the MenuBar knows that this button should be placed to the
far right. The only parameter to the CreateMenuBar() function is the MainWindow widget that is the parent of the
MenuBar that is returned.

16.4.2 Building Cascading Menus

We can add pullright menus to our menu creation methodology quite easily by adding to the MenuItem data
structure and making a slight modification to the CreatePulldownMenu() function. As we learned from the
simple menu creation routines, a cascading menu is really a PulldownMenu that is associated with a CascadeButton.
We also know that we can attach a menu to a CascadeButton by setting the XmNsubMenuId resource to the handle
of the PulldownMenu. We begin by modifying the MenuItem structure as follows:

 typedef struct _menu_item {
 char *label; /* the label for the item */
 WidgetClass *class; /* pushbutton, label, separator... */
 char mnemonic; /* mnemonic; NULL if none */
 char *accelerator; /* accelerator; NULL if none */
 char *accel_text; /* to be converted to compound string */
 void (*callback)(); /* routine to call; NULL if none */
 XtPointer callback_data; /* client_data for callback() */
 struct _menu_item *subitems; /* pullright menu items, if not NULL */
 } MenuItem;

The new field at the end of the structure is a pointer to another array of MenuItem structures. If this pointer is not
NULL, the menu item has a cascading submenu that is described by subitems. the source code shows an example of
creating a cascading menu. This program uses a modified version of BuildPulldownMenu() that calls itself to
create cascading menus. XtSetLanguageProc() is only available in X11R5; there is no corresponding function
in X11R4. XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. The XmNtearOffModel resource is only available in Motif 1.2; it should not
be specified in Motif 1.1.

 /* build_menu.c −− Demonstrate the BuildPulldownMenu() routine and
 * how it can be used to build pulldown −and− pullright menus.
 * Menus are defined by declaring an array of MenuItem structures.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/DrawingA.h>
 #include <Xm/CascadeBG.h>
 #include <Xm/PushB.h>
 #include <Xm/PushBG.h>
 #include <Xm/ToggleB.h>
 #include <Xm/ToggleBG.h>

16 Menus 16.4.2 Building Cascading Menus

455

 typedef struct _menu_item {
 char *label; /* the label for the item */
 WidgetClass *class; /* pushbutton, label, separator... */
 char mnemonic; /* mnemonic; NULL if none */
 char *accelerator; /* accelerator; NULL if none */
 char *accel_text; /* to be converted to compound string */
 void (*callback)(); /* routine to call; NULL if none */
 XtPointer callback_data; /* client_data for callback() */
 struct _menu_item *subitems; /* pullright menu items, if not NULL */
 } MenuItem;

 /* Pulldown menus are built from cascade buttons, so this function
 * also includes pullright menus. Create the menu, the cascade button
 * that owns the menu, and then the submenu items.
 */
 Widget
 BuildPulldownMenu(parent, menu_title, menu_mnemonic, tear_off, items)
 Widget parent;
 char *menu_title, menu_mnemonic;
 Boolean tear_off;
 MenuItem *items;
 {
 Widget PullDown, cascade, widget;
 int i;
 XmString str;

 PullDown = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);
 if (tear_off)
 XtVaSetValues (PullDown, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);
 str = XmStringCreateLocalized (menu_title);
 cascade = XtVaCreateManagedWidget (menu_title,
 xmCascadeButtonGadgetClass, parent,
 XmNsubMenuId, PullDown,
 XmNlabelString, str,
 XmNmnemonic, menu_mnemonic,
 NULL);
 XmStringFree (str);

 /* Now add the menu items */
 for (i = 0; items[i].label != NULL; i++) {
 /* If subitems exist, create the pull−right menu by calling this
 * function recursively. Since the function returns a cascade
 * button, the widget returned is used..
 */
 if (items[i].subitems)
 widget = BuildPulldownMenu (PullDown, items[i].label,
 items[i].mnemonic, tear_off, items[i].subitems);
 else
 widget = XtVaCreateManagedWidget (items[i].label,
 *items[i].class, PullDown,
 NULL);
 /* Whether the item is a real item or a cascade button with a
 * menu, it can still have a mnemonic.
 */
 if (items[i].mnemonic)
 XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);
 /* any item can have an accelerator, except cascade menus. But,
 * we don't worry about that; we know better in our declarations.
 */
 if (items[i].accelerator) {

16 Menus 16.4.2 Building Cascading Menus

456

 str = XmStringCreateLocalized (items[i].accel_text);
 XtVaSetValues (widget,
 XmNaccelerator, items[i].accelerator,
 XmNacceleratorText, str,
 NULL);
 XmStringFree (str);
 }
 if (items[i].callback)
 XtAddCallback(widget,
 (items[i].class == &xmToggleButtonWidgetClass ||
 items[i].class == &xmToggleButtonGadgetClass) ?
 XmNvalueChangedCallback : /* ToggleButton class */
 XmNactivateCallback, /* PushButton class */
 items[i].callback, items[i].callback_data);
 }
 return cascade;
 }

 /* callback functions for menu items declared later... */
 void
 set_weight(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int weight = (int) client_data;

 printf ("Setting line weight to %d0, weight);
 }

 set_color(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *color = (char *) client_data;

 printf ("Setting color to %s0, color);
 }

 void
 set_dot_dash(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int dot_or_dash = (int) client_data;

 printf ("Setting line style to %s0, dot_or_dash? "dot" : "dash");
 }

 MenuItem weight_menu[] = {
 { " 1 ", &xmPushButtonGadgetClass, '1', NULL, NULL,
 set_weight, (XtPointer) 1, (MenuItem *) NULL },
 { " 2 ", &xmPushButtonGadgetClass, '2', NULL, NULL,
 set_weight, (XtPointer) 2, (MenuItem *) NULL },
 { " 3 ", &xmPushButtonGadgetClass, '3', NULL, NULL,
 set_weight, (XtPointer) 3, (MenuItem *) NULL },
 { " 4 ", &xmPushButtonGadgetClass, '4', NULL, NULL,
 set_weight, (XtPointer) 4, (MenuItem *) NULL },
 NULL,

16 Menus 16.4.2 Building Cascading Menus

457

 };

 MenuItem color_menu[] = {
 { "Cyan", &xmPushButtonGadgetClass, 'C', "Alt<Key>C", "Alt+C",
 set_color, (XtPointer) "cyan", (MenuItem *) NULL },
 { "Yellow", &xmPushButtonGadgetClass, 'Y', "Alt<Key>Y", "Alt+Y",
 set_color, (XtPointer) "yellow", (MenuItem *) NULL },
 { "Magenta", &xmPushButtonGadgetClass, 'M', "Alt<Key>M", "Alt+M",
 set_color, (XtPointer) "magenta", (MenuItem *) NULL },
 { "Black", &xmPushButtonGadgetClass, 'B', "Alt<Key>B", "Alt+B",
 set_color, (XtPointer) "black", (MenuItem *) NULL },
 NULL,
 };

 MenuItem style_menu[] = {
 { "Dash", &xmPushButtonGadgetClass, 'D', NULL, NULL,
 set_dot_dash, (XtPointer) 0, (MenuItem *) NULL },
 { "Dot", &xmPushButtonGadgetClass, 'o', NULL, NULL,
 set_dot_dash, (XtPointer) 1, (MenuItem *) NULL },
 NULL,
 };

 MenuItem drawing_menus[] = {
 { "Line Weight", &xmCascadeButtonGadgetClass, 'W', NULL, NULL,
 0, 0, weight_menu },
 { "Line Color", &xmCascadeButtonGadgetClass, 'C', NULL, NULL,
 0, 0, color_menu },
 { "Line Style", &xmCascadeButtonGadgetClass, 'S', NULL, NULL,
 0, 0, style_menu },
 NULL,
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w, menubar, drawing_a;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Create a MainWindow widget that contains a DrawingArea in
 * its work window.
 */
 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 menubar = XmCreateMenuBar (main_w, "menubar", NULL, 0);
 BuildPulldownMenu (menubar, "Lines", 'L', True, drawing_menus);
 XtManageChild (menubar);

 /* Create a DrawingArea −− no actual drawing will be done. */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, main_w,
 XmNwidth, 500,
 XmNheight, 500,

16 Menus 16.4.2 Building Cascading Menus

458

 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The majority of this program is composed of the new version of BuildPulldownMenu() and the menu and
submenu declarations. All the menus and menu items are declared in reverse order because the cascading menu
declaration must exist before the menu is actually referenced. The output of the program is shown in the figure.

Output of build_menu.c

All we have to do to get BuildPulldownMenu() to create a cascading menu is add code that checks whether or
not the current menu has a submenu. If it does, the routine calls itself to create the submenu. Because the function
creates and returns a CascadeButton, the return value can be used as the menu item in the menu that is currently being
built. We have to create the cascading menu first because it has to exist before it can be attached to a CascadeButton.
Recursion handles this problem for us by creating the deepest submenus first, which ensures that all the necessary
submenus are built before their CascadeButtons require them.

We also added support for ToggleButtons to this version of BuildPulldownMenu(), even though our menus do
not contain any ToggleButtons. The only change that we have to make here involves the callback function. Since
ToggleButtons have an XmNvalueChangedCallback, while PushButtons have an XmNactivateCallback,
we check the class of the item being added and specify the appropriate callback resource in our call to
XtAddCallback().

16.4.3 Building Popup Menus

To further demonstrate the flexibility of our design and to exploit the similarities between PulldownMenus,
PopupMenus, and cascading menus, we can easily modify the BuildPulldownMenu() routine to support any of
these menu types. We only need to specify a new parameter indicating which of the two menu types to use. Since
Motif already defines the values XmMENU_PULLDOWN and XmMENU_POPUP in <Xm/Xm.h>, we use those values.
We have also given the function a more generic name, BuildMenu(), as shown in the source code
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. The XmNtearOffModel resource is only available in Motif 1.2; it should not
be specified in Motif 1.1.

 Widget
 BuildMenu(parent, menu_type, menu_title, menu_mnemonic, tear_off, items)

16 Menus 16.4.3 Building Popup Menus

459

 Widget parent;
 int menu_type;
 char *menu_title, menu_mnemonic;
 Boolean tear_off;
 MenuItem *items;
 {
 Widget menu, cascade, widget;
 int i;
 XmString str;

 if (menu_type == XmMENU_PULLDOWN)
 menu = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);
 else
 menu = XmCreatePopupMenu (parent, "_popup", NULL, 0);
 if (tear_off)
 XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

 if (menu_type == XmMENU_PULLDOWN) {
 str = XmStringCreateLocalized (menu_title);
 cascade = XtVaCreateManagedWidget (menu_title,
 xmCascadeButtonGadgetClass, parent,
 XmNsubMenuId, menu,
 XmNlabelString, str,
 XmNmnemonic, menu_mnemonic,
 NULL);
 XmStringFree (str);
 }

 /* Now add the menu items */
 for (i = 0; items[i].label != NULL; i++) {
 /* If subitems exist, create the pull−right menu by calling this
 * function recursively. Since the function returns a cascade
 * button, the widget returned is used..
 */
 if (items[i].subitems)
 widget = BuildMenu (menu, XmMENU_PULLDOWN, items[i].label,
 items[i].mnemonic, tear_off, items[i].subitems);
 else
 widget = XtVaCreateManagedWidget (items[i].label,
 *items[i].class, menu,
 NULL);
 /* Whether the item is a real item or a cascade button with a
 * menu, it can still have a mnemonic.
 */
 if (items[i].mnemonic)
 XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);
 /* any item can have an accelerator, except cascade menus. But,
 * we don't worry about that; we know better in our declarations.
 */
 if (items[i].accelerator) {
 str = XmStringCreateLocalized (items[i].accel_text);
 XtVaSetValues(widget,
 XmNaccelerator, items[i].accelerator,
 XmNacceleratorText, str,
 NULL);
 XmStringFree (str);
 }
 /* again, anyone can have a callback −− however, this is an
 * activate−callback. This may not be appropriate for all items.
 */
 if (items[i].callback)

16 Menus 16.4.3 Building Popup Menus

460

 XtAddCallback(widget,
 (items[i].class == &xmToggleButtonWidgetClass ||
 items[i].class == &xmToggleButtonGadgetClass) ?
 XmNvalueChangedCallback : /* ToggleButton class */
 XmNactivateCallback, /* PushButton class */
 items[i].callback, items[i].callback_data);
 }
 return menu_type == XmMENU_POPUP ? menu : cascade;
 }

All of the original functionality is maintained; we only added a couple of lines to support popup menus. Namely,
when XmMENU_POPUP is passed as the menu_type parameter, the function XmCreatePopupMenu() is called,
and the menu itself is returned. Otherwise the routine returns a CascadeButton. If any of the menu items have
cascading menus, we continue what we were doing before for submenus.

In order to use this routine in an application, we would have to create the PopupMenu as the child of another widget
and set up a callback routine to post the menu, just as we did with the simple menu creation routine. Since mnemonics
are not typically used for PopupMenus, the mnemonic fields in the data structure should be specified as NULL.

Now we can build PopupMenus, but what we really need to talk about is when you should use PopupMenus in an
application. The Motif Style Guide has very little to say about when and how popup menus should be used. One
guideline is that PopupMenus should only be used as a redundant means of activating application functionality, since
they do not make themselves apparent to the user. The single requirement is that PopupMenus use the third mouse
button, which leads to the question: how do you get the necessary events on an arbitrary widget so that you can pop up
a menu?

In our previous PopupMenu examples, we have used the DrawingArea widget because of its ability to track such input
events through a callback routine. However, for all other widgets, the solution is not so simple. Unfortunately, the
design of PopupMenus in the Motif toolkit requires you to dig into lower−level Xt event−handling mechanisms in
order to post a PopupMenu. We can continue to build menus in the same way; it's just that we have to do a bit of work
to pop them up.

the source code demonstrates how to display a PopupMenu for an arbitrary widget. Here, we use events in a
PushButton widget to display a PopupMenu, but the menu could be triggered from any type of widget. This program
uses the Bui ldMenu() rou t ine f rom the source code so we do no t show i t i n th is example .
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* popups.c −− demonstrate the use of a popup menus in an arbitrary
 * widget. Display two PushButtons. The second one has a popup
 * menu attached to it that is activated with the third
 * mouse button.
 */
 #include <Xm/LabelG.h>
 #include <Xm/PushBG.h>
 #include <Xm/PushB.h>
 #include <Xm/ToggleBG.h>
 #include <Xm/ToggleB.h>
 #include <Xm/SeparatoG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/FileSB.h>
 #include <Xm/CascadeBG.h>

 Widget toplevel;
 extern void exit();
 void open_dialog_box();

16 Menus 16.4.3 Building Popup Menus

461

 /* callback for pushbutton activation */
 void
 put_string(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 String str = (String) client_data;

 puts (str);
 }

 typedef struct _menu_item {
 char *label;
 WidgetClass *class;
 char mnemonic;
 char *accelerator;
 char *accel_text;
 void (*callback)();
 XtPointer callback_data;
 struct _menu_item *subitems;
 } MenuItem;

 MenuItem file_items[] = {
 { "File Items", &xmLabelGadgetClass, NULL, NULL, NULL, NULL, NULL, NULL },
 { "_sep1", &xmSeparatorGadgetClass, NULL, NULL, NULL, NULL, NULL, NULL },
 { "New", &xmPushButtonGadgetClass, 'N', NULL, NULL,
 put_string, "New", NULL },
 { "Open...", &xmPushButtonGadgetClass, 'O', NULL, NULL,
 open_dialog_box, (XtPointer) XmCreateFileSelectionDialog, NULL },
 { "Save", &xmPushButtonGadgetClass, 'S', NULL, NULL,
 put_string, "Save", NULL },
 { "Save As...", &xmPushButtonGadgetClass, 'A', NULL, NULL,
 open_dialog_box, (XtPointer) XmCreateFileSelectionDialog, NULL },
 { "Exit", &xmPushButtonGadgetClass, 'x', "Ctrl<Key>C", "Ctrl+C",
 exit, NULL, NULL },
 NULL,
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget BuildMenu(), button, rowcol, popup;
 XtAppContext app;
 extern void PostIt();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* Build a RowColumn to contain two PushButtons */
 rowcol = XtVaCreateManagedWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 NULL);

 /* The first PushButton is a −gadget−, so we cannot popup a menu
 * from here!
 */

16 Menus 16.4.3 Building Popup Menus

462

 button = XtVaCreateManagedWidget ("Button 1",
 xmPushButtonGadgetClass, rowcol, NULL);
 XtAddCallback (button, XmNactivateCallback, put_string, "Button 1");

 /* This PushButton is a widget, so it has its own window, so
 * we can pop up a menu from here by adding an event handler
 * specifically for the 3rd mouse button (motif compliance).
 */
 button = XtVaCreateManagedWidget ("Button 2",
 xmPushButtonWidgetClass, rowcol,
 NULL);
 /* it can still have its callback! */
 XtAddCallback (button, XmNactivateCallback, put_string, "Button 2");

 /* build the menu... */
 popup = BuildMenu(button, XmMENU_POPUP, "Stuff", NULL,
 True, file_items);
 /* Add the event handler (PostIt()) and pass the newly created menu
 * as the client_data. This is done to avoid using unnecessary globals.
 */
 XtAddEventHandler (button, ButtonPressMask, False, PostIt, popup);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* PostIt() −− event handler for the 3rd mouse button on the
 * PushButton widget's window.
 */
 void
 PostIt(pb, client_data, event)
 Widget pb;
 XtPointer client_data;
 XEvent *event;
 {
 Widget popup = (Widget) client_data;
 XButtonPressedEvent *bevent = (XButtonPressedEvent *) event;

 if (bevent−>button != 3)
 return;
 /* position the menu at the location of the button press. If we wanted
 * to position it elsewhere, we could change the x,y fields of the
 * event structure.
 */
 XmMenuPosition (popup, bevent);
 XtManageChild (popup);
 }

 /* open_dialog_box() −− callback for some of the menu items declared
 * in the MenuItem struct. The client data is the creation function
 * for the dialog. Associate the dialog with the menu
 * item via XmNuserData so we don't have to keep a global and
 * don't have to repeatedly create one.
 */
 void
 open_dialog_box(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget (*func)(); = client_data;

16 Menus 16.4.3 Building Popup Menus

463

 Widget dialog = NULL;

 /* first see if this menu item's dialog has been created yet */
 XtVaGetValues(w, XmNuserData, &dialog, NULL);

 if (!dialog) {
 /* menu item hasn't been chosen yet −− create the dialog.
 * Use the toplevel as the parent because we don't want the
 * parent of a dialog to be a menu item.
 */
 dialog = (*func)(toplevel, "dialog", NULL, 0);

 XtVaSetValues (XtParent (dialog), XmNtitle, XtName (w), NULL);
 XtVaSetValues (dialog, XmNautoUnmanage, True, NULL);

 /* store the newly created dialog in the XmNuserData for the menu
 * item for easy retrieval next time. (see get−values above.)
 */
 XtVaSetValues (w, XmNuserData, dialog, NULL);
 }

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 /* If the dialog was already open, XtPopup does nothing. In
 * this case, at least make sure the window is raised to the top
 * of the window tree (or as high as it can get).
 */
 XRaiseWindow (XtDisplay (dialog), XtWindow (XtParent (dialog)));
 }

The output of the program is shown in the figure.

Output of popups.c

The program displays two PushButtons, one of which is a gadget and the other a widget. We get the ButtonPress
event by specifically asking for it using XtAddEventHandler(). This routine requires a widget because it needs a
window. To add an event handler for a gadget, you would have to install it on the gadget's parent, which is a manager
widget. Anytime a ButtonPress event occurs in the manager, the event handler would be called, so the event

16 Menus 16.4.3 Building Popup Menus

464

handler would have to check the coordinates of the event and see if it happened within the boundaries of the gadget.
This technique would work, but it is beyond the scope of this simple demonstration.

XtAddEventHandler() takes the following form:

 void XtAddEventHandler(w, event_mask, nonmaskable,
proc, client_data)

 Widget w;
 EventMask event_mask;
 Boolean nonmaskable;
 XtEventHandler proc;
 XtPointer client_data;

The widget parameter specifies the widget on which the event handler is to be installed, while event_mask
identifies the events that are being handled. We specify ButtonPressMask to indicate that we are interested in
ButtonPress events. The nonmaskable argument indicates whether or not the event handler should be called on
non−maskable events. We specify False since we are not interested in the events. The final arguments specify the
event handler routine and the client data that is passed to it. In our case, we specify the PostIt() routine and pass it
the PopupMenu as client data. See Volume Four, X Toolkit Intrinsics Programming Manual, for a complete list of
event masks and more detailed information about XtAddEventHandler().

An event handler routine takes the following form:

 void
 event_handler(widget, client_data, event)
 Widget widget;
 XtPointer client_data;
 XEvent *event;

In the PostIt() event handler, we check which button produced the ButtonPress event. If it wasn't the third
button, we simply return. To pop up the menu, we need to position the menu and then manage the menu pane. To
position it, we use XmMenuPosition(), which takes the following form:

 void
 XmMenuPosition(widget, event)
 Widget widget;
 XButtonPressedEvent *event;

Since the event parameter for this function is defined to be of type XButtonPressedEvent, you may run into
problems if you try to use another type of event. The x_root and y_root fields in the event structure are used to
position the menu appropriately, since these fields indicate the position where the mouse button was pressed. You
could modify these fields to position the menu elsewhere, but we recommend restraint.

In order to actually pop up the menu, we call XtManageChild() on the PopupMenu. Motif treats PopupMenus just
like dialog widgets with respect to their shell parents. Although the visible PopupMenu is a RowColumn widget, it has
an invisible MenuShell parent. As with dialogs, when you call XtManageChild(), the RowColumn checks its
XmNrowColumnType resource to see if it is a PopupMenu. If it is, the widget checks to see if its parent is a
MenuShell and if so, it automatically calls XtPopup() on the MenuShell.

The RowColumn widget has a resource that you can set on PopupMenus called XmNmenuPost, which allows you to
specify an alternate button to post the menu. As of Motif 1.2, if you specify this resource and then simply position and
manage the menu in an event handler, the toolkit takes care of checking the event to make sure it matches the event
description for the XmNmenuPost resource. In earlier releases of Motif, setting this resource could cause the server

16 Menus 16.4.3 Building Popup Menus

465

to hang, so we don't recommend using it unless you are using Motif 1.2.

You may have noticed that the PopupMenu shown in the figure has accelerators associated with it. These accelerators
only take effect if the input focus is in the widget that contains the menu.

The only time you should ever add an event handler to pop up a menu is when you are using a PopupMenu. You
should not attach PulldownMenus or OptionMenus to arbitrary Motif widgets. It is also inappropriate to use a
PopupMenu on a CascadeButton, since it already has a menu associated with it.

16.4.4 Building Option Menus

In this final section on generalized menu creation methods, we examine how to create OptionMenus using the
BuildMenu() function. In this case, the underlying function is XmCreateOptionMenu(), which is another
convenience routine provided by the Motif toolkit. The routine creates a RowColumn widget that manages the Label
and CascadeButton widgets that define the OptionMenu, but we must create the actual PulldownMenu ourselves. The
final version of the BuildMenu() function is shown in the source code

 /* build_option.c −− The final version of BuildMenu() is used to
 * build popup, option, pulldown −and− pullright menus. Menus are
 * defined by declaring an array of MenuItem structures as usual.
 */
 #include <Xm/MainW.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/PanedW.h>
 #include <Xm/RowColumn.h>
 #include <Xm/DrawingA.h>
 #include <Xm/CascadeBG.h>
 #include <Xm/ToggleB.h>
 #include <Xm/ToggleBG.h>
 #include <Xm/PushB.h>
 #include <Xm/PushBG.h>

 typedef struct _menu_item {
 char *label; /* the label for the item */
 WidgetClass *class; /* pushbutton, label, separator... */
 char mnemonic; /* mnemonic; NULL if none */
 char *accelerator; /* accelerator; NULL if none */
 char *accel_text; /* to be converted to compound string */
 void (*callback)(); /* routine to call; NULL if none */
 XtPointer callback_data; /* client_data for callback() */
 struct _menu_item *subitems; /* pullright menu items, if not NULL */
 } MenuItem;

 /* Build popup, option and pulldown menus, depending on the menu_type.
 * It may be XmMENU_PULLDOWN, XmMENU_OPTION or XmMENU_POPUP. Pulldowns
 * return the CascadeButton that pops up the menu. Popups return the menu.
 * Option menus are created, but the RowColumn that acts as the option
 * "area" is returned unmanaged. (The user must manage it.)
 * Pulldown menus are built from cascade buttons, so this function
 * also builds pullright menus. The function also adds the right
 * callback for PushButton or ToggleButton menu items.
 */
 Widget
 BuildMenu(parent, menu_type, menu_title, menu_mnemonic, tear_off, items)
 Widget parent;
 int menu_type;

16 Menus 16.4.4 Building Option Menus

466

 char *menu_title, menu_mnemonic;
 Boolean tear_off;
 MenuItem *items;
 {
 Widget menu, cascade, widget;
 int i;
 XmString str;

 if (menu_type == XmMENU_PULLDOWN || menu_type == XmMENU_OPTION)
 menu = XmCreatePulldownMenu (parent, "_pulldown", NULL, 0);
 else if (menu_type == XmMENU_POPUP)
 menu = XmCreatePopupMenu (parent, "_popup", NULL, 0);
 else {
 XtWarning ("Invalid menu type passed to BuildMenu()");
 return NULL;
 }
 if (tear_off)
 XtVaSetValues (menu, XmNtearOffModel, XmTEAR_OFF_ENABLED, NULL);

 /* Pulldown menus require a cascade button to be made */
 if (menu_type == XmMENU_PULLDOWN) {
 str = XmStringCreateLocalized (menu_title);
 cascade = XtVaCreateManagedWidget (menu_title,
 xmCascadeButtonGadgetClass, parent,
 XmNsubMenuId, menu,
 XmNlabelString, str,
 XmNmnemonic, menu_mnemonic,
 NULL);
 XmStringFree (str);
 }
 else if (menu_type == XmMENU_OPTION) {
 /* Option menus are a special case, but not hard to handle */
 Arg args[5];
 int n = 0;
 str = XmStringCreateLocalized (menu_title);
 XtSetArg (args[n], XmNsubMenuId, menu); n++;
 XtSetArg (args[n], XmNlabelString, str); n++;
 /* This really isn't a cascade, but this is the widget handle
 * we're going to return at the end of the function.
 */
 cascade = XmCreateOptionMenu (parent, menu_title, args, n);
 XmStringFree (str);
 }

 /* Now add the menu items */
 for (i = 0; items[i].label != NULL; i++) {
 /* If subitems exist, create the pull−right menu by calling this
 * function recursively. Since the function returns a cascade
 * button, the widget returned is used..
 */
 if (items[i].subitems)
 if (menu_type == XmMENU_OPTION) {
 XtWarning ("You can't have submenus from option menu items.");
 continue;
 }
 else
 widget = BuildMenu (menu, XmMENU_PULLDOWN, items[i].label,
 items[i].mnemonic, tear_off, items[i].subitems);
 else
 widget = XtVaCreateManagedWidget (items[i].label,
 *items[i].class, menu,

16 Menus 16.4.4 Building Option Menus

467

 NULL);

 /* Whether the item is a real item or a cascade button with a
 * menu, it can still have a mnemonic.
 */
 if (items[i].mnemonic)
 XtVaSetValues (widget, XmNmnemonic, items[i].mnemonic, NULL);

 /* any item can have an accelerator, except cascade menus. But,
 * we don't worry about that; we know better in our declarations.
 */
 if (items[i].accelerator) {
 str = XmStringCreateLocalized (items[i].accel_text);
 XtVaSetValues (widget,
 XmNaccelerator, items[i].accelerator,
 XmNacceleratorText, str,
 NULL);
 XmStringFree (str);
 }

 if (items[i].callback)
 XtAddCallback (widget,
 (items[i].class == &xmToggleButtonWidgetClass ||
 items[i].class == &xmToggleButtonGadgetClass) ?
 XmNvalueChangedCallback : /* ToggleButton class */
 XmNactivateCallback, /* PushButton class */
 items[i].callback, items[i].callback_data);
 }

 /* for popup menus, just return the menu; pulldown menus, return
 * the cascade button; option menus, return the thing returned
 * from XmCreateOptionMenu(). This isn't a menu, or a cascade button!
 */
 return menu_type == XmMENU_POPUP ? menu : cascade;
 }

 MenuItem drawing_shapes[] = {
 { "Lines", &xmPushButtonGadgetClass, 'L', NULL, NULL, 0, 0, NULL },
 { "Circles", &xmPushButtonGadgetClass, 'C', NULL, NULL, 0, 0, NULL },
 { "Squares", &xmPushButtonGadgetClass, 'S', NULL, NULL, 0, 0, NULL },
 NULL,
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, main_w, pane, sw, drawing_a, menu, option_menu;
 void input();
 XtAppContext app;
 XtWidgetGeometry geom;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 main_w = XtVaCreateManagedWidget ("main_w",
 xmMainWindowWidgetClass, toplevel, NULL);

 /* Use a PanedWindow widget as the work area of the main window */

16 Menus 16.4.4 Building Option Menus

468

 pane = XtVaCreateWidget ("pane", xmPanedWindowWidgetClass, main_w, NULL);

 /* create the option menu −− don't forget to manage it. */
 option_menu = BuildMenu (pane, XmMENU_OPTION, "Shapes",
 'S', True, drawing_shapes);
 XtManageChild (option_menu);

 /* Set the OptionMenu so that it can't be resized */
 geom.request_mode = CWHeight;
 XtQueryGeometry (option_menu, NULL, &geom);
 XtVaSetValues (option_menu,
 XmNpaneMinimum, geom.height,
 XmNpaneMaximum, geom.height,
 NULL);

 /* The scrolled window (which contains the drawing area) is a child
 * of the PanedWindow; its sibling, the option menu, cannot be resized,
 * so if the user resizes the toplevel shell, *this* window will resize.
 */
 sw = XtVaCreateManagedWidget ("sw",
 xmScrolledWindowWidgetClass, pane,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);
 /* Create a DrawingArea −− no actual drawing will be done. */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, sw,
 XmNwidth, 500,
 XmNheight, 500,
 NULL);

 XtManageChild (pane);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

There are two particularly interesting features of this program. First, of course, is the modification of the
BuildMenu() function. As the comments in the code indicate, the function now fully supports all of the Motif menu
types. We use XmCreatePulldownMenu() to create the menu pane that is posted from the CascadeButton of the
OptionMenu. This menu pane is attached to the OptionMenu by setting the XmNsubMenuId as usual. As we loop
through the menu items that are to be placed in the menu, we prevent the creation of a pullright menu in an
OptionMenu, as cascading menus are not allowed in OptionMenus.

When BuildMenu() is used to create an OptionMenu, the function returns the RowColumn widget that is returned
by XmCreateOptionMenu(), even though it is not really a CascadeButton as the variable name might indicate.
The call ing function needs the RowColumn widget so that it can manage the OptionMenu by call ing
XtManageChild(). (The call to XtManageChild() might be another automated part of BuildMenu() if you
want to modify it.)

The other interesting feature of the program is the layout of the MainWindow. The MainWindow widget has a single
PanedWindow widget as its child because we wish to retain the vertical stacking relationship between the
OptionMenu and the DrawingArea. Another advantage of using the PanedWindow is that we can set the maximum
and minimum height of each pane. The user can resize the entire window using the window manager, but we don't
want the OptionMenu to change size, so we allow the ScrolledWindow to absorb the size fluctuations.

16 Menus 16.4.4 Building Option Menus

469

16.5 Summary

Menus are basically simple objects that provide the user with access to application functionality. While the simple
menu creation routines are handy for basic prototyping and other simple application constructs, their usefulness is
limited once you begin to develop larger−scale applications.

We have described the design of a general menu creation routine, so it should be clear that you only need two things
to create an arbitrary number of menus: predefined arrays of MenuItem structures and the BuildMenu() function.
Since initializing an array of MenuItem objects is very simple, our method is convenient and also more powerful
than the simple menu creation routines. We have defined our own data type and generalized the routine to build
menus so that you can use and modify these functions however you like, to conform to the needs of your application.

16.6 Exercises

This chapter could go on forever discussing more and more things you can do with menus. However, the goal was to
present you with the fundamental concepts and design considerations behind menus. From this information, you
should be able to teach yourself new techniques that we haven't touched upon. In that spirit, you should be able to do
the following exercises based on the material covered in this chapter.

Create a MainWindow widget that has a MenuBar that contains at least the File, Edit, and Help menus, an
OptionMenu, and a PopupMenu that pops up from a DrawingArea widget. First implement the menus using
the simple menu creation routines, and then implement them using the BuildMenu() function.

•

Initialize a MenuItem structure whose fields are all set to NULL except for the menu items' names, callback
routines, and widget classes, and then write a resource file that generates a usable menu.

•

Modify the MenuItem structure and the BuildMenu routine so that you can specify the initial sensitivity
for menu items.

•

Modify BuildMenu() to recognize when the menu it is about to build is a RadioBox. You may choose to
implement this behavior by passing a new parameter to the function or by examining the children in the
MenuItem list to see if they are ToggleButtons. You will need to modify the MenuItem structure by adding
another Boolean field to allow each element to indicate whether it is a radio button or a plain ToggleButton.
See Chapter 4, The Main Window, for a discussion of RadioBoxes in menus.

•

16 Menus 16.5 Summary

470

17 Interacting With the Window Manager

This chapter provides additional information on the relationship between shell widgets and the Motif window manager
(mwm). It discusses shell widget resources and describes how to use functions in the Motif toolkit to add and modify
window manager protocols.

This chapter provides technical details about how Motif applications can interact with the window manager. It
discusses when and how to interpret special window manager events and client messages, how to set shell resources
that act as hints to the window manager, and how to add protocols for communication between the application and the
window manager. In the course of the discussion, we cover the major features of the X Toolkit Intrinsics' WMShell
widget class, which handles basic window manager communication, and Motif's VendorShell widget, which handles
window manager events that are specific to the Motif window manager (mwm).

The material in this chapter is advanced; you should typically not interfere with the predefined interactions between an
application and the Motif window manager. When you do so, you risk interfering with the uniform look and feel that
is at the heart of a graphical user interface such as Motif. However, the material in this chapter should provide you
with an understanding of some important concepts that may allow you to make your applications more robust. This
chapter also discusses the use of protocols and client messages for window manager communication. These
techniques can be used for communication between instances of the same application or between suites of cooperating
applications.

17.1 Interclient Communication

The X Window System is designed so that any user−interface style can be imposed on the display. The X libraries
(Xlib and Xt) provide the mechanisms for applications to decide for themselves how to display information and how
to react to user−generated actions. It is left up to graphical user interface specifications such as Motif to standardize
most of these decisions. However, in order to preserve a baseline of interoperability, there are certain standards that an
application must conform to if it is to be considered a "good citizen" of the desktop. These standards are referred to as
interclient communication conventions. While X makes no suggestions about the way an application should look or
act, it does have a lot to say about how it interacts with other applications on the user's display.

One such convention is that all applications must negotiate the sizes and positions of their windows with the window
manager, rather than with one another. The window manager is, in essence, the ultimate ruler of the desktop. While it
is mostly benevolent, its primary function is to prevent anarchy on the display. Communication with the window
manager has various forms. Applications can talk directly to the window manager, or the window manager may
initiate a conversation with an application. When the user selects a item from the window menu or issues other
window manager commands, he or she initiates communication between the window manager and the application.
Much of the communication between the window manager and the application is carried on in terms of properties and
protocols.

A property is an arbitrary−length piece of data associated with a window. It is stored on the server identified by a
unique integer value called an Atom. Atoms are used to avoid the overhead of passing property names as
arbitrary−length strings. See Volume One, Xlib Programming Manual, and Volume Four, X Toolkit Intrinsics
Programming Manual, for a detailed discussion of properties and atoms. An application sets properties on its
windows as a way of communicating with the window manager or other applications. Some properties are referred to
as "window manager hints" because the window manager doesn't have to obey them. For example, an application can
specify the preferred size of its top−level window, but the window manager might use this value only in the absence
of any other instructions from the user.

471

A window manager protocol is an agreed−upon procedure for the exchange of messages between the window
manager and an application. Protocols are implemented with ClientMessage events; the window manager sends
an event to the application, and the application takes the appropriate action. For example, a protocol exchange occurs
when the user selects Close from the window menu to close an application window.

There are low−level Xlib routines for setting and getting the value of window properties. However, the various shell
widgets provided by Xt and Motif define resources that access most of the predefined properties of interest in window
manager/application interaction. These resources are the preferred interface to window properties.

The WMShell widget defines many of the generic properties that are used for communication with the window
manager. For example, you can use WMShell resources to specify an icon pixmap and resize increment values. The
VendorShell widget class is defined by Xt as the widget class in which a vendor can define appearance and behavior
resources specific to its own window manager. As such, this widget class is customized by every vendor of
Xt−compatible toolkits. In the case of Motif, the VendorShell class provides resources that control the layout and
operation of the Motif window manager decorations, and it supports the Motif window manager protocols.

You never instantiate WMShell or VendorShell widgets; they exist only as supporting classes for other shells, such as
TopLevelShells, ApplicationShells, and DialogShells. However, you frequently need to set WMShell and
VendorShell resources on other types of shell widgets. Remember that the MenuShell widget is not a subclass of
VendorShell and WMShell, so it does not have the same provisions for window manager interaction. You can use the
XtIsVendorShell() macro defined in <X11/Intrinsic.h>, to determine if a widget is a subclass of VendorShell.
Similarly, the XtIsWMShell() macro indicates whether or not a widget is a subclass of WMShell. Once you have a
handle to a shell widget, you can specify both generic and Motif−resources for it.

17.2 Shell Resources

As discussed in Chapter 3, Overview of the Motif Toolkit, the WMShell widget class handles standard window
manager/application communications as established by the Inter−Client Communications Conventions Manual
(ICCCM). This document, which can be found in Appendix L of Volume Zero, X Protocol Reference Manual,
describes the standards set forth by the X Consortium for all interclient communication. Such conventions are
necessary because the window manager and a client application are two separate programs. Applications and window
managers need to follow these standards to maintain order in the X world.

To give you an idea of the kinds of properties in which the window manager is interested, shows a partial list of
properties that are handled automatically by shells. tab(@), linesize(2); l | l lfCWw(1.5i) | lw(3.5i). Atom@Meaning
_
WM_NAME@T{ The name of the window T} WM_CLASS@T{ The class name of the window T}
WM_NORMAL_HINTS@T{ Information about the size of the window T} WM_ICON_NAME@T{ The name of the
icon for the window T} WM_HINTS@T{ Information about the icon pixmap, icon position, and input model for the
window T}
_ Xlib provides functions for modifying the values of these atoms on a window so that you can change the visual
appearance, size, position, or functionality of the window. See Volume Zero, X Protocol Reference Manual, for
complete details on the properties that can be set on windows; see Volume One, Xlib Programming Manual, for
details on how to set or get these properties. However, the job of the WMShell is to hide this interface from the
programmer by providing resources that accomplish the same tasks. The next few sections describe how most of the
common resources can be used. While we do not cover all of the WMShell resources here, most of the ones we have
omitted are intuitive, so they do not require a great deal of explanation. See the WMShell reference page in
Volume Six B, Motif Reference Manual, for a complete list of resources.

17 Interacting With the Window Manager 17.2 Shell Resources

472

17.2.1 Shell Positions

You can position a shell at a specific location on the screen using the XmNx and XmNy resources. In addition, you can
set the XmNx and XmNy resources of the immediate child of a shell widget to position the shell. This feature exists
because Motif dialogs are designed to make their shell widgets invisible to the programmer. It is typically easier to set
these resources directly on the child of a shell, as you are more likely to have a handle to that widget. The following
code fragment shows how you can position a MessageDialog in the center of the screen:

 Widget dialog, parent;
 Dimension width, height;
 Screen screen = XtScreen (parent);
 Position x, y;

 dialog = XmCreateMessageDialog (parent, "dialog", NULL, 0);

 /* get width and height of dialog */
 XtVaGetValues (dialog,
 XmNwidth, &width,
 XmNheight, &height,
 NULL);

 /* center the dialog on the screen */
 x = (WidthOfScreen (screen) / 2) − (width / 2);
 y = (HeightOfScreen (screen) / 2) − (height / 2);
 XtVaSetValues (dialog,
 XmNx, x,
 XmNy, y,
 NULL);

You can position a dialog in this way because the Motif BulletinBoard widget passes positional information to its
shell parent. See Chapter 5, Introduction to Dialogs, and Chapter 7, Custom Dialogs, for further discussion. In most
cases, you shouldn't be setting the XmNx and XmNy resources for a dialog because it is the job of the window manager
to position shells. The user can also have some say in how placement should be handled. For example, if the user has
set the interactivePlacement resource for mwm to True, he gets to place the window himself when it first
appears. If you set the position of the window, then you are interfering with the positioning method preferred by the
user.

17.2.2 Shell Sizes

In some situations, an application may want to prevent one of its windows from growing or shrinking beyond certain
geometrical limits. For example, an application might want to keep a dialog box from getting so small that some of its
elements are clipped. A paint application might want to restrict its top−level window from growing larger than the size
of its canvas. An application can also constrain the increments by which the user can interactively resize the window.
For example, xterm only allows itself to be resized in character−size increments, where the character size is defined by
the font being used.

The WMShell defines the following resources that can be used to constrain the size of a -window:

 XmNminWidth
 XmNmaxWidth
 XmNminHeight
 XmNmaxHeight
 XmNwidthInc
 XmNheightInc
 XmNbaseWidth

17 Interacting With the Window Manager 17.2.1 Shell Positions

473

 XmNbaseHeight

The XmNminWidth, XmNmaxWidth, XmNminHeight, and XmNmaxHeight resources specify the minimum and
maximum width and height for the shell. The XmNwidthInc and XmNheightInc resources control the pixel
incrementals by which the window changes when it is being resized by the user. When mwm provides visual feedback
during a resize operation, it specifies the width and height in terms of these increments, rather than pixels. The
XmNbaseWidth and XmNbaseHeight resources specify the base values that are used when calculating the
preferred size of the shell.

the source code demonstrates incremental resizing. The application displays a shell widget that contains a PushButton.
When you click on the button, it displays the size of the window in pixels, but when you resize the window, the mwm
feedback window displays the size in terms of XmNwidthInc and XmNheightInc. XtSetLanguageProc() is
only available in X11R5; there is no corresponding function in X11R4.

 /* resize_shell.c −− demonstrate the max and min heights and widths.
 * This program should be run to really see how mwm displays the
 * size of the window as it is resized.
 */
 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 XtAppContext app;
 extern void getsize();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL,
 XmNminWidth, 75,
 XmNminHeight, 25,
 XmNmaxWidth, 150,
 XmNmaxHeight, 100,
 XmNbaseWidth, 5,
 XmNbaseHeight, 5,
 XmNwidthInc, 5,
 XmNheightInc, 5,
 NULL);

 /* Pushbutton's callback prints the dimensions of the shell. */
 button = XtVaCreateManagedWidget ("Print Size",
 xmPushButtonWidgetClass, toplevel, NULL);
 XtAddCallback (button, XmNactivateCallback, getsize, toplevel);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 getsize(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget shell = (Widget) client_data;

17 Interacting With the Window Manager 17.2.1 Shell Positions

474

 Dimension width, height;

 XtVaGetValues (shell,
 XmNwidth, &width,
 XmNheight, &height,
 NULL);
 printf ("Width = %d, Height = %d0, width, height);
 }

In our example, we arbitrarily specify the minimum and maximum extents of the shell. The width and height
increments are each set to five, so the user can only resize the window in five−pixel increments. As the window is
resized, the feedback window displays the size according to these incremental units, rather than using pixel values. If
you run resize_shell, you can press the PushButton to print the size of the shell in pixels and compare that size with
the size reported by the window manager. If you are going to specify the various size resources for a shell, it only
makes sense to hard−code the values as we have done here. If you specify the resources in an app−defaults file, the
user can override the settings, which defeats the whole point of setting them.

The problem with specifying minimum and maximum extents is that most real applications contain many components
whose sizes cannot be computed easily, making it difficult to determine exactly how large or small the window should
be. If the fonts and strings for PushButtons, Labels, and ToggleButtons can be set in a resource file, the equation
becomes far too difficult to calculate before the window is actually created and displayed. Incremental width and
height values are even more difficult to estimate because there are margins, border widths, and other resources to
consider.

However, all is not lost. If you need to constrain the size of an application, you should consider whether the
application's default initial size can be considered either its maximum or minimum size. If so, you can allow the
window to come up using default size and trap for ConfigureNotify events on the shell widget. You can then use
the default width and height reported in that event as your minimum or maximum size, as demonstrated in the source
code XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* set_minimum.c −− demonstrate how to set the minimum size of a
 * window to its initial size. This method is useful if your program
 * is initially displayed at its minimum size, but it would be too
 * difficult to try to calculate ahead of time what the initial size
 * would be.
 */
 #include <Xm/PushB.h>

 void getsize(), configure();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL,
 XmNmaxWidth, 150,
 XmNmaxHeight, 100,
 XmNbaseWidth, 5,
 XmNbaseHeight, 5,
 XmNwidthInc, 5,
 XmNheightInc, 5,

17 Interacting With the Window Manager 17.2.1 Shell Positions

475

 NULL);

 /* Add an event handler to trap the first configure event */
 XtAddEventHandler (toplevel, StructureNotifyMask, False, configure, NULL);

 /* Pushbutton's callback prints the dimensions of the shell. */
 button = XtVaCreateManagedWidget ("Print Size",
 xmPushButtonWidgetClass, toplevel, NULL);
 XtAddCallback (button, XmNactivateCallback, getsize, toplevel);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 void
 getsize(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget shell = (Widget) client_data;
 Dimension width, height;

 XtVaGetValues (shell,
 XmNwidth, &width,
 XmNheight, &height,
 NULL);
 printf ("Width = %d, Height = %d0, width, height);
 }

 void
 configure(shell, client_data, event)
 Widget shell;
 XtPointer client_data;
 XEvent *event;
 {
 XConfigureEvent *cevent = (XConfigureEvent *) event;

 if (cevent−>type != ConfigureNotify)
 return;
 printf ("Width = %d, Height = %d0, cevent−>width, cevent−>height);
 XtVaSetValues (shell,
 XmNminWidth, cevent−>width,
 XmNminHeight, cevent−>height,
 NULL);
 XtRemoveEventHandler (shell, StructureNotifyMask, False, configure, NULL);
 }

We use XtAddEventHandler() to add an event handler to the top−level shell for events that satisfy the
StructureNotifyMask, which includes ConfigureNotify events indicating the window's dimensions. The
configure() function is called when the window is initially sized, so we can use the width and height fields of
the XConfigureEvent structure as values for the XmNminWidth and XmNminHeight resources for the shell.
To prevent the event handler from being called each time the window is resized, the event handler removes itself
using XtRemoveEventHandler().

One problem with this technique occurs when the user has the interactivePlacement resource for mwm set to
True. This specification allows the user to set the initial size and position of an application. However, once the user
sets the initial size, she will never be able to make the window any smaller. Although interactive placement adheres to
the constraints we have set, it cannot enforce a minimum size because we have not set one. Unfortunately, there is no

17 Interacting With the Window Manager 17.2.1 Shell Positions

476

way to allow interactive placement without allowing the user to resize the window.

The Shell widget class defines the XmNallowShellResize resource that is inherited by all of its subclasses. This
resource specifies whether or not the shell allows itself to be resized when its widget children are resized, but it does
not affect whether the user can resize the window. For example, if the number of items in a List widget grows, the
widget tries to increase its own size, which causes a rippling effect that eventually reaches the top−level window. If
XmNallowShellResize is True for this shell, it grows, subject to the window manager's approval, of course.
However, if the resource is False, the shell does not even consult the window manager because it knows that it
doesn't want to resize. This resource only prevents the shell from resizing after it has been realized, so it does not
interfere with the initial sizing of the shell.

17.2.3 The Shell's Icon

Shells can be in one of three states: normal, iconic, or withdrawn. When a shell is in its normal state, the user can
interact with the user−interface elements in the expected way. If a shell is withdrawn, it is still active, but the user
cannot interact with it directly. When a shell is iconic, its window is not mapped to the screen, but instead it displays a
smaller image, or icon, that represents the entire window. The application is still running in this state, but the program
does not expect any user interaction. The icon window usually displays a visual image that suggests some connection
to the window from which it came. Some window managers, like mwm, also allow a label to be attached to the icon's
window.

The XmNiconPixmap resource specifies the pixmap that is used when an application is in an iconic state. the source
code shows a simple application that sets its icon pixmap. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4.

 #include <Xm/Xm.h>
 #include <X11/bitmaps/mailfull>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;
 Pixmap bitmap;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL,
 XmNwidth, 100, /* size is irrelevant −− toplevel is iconified */
 XmNheight, 100, /* it just can't be 0, or Xt complains */
 XmNiconic, True,
 NULL);

 bitmap = XCreatePixmapFromBitmapData (XtDisplay (toplevel),
 RootWindowOfScreen (XtScreen (toplevel)),
 mailfull_bits, mailfull_width, mailfull_height, 1, 0, 1);

 XtVaSetValues (toplevel,
 XmNiconPixmap, bitmap,
 NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

17 Interacting With the Window Manager 17.2.3 The Shell's Icon

477

The program creates an ApplicationShell and sets the XmNiconic resource to True to cause the application to
appear iconified. The bitmap variable is initialized to contain the bitmap described by the file
/usr/include/X11/bitmaps/mailfull, and the XmNiconPixmap resource for the shell is set to the bitmap.

When we set the XmNiconPixmap and XmNiconic resources, we are actually sending hints to the window
manager that we would like the icon window to display the given pixmap and that we would like to be in the iconic
state. These requests are called hints because the window manager does not have to comply with the requests.
However, if the icon pixmap or iconic state is ignored, it is most likely a bug in the window manager, or an
incomplete implementation of one, which is often the case for older versions of many window managers, including
mwm (Version 1.0).

One workaround for a window manager that ignores the icon pixmap is to set the XmNiconWindow resource. This
resource sets the entire icon window, rather than just its image. In environments where the user may not be running
the most up−to−date window manager, it may be best to create the icon window directly and then paint an image in
that window. the source code contains a routine that demonstrates this technique. This routine creates a shell's icon
window and can be called repeatedly to dynamically update its image.

 void
 SetIconWindow(shell, image)
 Widget shell;
 Pixmap image;
 {
 Window window, root;
 unsigned int width, height, border_width, depth;
 int x, y;
 Display *dpy = XtDisplay (shell);

 /* Get the current icon window associated with the shell */
 XtVaGetValues (shell, XmNiconWindow, &window, NULL);

 if (!window) {
 /* If there is no window associated with the shell, create one.
 * Make it at least as big as the pixmap we're
 * going to use. The icon window only needs to be a simple window.
 */
 if (!XGetGeometry (dpy, image, &root, &x, &y,
 &width, &height, &border_width, &depth) ||
 !(window = XCreateSimpleWindow (dpy, root, 0, 0, width, height,
 (unsigned)0, CopyFromParent, CopyFromParent))) {
 XtVaSetValues (shell, XmNiconPixmap, image, NULL);
 return;
 }
 /* Now that the window is created, set it ... */
 XtVaSetValues (shell, XmNiconWindow, window, NULL);
 }
 /* Set the window's background pixmap to be the image. */
 XSetWindowBackgroundPixmap (dpy, window, image);
 /* cause a redisplay of this window, if exposed */
 XClearWindow (dpy, window);
 }

SetIconWindow() takes two parameters: a shell and an image. If the icon window for shell has not yet been
set, we create a window using XCreateSimpleWindow(). The size of the window is set to the size of the image,
which is retrieved with XGetGeometry(). This function is used to get the size of the image, but it can be used on
windows as well. In the unlikely event that one of these routines fails, we fall back to using XmNiconPixmap to
specify the image and hope the window manager understands it. Otherwise, we set the XmNiconWindow resource to

17 Interacting With the Window Manager 17.2.3 The Shell's Icon

478

the window we just created.

We use the image pixmap to set the window's background pixmap, which saves us the hassle of rendering it using
X C o p y A r e a () o r X C o p y P l a n e () . I f t h e s h e l l w i d g e t a l r e a d y h a s a n i c o n w i n d o w ,
XSetWindowBackgroundPixmap() is still called so that the specified image is displayed. The final call to
XClearWindow() causes the icon to be repainted. This call isn't necessary if the window has just been created, but
it is necessary if the window is merely updated with a new image.

The XmNiconX and XmNiconY resources can be used to set the position of the icon window on the screen.
However, you probably shouldn't set these resources arbitrarily without a really good reason. Most window managers
deal with positioning icon windows, or leave the positioning for the user to specify, so it is best not to interfere.

The XmNtitle and XmNiconName resources specify the titles used for the application window and the icon
window, respectively. These resources are set to regular character strings, not compound strings. These values are
typically both set to the name of the program, argv[0], by default. The values also affect the WM_NAME property for
the top−level window, which is important for session managers and other applications that monitor all top−level
windows on a desktop. These programs look for the WM_NAME property to provide menus or buttons that allow the
user to control the desktop in a GUI−like fashion, rather than through tty−like shells such as xterm and csh. It is best
to let the user set the XmNtitle and XmNiconName resources, especially since Xt provides command−line options
such as −name that can be used to set the title of an application.

17.3 VendorShell Resources

The VendorShell widget class is subclassed from WMShell, so all of the shell widget classes subclassed from
VendorShell can use the resources described in the previous section. All of the Motif shells except for MenuShell are
subclassed from VendorShell. The VendorShell is designed to be implemented by individual vendors so that they can
define resources specific to their own window manager. For example, mwm has some window manager features that
are not found in other window managers. You need to be familiar with the Motif window manager in order to
understand the discussion that follows.

17.3.1 Window Manager Decorations

The frame around an application's main window belongs to the window manager; the controls and window menu in it
are not part of the application. The mwm window manager decorations for an application window are shown in the
figure.

17 Interacting With the Window Manager 17.3 VendorShell Resources

479

Motif window manager decorations

The user can set mwm resources to control which of these items are available for particular windows on the desktop.
Also, mwm automatically controls which elements are visible for certain windows, in order to maintain compatibility
with the Motif Style Guide. As such, we discourage you from modifiying the decorations that are available on specific
windows. Nevertheless, the VendorShell does provide the XmNmwmDecorations resource for use in exceptional
cases. The resource can be set to an integer value that is made up of any of the following values:

MWM_DECOR_BORDER

This value enables the window manager borders for the frame. These borders are decorative only; they are not
resize handles. Except for non−rectangular windows or programs like a clock, all Motif−style applications
should have decorative borders.

MWM_DECOR_RESIZEH

This value enables the resize handles for the frame. If the resize handles are displayed, the decorative borders
are forced to be displayed.

MWM_DECOR_TITLE

This value enables the title bar for the window.
MWM_DECOR_MENU

This value enables the window menu button on the title bar. If this item is on, the title bar is forced to be
displayed.

MWM_DECOR_MAXIMIZE

This value makes the maximize button visible. When this button is selected, the window is expanded to the
largest size possible. The size of the window is constrained by the values for XmNmaxWidth and
XmNmaxHeight. If these resources are not set, the window is expanded to the size of the screen.

MWM_DECOR_MINIMIZE

This value makes the minimize button visible. This button does not shrink the window, but rather iconifies it.
This item is turned off by default for TransientShell widgets (dialogs), since they cannot be iconified

17 Interacting With the Window Manager 17.3 VendorShell Resources

480

separately from their parent shells.
MWM_DECOR_ALL

This value can be used to enable all of the window manager decorations.
All of these values are defined in <Xm/MwmUtil.h>, which must be included before any of them may be used.
The values are bitmasks, so they are meant to be ORed together. For example, if you have a customized dialog
that you do not want to have resize handles, you can turn them off as shown in the following code fragment:

 Widget dialog_shell;
 int decor;

 XtVaGetValues (dialog_shell, XmNmwmDecorations, &decor, NULL);
 decor &= ~MWM_DECOR_RESIZEH;
 XtVaSetValues (dialog_shell, XmNmwmDecorations, decor, NULL);

While the programmatic interface is available to make changes in the form described above, you really don't
have to resort to this level of complexity. If you want to do something that is allowed by the Motif Style
Guide, chances are that the Motif toolkit provides a more convenient way of doing it. For example, you can
turn off the resize handles for a Motif dialog by setting the XmNnoResize resource to True, as shown in the
following code:

 Widget dialog;
 Arg args[5];
 int n = 0;

 XtSetArg (args[n], XmNnoResize, True); n++;
 dialog = XmCreateFileSelectionDialog (parent, "dialog", args, n);

If Motif doesn't provide a convenience routine or a resource for doing what you want, chances are good that you
shouldn't be doing it. On the other hand, you don't have to use the convenience method; if it seems appropriate, you
can use the methods described here.

17.3.2 Window Menu Functions

The contents of the window menu can be modified using the XmNmwmFunctions resource defined by the
VendorShell. This resource acts like XmNmwmDecorations, in that the value is an integer that may be set to one or
more of the following values:

MWM_FUNC_RESIZE

This value enables the Size item in the window menu. If this value isn't set, the resize handles for the window
manager frame are disabled.

MWM_FUNC_MOVE

This value enables the Move menu item. Disabling this item does not affect the window manager frame
decorations for the window.

MWM_FUNC_MINIMIZE

This value enables the Minimize menu item. Disabling this item causes the minimize button to be disabled as
well.

MWM_FUNC_MAXIMIZE

This value enables the Maximize menu item. Disabling this item causes the corresponding window frame

17 Interacting With the Window Manager 17.3.2 Window Menu Functions

481

decoration to be disabled.
MWM_FUNC_CLOSE

This value enables the Close menu item. Disabling this item does not affect the window manager decorations
for the window.

MWM_FUNC_ALL

This value causes all of the standard items in the menu to be displayed and all the default functionality of the
window manager to work.
It is important to remember that the user can specify these window menu functions, as well as new functions,
in an .mwmrc file. (See Volume Three, X Window System User's Guide, Motif Edition.) While your settings
override any user specifications, you should only modify the window menu functions if it is absolutely
necessary. A common misuse of this functionality is to disable the Close button. We strongly discourage
disabling this button, as users expect it to be in the window menu. Rather than disable the button, you should
link its functionality to another control in your application that has the same meaning. For example, if you are
using a standard Motif dialog that provides OK and Cancel buttons, you can link the Close menu item to the
Cancel button. We explain how to connect the functionality of these components in the next section.

17.4 Handling Window Manager Messages

A protocol is a set of rules that governs communication and data transfer. When the window manager sends a message
to an application that follows a predefined protocol, the client application should respond accordingly. The ICCCM
defines a number of protocols for window managers and applications to follow. One such protocol involves the Close
item in the window menu. When the user selects this item, the window manager sends the application a protocol
message, and the application must comply. The message is delivered through the normal event−handling mechanisms
provided by Xlib. The event that corresponds to this message is called a ClientMessage event. The message itself
is an Atom, which is merely a unique integer that is used as an identifier. (The actual value is unimportant, since you
only need to reference the value through the preprocessor macro, WM_PROTOCOLS.) The protocol itself takes the
form of other atoms, depending on the nature of the message. lists the atoms that are used as values for
WM_PROTOCOLS client messages. Although this table is currently complete, it is expected to grow in future editions
of the ICCCM. tab(@), linesize(2); l | l lfCW | l. Atom@Meaning
_
WM_TAKE_FOCUS@The window is getting the input focus. WM_DELETE_WINDOW@The window is about to
be deleted. WM_SAVE_YOURSELF@The application should save its internal state.
_ the source code demonstrates how to use the WM_DELETE_YOURSELF protocol to link the Close item on the
window menu with the Cancel button in a dialog. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* wm_delete.c −− demonstrate how to bind the Close button in the
 * window manager's system menu to the "cancel" button in a dialog.
 */
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>
 #include <Xm/Protocols.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;

17 Interacting With the Window Manager17.4 Handling Window Manager Messages

482

 XtAppContext app;
 void activate();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 button = XtCreateManagedWidget ("Push Me", xmPushButtonWidgetClass,
 toplevel, NULL, 0);
 XtAddCallback (button, XmNactivateCallback, activate, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* Create and popup an ErrorDialog indicating that the user may have
 * done something wrong. The dialog contains an OK and Cancel button,
 * but he can still choose the Close button in the titlebar.
 */
 void
 activate(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog, shell;
 void response();
 XmString t = XmStringCreateLocalized ("Warning: Delete All Files?");
 Atom WM_DELETE_WINDOW;
 Arg args[5];
 int n;

 /* Make sure the VendorShell associated with the dialog does not
 * react to the user's selection of the Close system menu item.
 */
 n = 0;
 XtSetArg (args[n], XmNmessageString, t); n++;
 XtSetArg (args[n], XmNdeleteResponse, XmDO_NOTHING); n++;
 dialog = XmCreateWarningDialog (w, "notice", args, n);
 XmStringFree (t);

 /* add callback routines for ok and cancel −− desensitize help */
 XtAddCallback (dialog, XmNokCallback, response, NULL);
 XtAddCallback (dialog, XmNcancelCallback, response, NULL);
 XtSetSensitive (XmMessageBoxGetChild (dialog,
 XmDIALOG_HELP_BUTTON), False);

 XtManageChild (dialog);

 /* Add a callback for the WM_DELETE_WINDOW protocol */
 shell = XtParent (dialog);
 WM_DELETE_WINDOW = XmInternAtom
 (XtDisplay (w), "WM_DELETE_WINDOW", False);
 XmAddWMProtocolCallback (shell, WM_DELETE_WINDOW, response, dialog);
 }

 /* callback for the OK and Cancel buttons in the dialog −− may also be
 * called from the WM_DELETE_WINDOW protocol message sent by the wm.
 */
 void

17 Interacting With the Window Manager17.4 Handling Window Manager Messages

483

 response (widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
 Widget dialog;

 if (cbs−>reason == XmCR_OK)
 puts ("Yes");
 else
 puts ("No");

 if (cbs−>reason == XmCR_PROTOCOLS)
 /* we passed the dialog as client data for the protocol callback */
 dialog = (Widget) client_data;
 else
 dialog = widget;

 XtDestroyWidget (dialog);
 }

When you run the application and click on the button, a dialog is displayed. All the application does is print "Yes" or
"No" to standard output based on whether the OK or Cancel button is pressed. However, if you select Close from the
window menu for the dialog, the dialog disappears, and the "No" message is printed.

When the user selects the Close item on the window menu, the application is sent a ClientMessage event by the
window manager indicating that the window is about to be deleted. The value associated with the WM_PROTOCOLS
message is WM_DELETE_WINDOW. The application is now responsible for complying with the protocol in some way.

At the highest level of abstraction, the VendorShell resource XmNdeleteResponse can be used to control what the
application does in response to the user's selection of the Close button. The default behavior for a dialog is that the
window is dismissed; the value XmUNMAP is used, and the window is unmapped from the screen. By setting
XmNdeleteReponse to XmDESTROY, the window is destroyed; this value is the default for ApplicationShells.
However, if the resource is set to XmDO_NOTHING, the application declares that it is going to handle the action itself.

In the source code we use this value to handle the WM_DELETE_WINDOW protocol ourselves by setting up a callback
routine that is called whenever the protocol is sent. But before we can set up the callback, we have to get the atom
associated with the WM_DELETE_WINDOW protocol. We retrieve the atom using XmInternAtom(), which takes
the following form:

 Atom
 XmInternAtom(display, atom_name, dont_create)
 Display *display;
 char *atom_name;
 Boolean dont_create;

If the atom name described by the string atom_name exists, then the Atom is returned. If it does not exist and if
dont_create is True, the function returns None. Otherwise, the routine creates and returns the atom. This
function is identical to XInternAtom(), with the exception that the Motif version maintains an internal cache of
previously−accessed atoms. Since creating and returning atoms causes a round trip to the server, it is a nice
performance improvement to have that cache available for frequently−accessed atoms.

Once we have the protocol atom, we can add a callback routine to respond to the client message event generated by
that protocol. The function XmAddWMProtocolCallback() is used to install a callback routine invoked

17 Interacting With the Window Manager17.4 Handling Window Manager Messages

484

whenever the window manager sends a WM_PROTOCOLS client message to the application. If the protocol sent in the
client message matches the protocol passed to XmAddWMProtocolCallback(), the associated function is called.
In the source code we use the response() routine as the callback for the dialog buttons and the protocol. As a
result, the Close item invokes the same callback as the OK and Cancel buttons.

The form of this callback routine is the same as any other Motif callback. The final parameter is a Motif−defined
callback structure of some kind, where the reason field specifies why the callback was called. This field is provided
because the same callback function may be invoked by more than one widget. In our example, the response()
function's callback structure may have one of three different values for reason: XmCR_OK for the OK button,
XmCR_CANCEL for the Cancel button, or XmCR_PROTOCOLS for the Close button in the window menu. In Motif
1.1, XmCR_PROTOCOLS was not publicly defined, but this problem has been fixed in Motif 1.2. When the callback is
invoked for the protocol message, the event field of the callback structure is an XClientMessageEvent.

The widget parameter passed to response() also varies depending on whether the routine is called from the
dialog or from the Close button. When either OK or Cancel is pressed, the widget is the dialog itself. But the protocol
callback routines are really processed by special protocol widgets that are attached to VendorShells. A shell can
actually have any number of widget children, as long as only one of them is managed at a time. In the case of the
Motif VendorShell, these other widgets are not managed but are used to process and manage protocols that are
exchanged between the window manager and the application. When the protocol callback is invoked, the widget
field is one of the special widgets, but this widget has no intrinsic meaning, so it can be ignored. We know that the
activation of the WM_DELETE_WINDOW protocol causes a protocol widget to be passed as the widget parameter.
Therefore, we pass a handle to the dialog widget as the client data to XmAddWMProtocolCallback() so that we
have access to the dialog.

The purpose, of course, is to destroy the window, but our function could just as easily veto the operation and render
the Close button inoperable. However, this technique is really not appropriate, as users expect to be able to use the
Close button to remove a window. If the Close button is not going to unmap the window for some good reason, like
an error, you should report the error in another dialog. If you are going to modify the default behavior of standard
user−interface controls, you should keep the user informed about what you are doing.

17.4.1 Adding New Protocols

In general, you can attach a callback routine to any of the published protocols using the mechanisms we just
described. You may also assign new protocols to send yourself special messages that are pertinent only to your
application, as protocol messages can be passed from application to application, not just between the window manager
and other clients. Handling arbitrary protocols is basically a matter of following these simple steps:

Create an atom or retrieve one from the X server using XmInternAtom().•
Register the atom on the shell with XmAddWMProtocols(), so the event−handling mechanism can
recognize it if it should arrive.

•

Install a callback routine that is invoked when the protocol is sent to the application using
XmAddWMProtocolCallback().

•

For the case of WM_DELETE_WINDOW, the second step has already been taken care of by the VendorShell, since it is
an established and standardized ICCCM protocol. The VendorShell has already registered interest in the protocol so it
can react to it in the method described by its XmNdeleteResponse resource. However, other protocols
(customized or not) may not be registered. Since it doesn't hurt to register a protocol with a window more than once,
it's always a good practice to register the protocol using XmAddWMProtocols(), which takes the following form:

 void
 XmAddWMProtocols(shell, protocols, num_protocols)

17 Interacting With the Window Manager 17.4.1 Adding New Protocols

485

 Widget shell;
 Atom *protocols;
 int num_protocols;

This function takes a list of protocols, so you can use it to add as many protocols as you like at one time.

17.4.2 Saving Application State

A session manager is an application that acts something like a window manager. However, rather than controlling
only the windows on a screen, it monitors the actual applications running on that screen. Frequently, session managers
allow the user to start, terminate, or even restart any program automatically, through a variety of interface controls.
Session managers may even cause a program to "sleep" by terminating all its keyboard and mouse input, so as far as
the program is concerned, the user is just not interacting with it.

At the moment, there are not many full session managers available, so much of the possible functionality is uncharted.
This section discusses one aspect of proposed session manager behavior and how it might be implemented. This
behavior concerns the ability of an application running under the session manager to restart itself at the point where it
left off in a previous session.

If the session manager decides that it might terminate (which might result in the entire X connection terminating), it
may send a request to all its applications to save their internal state so they can be restarted later. In this case, the
session manager sends a WM_SAVE_YOURSELF protocol message. According to the ICCCM, client applications that
can save their current state and restart from that state should register the atom WM_SAVE_YOURSELF on the
WM_PROTOCOLS property on one of their top−level windows.

The ICCCM states that after sending the WM_SAVE_YOURSELF message to the application, the session manager
waits until the program updates its WM_COMMAND property on the same window that received the protocol message.
The application is not permitted to interact with the user in any way at this time. You cannot prompt for filenames or
ask if the user wants to save state. The callback routine must save its current state somehow, possibly in a predefined
file that can be made known to the user through documentation, rather than a run−time message. It must then update
the WM_COMMAND property to reflect the parameters that started the program, as well as any additional parameters
that might be required to restart it.

For example, say your application is called wm_save and you want to be able to restart it from a previously−saved file.
In this case, your application might parse the following command−line option:

 % wm_save −restart filename

the source code contains a code fragment that demonstrates how you might implement this functionality.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.

 /* wm_save.c −− demonstrate how to save the state of an application
 * from a WM_SAVE_YOURSELF session manager protocol. This is not a
 * real program −− just a template.
 */
 #include <Xm/Xm.h>
 #include <Xm/Protocols.h>
 #include <stdio.h>

 /* save the original argc and argv for possible WM_SAVE_YOURSELF messages */
 int save_argc;
 char **save_argv;

17 Interacting With the Window Manager 17.4.2 Saving Application State

486

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;
 Atom WM_SAVE_YOURSELF;
 void save_state();
 char *restart_file;
 int i;

 /* save argc and argv values */
 save_argv = (char **) XtMalloc (argc * sizeof(char *));
 for (i = save_argc = 0; i < argc; i++)
 /* we don't need to save old −restart options */
 if (!strcmp (argv[i], "−restart"))
 i++; /* next arg is filename */
 else
 save_argv[save_argc++] =
 strcpy (XtMalloc (strlen(argv[i]) + 1), argv[i]);

 XtSetLanguageProc (NULL, NULL, NULL);

 /* initialize toolkit normally; argv has its Xt−specific args stripped */
 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL,
 XmNwidth, 100,
 XmNheight, 100,
 NULL);

 /* get the WM_SAVE_YOURSELF protocol atom and register it with the
 * toplevel window's WM_PROTOCOLS property. Also add a callback.
 */
 WM_SAVE_YOURSELF =
 XmInternAtom (XtDisplay (toplevel), "WM_SAVE_YOURSELF", False);
 XmAddWMProtocols (toplevel, &WM_SAVE_YOURSELF, 1);
 XmAddWMProtocolCallback (toplevel, WM_SAVE_YOURSELF,
 save_state, toplevel);

 /* create widgets... */

 /* now check to see if we are restarting from a previously run state */
 for (i = 0; i < argc; i++) {
 if (!strcmp (argv[i], "−restart")) {
 /* restarting from a previously saved state */
 restart_file = argv[++1];
 }

 /* possibly process other args here, too */
 }

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* called if WM_SAVE_YOURSELF client message was sent... */
 void
 save_state(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;

17 Interacting With the Window Manager 17.4.2 Saving Application State

487

 {
 Widget toplevel = (Widget) client_data;
 extern char *SaveStateAndReturnFileName(); /* hypothetical function */
 char *filename = SaveStateAndReturnFileName ();
 puts("save_state()");

 save_argv = (char **) XtRealloc (save_argv,
 (save_argc+2) * sizeof (char *));

 save_argv[save_argc++] = "−restart";
 save_argv[save_argc++] = filename;

 XSetCommand (XtDisplay (toplevel), XtWindow (toplevel),
 save_argv, save_argc); /* notice the order of these args! */
 }

This program registers the WM_SAVE_YOURSELF protocol using XmAddWMProtocols() before it specifies the
callback routine. If the session manager sends a WM_SAVE_YOURSELF message to this program then the
save_state() function is called, which causes the program to save its internal state using the function
SaveStateAndReturnFileName(). This is a hypothetical function that you would write yourself to save the
state of the program and return the filename that contains the state information. The callback routine also adds the
−restart flag and the new filename to the saved argv from the beginning of the program. The function
XSetCommand() is used to set the WM_COMMAND property on the window associated with the top−level shell,
which fulfills the program's obligation to the session manager.

For more information about session managers and the save−yourself communication protocol, see Volume Zero, X
Protocol Reference Manual. For more details on XSetCommand() and other Xlib−based functions that set and get
window manager properties on top−level windows, see Volume One, Xlib Programming Manual, and Volume Two,
Xlib Reference Manual.

17.5 Customized Protocols

The previous section demonstrated how similar one protocol message is to the next in the way they are added to a
program. Adding a completely new protocol is not difficult either. The only changes we have to make are those that
would otherwise interfere with the standard protocols and properties that are registered with the X protocol and
ICCCM. To avoid conflicts, the convention is to begin the name of nonstandard atoms and window properties with at
least an underscore, and possibly a more detailed prefix that identifies the atom as a private protocol or property.
Accordingly, Motif provides the property _MOTIF_WM_MESSAGES as a private atom specifically for Motif−based
applications that wish to send private messages to themselves or one another. Private does not mean that no one else
can see the messages; it just implies that the protocol is not publicly available for other third−party applications to use,
so don't expect other programs on the desktop to participate in the protocol.

the source code demonstrates how to register your own protocol with the shell and set up a callback routine that is
invoked when that protocol is delivered. Like the source code this program is a skeletal frame only; it does not have
any real functionality. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in
X11R4.

 /* wm_protocol.c −− demonstrate how to add your own protocol to a
 * shell. The nature of the protocol isn't important; however, it
 * must be registered with the _MOTIF_WM_MESSAGES property on the
 * shell. We also add a menu item to the window manager frame's
 * window menu to allow the user to activate the protocol, if desired.
 */
 #include <Xm/Xm.h>

17 Interacting With the Window Manager 17.5 Customized Protocols

488

 #include <Xm/Protocols.h>
 #include <stdio.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;
 Atom MOTIF_MSGS, MY_PROTOCOL;
 void my_proto_callback();
 char buf[64];

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL,
 XmNwidth, 100,
 XmNheight, 100,
 NULL);

 /* get the MOTIF_MSGS and MY_PROTOCOL atoms */
 MY_PROTOCOL = XmInternAtom (XtDisplay (toplevel),
 "_MY_PROTOCOL", False);
 MOTIF_MSGS = XmInternAtom (XtDisplay (toplevel),
 "_MOTIF_WM_MESSAGES", False);

 /* Add MY_PROTOCOL to the _MOTIF_WM_MESSAGES VendorShell−defined
 * property on the shell. Add a callback for this protocol.
 */
 XmAddProtocols (toplevel, MOTIF_MSGS, &MY_PROTOCOL, 1);
 XmAddProtocolCallback (toplevel,
 MOTIF_MSGS, MY_PROTOCOL, my_proto_callback, NULL);

 /* allow the user to activate the protocol through the window manager's
 * window menu on the shell.
 */
 sprintf (buf, "MyProtocol _P Ctrl<Key>P f.send_msg %d", MY_PROTOCOL);
 XtVaSetValues (toplevel, XmNmwmMenu, buf, NULL);

 /* create widgets... */

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* called if _MY_PROTOCOL was activated, a client message was sent... */
 void
 my_proto_callback(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 puts ("My protocol got activated!");
 }

This program is set up to receive the protocol _MY_PROTOCOL. If the message is sent, the function
my_proto_callback() is called, passing the appropriate client data and callback structure as before. However,
since we just made up the protocol, the only way it can be delivered is by the window manager if (and only if) the user
selects the new menu item that we attached to the window menu, as shown in the figure.

17 Interacting With the Window Manager 17.5 Customized Protocols

489

Output of wm_protocol.c

The menu item is added using the XmNmwmMenu resource in the call to XtVaSetValues(). The syntax of the
value for the string used by the XmNmwmMenu resource is described completely in the mwm documentation in
Volume Six B, Motif Reference Manual. Briefly, each of the arguments refers to a single entry in the menu that is
always added after the last standard protocol in the menu, which is usually the Close button. The syntax for the
resource is:

 label [mnemonic] [accelerator] function

Only the label and the window manager function (mwm−specific) are required. The label is always first; if a space
needs to be embedded in the label, precede it by two backslashes. The next token is parsed as a mnemonic if it starts
with an underscore. If an accelerator is given, the Motif toolkit parses this string and creates a corresponding
accelerator text string for the menu. Finally, the parser looks for a window manager function as described by the mwm
documentation. These include f.move, f.raise and f.send_msg, for example. We use f.send_msg to tell
mwm to send the specified client message to the application.

It is possible to deactivate a protocol on the window menu using XmDeactivateWMProtocol(). Deactivation
makes a protocol insensitive (unselectable). Protocols may be reactivated by XmActivateWMProtocol(); new
pro toco ls a re au tomat ica l l y ac t i va ted when they a re added. XmAct iva tePro toco l () and
XmDeactivateProtocol() perform an analogous function for non−window manager protocols.

But what can you do with your own private protocol? These protocols can come in handy if you want to attach any
application−specific functionality to a window so that it can communicate with similar applications on the desktop.
For example, larger application suites that contain multiple programs might need to communicate with one another
through this protocol. If a suite of painting, drawing, and desktop publishing products wanted to pass document
information to one another, they could pass messages using their own protocol. Whether or not you allow the window
manager (and thus the user) to participate in the protocol can be controlled by whether you make the protocol handle
available in the window menu, as shown in the figure.

Advanced work with protocols is getting beyond the scope of this book. Further progress requires Xlib−level code that
you can research on your own by reading portions of Volume One, Xlib Programming Manual. However, if you are
interested in providing this kind of functionality, you might consider the following design approach:

When an application is interested in communicating via a private protocol, it should place a property on its
top−level windows that express this interest. For example, let's call this atom _MYAPP_CLIENT_PROP. The
atom can be added to the WM_PROTOCOLS property already on the window using XmAddWMProtocol(),

•

17 Interacting With the Window Manager 17.5 Customized Protocols

490

just as we did earlier. An application can also choose to use XChangeProperty() to actually use the atom
as the property itself; XChangeProperty() adds a new property to a window's list of existing properties.
An application interested in seeking out other windows that have expressed interest in
_MYAPP_CLIENT_PROP can call XQueryTree() to start at the root window and search all of its
immediate children for those windows that have that property. The function XGetWindowProperty() can
be used to test for the existence of the property itself.

•

When an application finds a window that contains the property, it can use XSendEvent() to send an
XClientMessageEvent to that window. When sending a client message, the application can either do
what the Motif toolkit does and send a WM_PROTOCOLS message, or it can just send the
_MYAPP_CLIENT_PROP atom itself. If the program uses the first technique, the data.l[0] field of the
XClientMessageEvent data structure contains the value WM_PROTOCOLS, and the the data.l[1]
field contains _MYAPP_CLIENT_PROP. If the receiving window is part of a Motif application that has
registered a callback function for this protocol, the function is invoked. Whether or not the receiving
application is a Motif application, it can set up its own event handler to trap for the client message.

•

If the sending application wishes to send any additional data to the receiving application, it should either add
or replace the receiving window's _MYAPP_CLIENT_PROP property and upgrade or change its value.

•

Remember, since this is your own private protocol, you can do whatever you like in the correspondence process. If
you wanted, you could specify that the receiving window would always test for a newly−defined property on its
window, and if that property is set, obtain further information from the primary selection. Using this process, you
could write your own data transfer methods. However, whatever you come up with is strictly private, so no other
application can participate in your protocol unless you tell the developer of the other application what to do.

You can place whatever information you like in properties: a string, an integer, or a data structure. Just make sure that
it's not per−process information like a file descriptor. This type of data cannot be shared among separate processes.
You should also try not to make the information host−specific because you are not guaranteed that both clients are
going to be running on the same computer, although they will be running on the same server. It is also a good idea to
avoid protocols that involve continuous chatting between programs. Protocols are not a good method for doing
interactive talk programs because the network can't handle that kind of traffic. To do this kind of communication, it is
typically better to establish your own TCP or STREAM connection between the two applications. You should attempt
to be as network−portable as possible, but this is your own personal protocol, so you can do anything you like.

17.6 Summary

The best applications can still function adequately without a window manager. For portability reasons, you should not
assume that the user is running mwm. Except for dealing with WM_DELETE_WINDOW protocol messages to handle the
window menu's Close button, you should avoid interfering with the interaction between your applications and the
window manager. Despite this advice, many developers believe they know better and attempt to redesign Motif on a
per−application basis. If you attempt to go this route, be aware of the guidelines provided by the Motif Style Guide and
the ICCCM.

Client messages can be an extremely powerful tool for a large application with many top−level windows that need to
interact with each other. They can also be useful for larger groups of similar applications by the same vendor that need
to talk to one another. The secret to making a private protocol work is establishing a good communication channel and
being able to transfer a lot of information without having to transfer a lot of data.

17.7 Exercises

These exercises are designed to help you understand the material that was presented in this chapter.

17 Interacting With the Window Manager 17.6 Summary

491

Write a program that always places its error dialogs in the center of the screen.•
Whenever a shell changes from normal state to iconic state, the window manager changes the shell's
WM_STATE property. Write a program that gets the PropertyNotify event generated from this state
change so that you can track when a shell is iconified and de−iconified. Use XtAddEventHandler() to
register a routine that tracks for the event in the same way we tracked for ConfigureNotify events in
set_minimum.c

•

Write a program so that when the user selects the Close button from a window menu, the shell iconifies itself
if it is a TopLevelShell, and destroys itself if it is a DialogShell.

•

17 Interacting With the Window Manager 17.6 Summary

492

18 The Clipboard

This chapter describes a way for the application to interact with other applications. Data is placed on the clipboard,
where it can be accessed by other windows on the desktop regardless of the applications with which they are
associated.

Imagine a group of people in a room; the only way for them to communicate is by writing messages on paper, placing
the paper on a clipboard, and passing the clipboard around. A single person acts as the moderator and holds the
clipboard at all times. If someone wants to post a note, she writes the message on a slip of paper and hands the
message to the moderator. The note is now available for anyone to read. However, those who read the message do not
remove the message from the clipboard; rather, they copy what was written. There is no guarantee that anyone will
want to look at any particular message, but it is there nonetheless and will remain there until someone writes a new
one.

This scenario is the concept behind the Motif clipboard: a data transfer mechanism that enables widgets to make data
available for other widgets, including those in separate applications. Information of any size or type can be passed
using the clipboard interface. The most common example of this data transfer model is cut and paste, a method by
which the user can move or copy text between windows. Here, the user interacts with a Text widget that contains
some text that she wishes to transfer to another Text widget. The user first selects the text she wants to transfer by
clicking the left mouse button and dragging it across the entire area to be copied. Then, she moves the pointer to the
target widget and pastes the text by clicking the middle mouse button. This is the default cut and paste user model; the
user may override it using resources or keyboard equivalents. The actual method for performing this task is not the
point of discussion here.

This action causes the text to appear to be copied to the new window. However, the text does not actually move; it is
copied to the clipboard, from which the second widget then copies it into its own window. The original data may have
been changed or destroyed since it was sent to the clipboard, but that is of no concern to the second widget.

An object that wishes to place data on the clipboard or read data from it is called a client of the clipboard (one of the
people in our imaginary room). Since only one client may access the clipboard at a time, whether it is storing or
retrieving data, requesting access to the clipboard implies "locking" it. If another widget already has locked the
clipboard, the client must wait and ask for it again later (after the current holder has "unlocked" it).

Now, imagine that the people in the room have all sorts of items besides text messages they wish to make available for
copy. Some may have pictures, records, tapes−−anything. Their "cargo" must be deliverable by the moderator to
anyone who requests it. To deal with this situation, the moderator must know what type of cargo she will be handling.
Therefore, certain information must be registered with the moderator before cargo may be sent or received through
the clipboard mechanism. Once a particular cargo type is registered, anyone may post or request such cargo to or
from the moderator.

In the Motif toolkit, different types of cargo are referred to as formats. With respect to the X server and client
applications, text messages are the most commonly used format of clipboard messages and are therefore registered by
default. There are also other types that are automatically registered, such as integers. A complete list is given in
Section #sclipformat. Application−specific data structures must be registered separately, perhaps on a
per−application basis. Once a new data type is registered, even clients that exist on other computer architectures where
data is not represented identically (e.g., due to byte swapping) can use that data type, since the clipboard registration
handles the proper data conversion.

493

There are some situations where it is impractical to place complete information on the clipboard. Some people's cargo
may be "too heavy" for the clipboard to hold indefinitely. Other people may have perishables that don't last very long.
Still others may have information that varies with the state of the world. For these cases, the person with the special
cargo may choose to leave only some information about their cargo rather than the cargo itself. This information
might include its weight, type, name and/or reference number, for example. Potential recipients may then examine the
clipboard and inquire about the cargo without having to get it or even look at it. Only in the event that someone else
wishes to obtain the cargo is the original owner called upon to provide it.

In the Motif world, this scenario describes clipboard data that is available by name. For example, if a client wishes to
place an entire file on the clipboard, it might choose to register the file by name without providing the actual contents
unless someone requests it. This may save a lot of time and resources, since it's possible that no one will request it.
Referencing data this way is very cheap and is not subject to expiration or obsolescence.

When posting messages by name, the client must provide the clipboard with a callback function that returns the actual
data. This callback function may be called by the Motif toolkit at any time, provided another client requests the data.
If the data is time−dependent or subject to other criteria (someone removed or changed the file), the callback routine
may respond accordingly.

The Motif clipboard functions are based on X's Inter−Client Communications Conventions Manual (ICCCM).
Knowledge of these conventions will aid greatly in your understanding of how these functions are implemented.
However, knowledge of the implementation is not required in order to understand the concepts involved here or to be
able to use the clipboard effectively through Motif's application interface. This chapter does not address many of the
issues involved with the ICCCM and the lower−level Xlib properties that implement them. Rather, it only addresses
the highest level of interaction provided by the Motif toolkit.

Also note that the clipboard is one of three commonly used mechanisms to support interclient communication. There
are also the primary and secondary selections, which are similar in nature, but are handled differently at the
application and user level. The Motif toolkit supports convenience routines that interact with clipboard selections
only. To use the other selection mechanisms, you must use X Toolkit Intrinsics functions that were discussed in
Volume Four, X Toolkit Intrinsics Programming Manual. Note, however, that the Text widget supports both
mechanisms.

18.1 Simple Clipboard Copy and Retrieval

To introduce the application programmer's interface (API) for the clipboard functions, we demonstrate how to handle
simple copy and retrieval of text. The cut and paste functions provided by the Text widgets handle copy and retrieval
from the clipboard in the manner we are about to describe; they also support interaction with the primary and
secondary selection mechanisms. However, as pointed out in Chapter 14, Text Widgets, these functions are usually
reserved for interactive actions taken by the user. Fortunately, Motif provides many convenience functions that
facilitate the task of dealing with the clipboard for Text widgets. This section discusses the techniques used by the
Text widget when it interacts with the clipboard.

Let's begin with the short program in the source code This program creates two PushButtons that have complementary
callback routines: to_clipbd() copies text to the clipboard and from_clipbd() retrieves text from the
clipboard. For this example, the text copied to the clipboard is arbitrary; we happen to use a string that represents the
number of times the Copy to Clipboard button is pressed. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1.

 /* copy_retrieve.c −− simple copy and retrieve program. Two
 * pushbuttons: the first places text in the clipboard, the other

18 The Clipboard 18.1 Simple Clipboard Copy and Retrieval

494

 * receives text from the clipboard. This just demonstrates the
 * API involved.
 */
 #include <Xm/CutPaste.h>
 #include <Xm/RowColumn.h>
 #include <Xm/PushB.h>

 static void to_clipbd(), from_clipbd();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol, button;
 XtAppContext app;

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit, application context and toplevel shell */
 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* manage two buttons in a RowColumn widget */
 rowcol = XtVaCreateWidget ("rowcol", xmRowColumnWidgetClass,
 toplevel, NULL);

 /* button1 copies to the clipboard */
 button = XtVaCreateManagedWidget ("button1",
 xmPushButtonWidgetClass, rowcol,
 XtVaTypedArg, XmNlabelString, XmRString,
 "Copy To Clipboard", 18, /* strlen() + 1 */
 NULL);
 XtAddCallback (button, XmNactivateCallback, to_clipbd, "text");

 /* button2 retrieves text stored in the clipboard */
 button = XtVaCreateManagedWidget ("button2",
 xmPushButtonWidgetClass, rowcol,
 XtVaTypedArg, XmNlabelString, XmRString,
 "Retrieve From Clipboard", 24, /* strlen() + 1 */
 NULL);
 XtAddCallback (button, XmNactivateCallback, from_clipbd, NULL);

 /* manage RowColumn, realize toplevel shell and start main loop */
 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* copy data to clipboard. */
 static void
 to_clipbd(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 unsigned long item_id = 0; /* clipboard item id */
 int status;
 XmString clip_label;
 char buf[32];
 static int cnt;
 Display *dpy = XtDisplayOfObject (widget);

18 The Clipboard 18.1 Simple Clipboard Copy and Retrieval

495

 Window window = XtWindowOfObject (widget);
 char *data = (char *) client_data;

 sprintf (buf, "%s−%d", data, ++cnt); /* make each copy unique */

 clip_label = XmStringCreateLocalized ("to_clipbd");

 /* start a copy −− retry till unlocked */
 do
 status = XmClipboardStartCopy (dpy, window,
 clip_label, CurrentTime, NULL, NULL, &item_id);
 while (status == ClipboardLocked);

 XmStringFree (clip_label);

 /* copy the data (buf) −− pass "cnt" as private id for kicks */
 do
 status = XmClipboardCopy (dpy, window, item_id, "STRING",
 buf, (long) strlen (buf)+1, cnt, NULL);
 while (status == ClipboardLocked);

 /* end the copy */
 do
 status = XmClipboardEndCopy (dpy, window, item_id);
 while (status == ClipboardLocked);

 printf ("Copied
 }

 static void
 from_clipbd(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int status, private_id;
 char buf[32];
 Display *dpy = XtDisplayOfObject (widget);
 Window window = XtWindowOfObject (widget);

 do
 status = XmClipboardRetrieve (dpy, window,
 "STRING", buf, sizeof (buf), NULL, &private_id);
 while (status == ClipboardLocked);

 if (status == ClipboardSuccess)
 printf ("Retrieved
 }

The program uses the header file <Xm/CutPaste.h> to include the appropriate function declarations and various
constants. Don't let the name of the file confuse you. CutPaste.h is derived from the phrase "cut and paste," which
historically has been used to describe clipboard−type operations. The to_clipbd() callback routine uses the
following clipboard functions to copy data to the clipboard:

 XmClipboardStartCopy()
 XmClipboardCopy()
 XmClipboardEndCopy()

Copying data to the clipboard is a three−phase process. Each of the functions locks the clipboard so that other clients

18 The Clipboard 18.1 Simple Clipboard Copy and Retrieval

496

cannot access it. Since locking the clipboard is done on a per−window basis, the object that locks the clipboard should
have an associated window, which means that gadgets may not work. Gadgets happen to work in some cases because
of their window−based widget parents. However, some of the clipboard functions use XtWindow() rather than
XtWindowOfObject() to get the window of an object. These functions do not work for gadgets. When the
clipboard is locked, only requests from objects with the same window ID can access the clipboard. Each time an
object requests a lock on the clipboard, a counter is incremented so that matching unlock requests can be honored.

XmClipboardStartCopy() sets up internal storage for the copy to take place, XmClipboardCopy() sends
the data to the clipboard, and XmClipboardEndCopy() frees the internal supporting structures. When copying
data to the clipboard, including copies by name, all three functions must be used.

The from_clipbd() callback routine uses XmClipboardRetrieveCopy() to re-trieve data from the
clipboard. Only a single call is needed for the retrieval of short items, as in this example. However, a three−step
process similar to that for copying data to the clipboard is required for the incremental retrieval of large amounts of
data. We will cover these functions shortly.

18.1.1 Copying Data

The syntax of the functions that copy data to the clipboard is outlined below. Due to the intricacies involved in
providing data to the clipboard, these functions take a larger number of parameters than you might expect from the
simple examples given so far. Later examples should clarify the intended usage of these functions and their
corresponding parameters. Each of the routines takes a pointer to the Display and the Window associated with the
object making the clipboard request. These parameters may be derived from any widget or gadget using
XtDisplayOfObject() and XtWindowOfObject().

XmClipboardStartCopy() takes the following form:

 int
 XmClipboardStartCopy(display, window, label, timestamp,

widget, callback, item_id)
 Display *display;
 Window window;
 XmString label;
 Time timestamp;
 Widget widget;
 XmCutPasteProc callback;
 long *item_id;

The widget and callback parameters are only used when registering data by name (see Section #sclipbyname).
Although the label parameter is currently unused, its purpose is to label the data so that certain applications can
view the contents of the clipboard. The timestamp identifies the server time when the cut took place
(CurrentTime is the typical value). The item_id parameter is filled in by the toolkit and is returned to the client
for use in subsequent clipboard function calls. This value identifies the item's entry in the clipboard.

XmClipboardCopy() has the following form:

 int
 XmClipboardCopy(display, window, item_id, format_name,

buffer, length, private_id, data_id)
 Display *display;
 Window window;
 long item_id;
 char *format_name;
 XtPointer buffer;

18 The Clipboard 18.1.1 Copying Data

497

 unsigned long length;
 int private_id;
 int *data_id;

XmClipboardCopy() copies the data in buffer to the clipboard. The format of the data is described by the
format_name parameter. This value is not a type, but a string -describing the type. For example, "STRING"
indicates that the data is a text string. The length parameter is the size of the data. Text strings, can use strlen
(data).

The item_id parameter is the ID returned by XmClipboardStartCopy(). The data_id parameter returns the
format ID. You may pass NULL for this parameter if you are not interested in the value, however you may need it for
other functions. For example, you will need it if you wish to withdraw an item from the clipboard. We will discuss
this issue later when we talk about registration by name. The private_id parameter is an arbitrary number that is
application−defined. The value is passed back to various functions, including those that handle calling by name, so we
will address it further in Section #sclipbyname.

When copying is done, XmClipboardEndCopy() is called to free the internal data structures associated with the
clipboard item. The routine takes the following form:

 int
 XmClipboardEndCopy(display, window, item_id)
 Display *display;
 Window window;
 long item_id;

The item_id parameter is the ID returned by the call to XmClipboardStartCopy().

The clipboard copy functions return one of three status values: ClipboardSuccess, ClipboardLocked, or
ClipboardFail. If the client is successful in gaining access to the clipboard, the routine returns
ClipboardSuccess. If another client is already accessing the clipboard, the clipboard is locked and the client can
loop repeatedly to attempt to gain access.

Motif keeps a stack of items that have been placed on the clipboard using any of the clipboard functions. As of
Release 1.1, the stack depth is set to two. If a third item is added, the older of the other two is removed. Once a copy
to the clipboard is complete, you can undo it using XmClipboardUndoCopy(), which takes the following form:

 int
 XmClipboardUndoCopy(display, window)
 Display *display;
 Window window;

Calling XmClipboardUndoCopy() twice undoes the last undo. Thus, undoing a copy simply swaps the two
elements on the clipboard stack. You can remove an item that you have placed on the clipboard using
XmClipboardWithdrawFormat(). This routine is discussed in Section #sclipbyname.

18.1.2 Retrieving Data

In the source code we retrieved the data stored on the clipboard using the function XmClipboardRetrieve().
This function takes the following form:

 int
 XmClipboardRetrieve(display, window, format_name, buffer,

length, num_bytes, private_id)

18 The Clipboard 18.1.2 Retrieving Data

498

 Display *display;
 Window window;
 char *format_name;
 char *buffer;
 unsigned long length;
 unsigned long *num_bytes;
 int *private_id;

When using XmClipboardRetrieve(), you must provide buffer space to retrieve the data. In our example, we
know that the data is not very large, so we declared buffer to have 32 bytes, which is more than adequate. The
length parameter tells the clipboard how much space is available in buffer. The num_bytes parameter is the
address of an unsigned long variable. This value is filled in by XmClipboardRetrieve() to indicate how
much data it gave us. The private_id parameter is the address of an int; its value is the same as the
private_id parameter passed to XmClipboardCopy(). You can pass NULL as this parameter if you are not
interested in it.

If the routine is successful in retrieving the data, it returns ClipboardSuccess. If the clipboard is locked, the
function returns ClipboardLocked. A rare internal error may cause the function to return ClipboardFail. If
the routine does not succeed, you can choose to loop repeatedly to attempt to retrieve data.

One problem with XmClipboardRetrieve() occurs when there is more data in the clipboard than buffer space to
contain it. In this case, the function copies only length bytes into buffer and sets num_bytes to the number of
bytes it copied, which should be the same value as length if not enough space is available. If this situation arises,
the function returns ClipboardTruncate to indicate that it did not copy everything that is available. Since we
cannot just arbitrarily specify a larger data space without knowing how much data there is, we have two choices:
query the clipboard to find out how much data there is or copy the data incrementally. There are advantages and
disadvantages to each method. Let's start by discussing incremental retrieval.

To do an incremental retrieval, we need to introduce two functions: XmClipboardStartRetrieve() and
XmClipboardEndRetrieve(). These functions are similar to the start and end copy functions discussed earlier.
XmClipboardStartRetrieve() takes the following form:

 int
 XmClipboardStartRetrieve(display, window, timestamp)
 Display *display;
 Window window;
 Time timestamp;

This function locks the clipboard and notes the timestamp. Data placed on the clipboard after this time is
considered invalid and the function returns ClipboardFailed. The constant CurrentTime is typically used as
this value. It is also common to provide the timestamp found in an event structure when available. This technique is
typically used when the clipboard retrieval is initiated as a result of an action or callback routine where an event
structure is available. XmClipboardStartRetrieve() also allocates internal data structures to support the
incremental retrieval operation. Once the function is called, multiple calls to XmClipboardRetrieve() can be
made until it returns ClipboardSuccess. While the routine returns ClipboardTruncate, more data needs to
be read and you should continue to call the function. Be careful to save the data that has already been retrieved before
the next call to the function, or you may overwrite the old data and lose information.

Once all of the data has been retrieved, call XmClipboardEndRetrieve(), which takes the following form:

 int
 XmClipboardEndRetrieve(display, window)
 Display *display;

18 The Clipboard 18.1.2 Retrieving Data

499

 Window window;

This function unlocks the clipboard and frees the internal data structures. the source code shows a callback routine that
retrieves data from the clipboard incrementally. The from_clipbd_incr() routine could replace the
from_clipbd() callback routine in Example 17−1.

 static void
 from_clipbd_incr(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int status;
 unsigned total_bytes;
 unsigned long received;
 char *data = NULL, buf[32];
 Display *dpy = XtDisplayOfObject (widget);
 Window window = XtWindowOfObject (widget);

 do
 status = XmClipboardStartRetrieve (dpy, window, CurrentTime);
 while (status == ClipboardLocked);

 /* initialize data to contain at least one byte. */
 data = XtMalloc (1);
 total_bytes = 1;
 do {
 /* retrieve data from clipboard −− if locked, try again */
 status = XmClipboardRetrieve (dpy, window, "STRING",
 buf, sizeof (buf), &received, NULL);

 /* reallocate data to contain enough space for everything */
 if (!(data = XtRealloc (data, total_bytes + received))) {
 XtError ("Can't allocate space for data");
 break; /* XtError may or may not return */
 }

 /* copy buf into data. strncpy() does not NULL terminate */
 strncpy (&data[total_bytes−1], buf, received);
 total_bytes += received;
 } while (status == ClipboardTruncate);

 if (data)
 data[total_bytes] = 0; /* NULL terminate */

 if (status == ClipboardSuccess)
 printf ("Retrieved

 status = XmClipboardEndRetrieve (dpy, window);
 }

The callback routine works regardless of the amount of data held by the clipboard. If the client placed an entire file on
the clipboard, the routine would read all of it in 32−byte increments. It is probably wise to use a larger block size
when retrieving data incrementally; the constant BUFSIZ is a good default choice. BUFSIZ is defined in <stdio.h>.

The primary advantage of using the incremental retrieval method is that you do not need to allocate a potentially large
amount of memory at one time. By segmenting memory, you can reuse some of it, or even discard it as each
increment is read. This technique is especially useful if you are scanning for specific data and you have no intention of

18 The Clipboard 18.1.2 Retrieving Data

500

actually saving everything that you retrieve.

18.1.3 Querying the Clipboard for Data Size

The problem with incremental retrieval is that numerous round trips to the server may be necessary in order to obtain
the entire contents of the clipboard. If you intend to save every bit of information you retrieve, the most economical
way to handle the retrieval is by reading everything in one fell swoop. A single call to XmClipboardRetrieve()
is more convenient than the three−step process involving locking the clipboard.

However, as pointed out earlier, we have a problem since we do not know how much data there is to read. The
s o l u t i o n t o t h e p r o b l e m i s t o d e t e r m i n e e x a c t l y h o w m u c h d a t a t h e r e i s b y u s i n g
XmClipboardInquireLength(). This routine has the following form:

 int
 XmClipboardInquireLength(display, window, format_name, length)
 Display *display;
 Window window;
 char *format;
 unsigned long *length;

The function returns the amount of data being held by the clipboard under the specified format_name. In Example
17−3, we are looking for data in the "STRING" format. If any data on the clipboard is in this format, the function
returns ClipboardSuccess and the length parameter is set to the number of bytes being held. If there is no data
on the clipboard in the specified format, the function returns ClipboardNoData. If length is not set to a value
other than 0, the data cannot be read from the clipboard.

If XmClipboardInquireLength() is successful, then the number of bytes specified by length can be
allocated and the data can be retrieved in one call to XmClipboardRetrieve(). the source code shows a callback
routine that retrieves data from the clipboard after querying the size of the data. The from_clipbd_query()
routine could replace the from_clipbd() callback routine in Example 17−1.

 static void
 from_clipbd_query(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int status, recvd, length;
 char *data;
 Display *dpy = XtDisplayOfObject (widget);
 Window window = XtWindowOfObject (widget);

 do
 status = XmClipboardInquireLength (dpy, window, "STRING", &length);
 while (status == ClipboardLocked);

 if (length == 0)
 printf ("No data on clipboard in specified format.0);

 data = XtMalloc (length+1);

 do
 status = XmClipboardRetrieve (dpy, window,

18 The Clipboard18.1.3 Querying the Clipboard for Data Size

501

 "STRING", data, length+1, &recvd, NULL);
 while (status == ClipboardLocked);

 if (status != ClipboardSuccess || recvd != length) {
 printf ("Failed to receive all clipboard data0);
 XtFree (data);
 }
 else
 printf ("Retrieved
 }

18.2 Copy by Name

As discussed earlier, there are cases where data should not be c-opied to the clipboard until it is requested. It is
possible to copy data by name, so that the owner of the data is notified through a callback function when the data is
needed by the clipboard. Since copying large amounts of data may be expensive, time−consuming, or even impossible
due to other constraints in an application, copying data by name may be the only option available. The technique is
especially advantageous if the data is never requested, since time and resources are saved.

The procedure for copying data by name is quite similar to the procedure for normal copying. The application first
calls XmClipboardStartCopy(), but unlike a normal copy operation, the callback and widget parameters
are specified. These values indicate that the data is to be copied by name. The callback parameter specifies the
routine that is called when the data is requested by another client. The widget parameter specifies the widget that
receives the messages requesting the data. Since the toolkit handles the messages, any valid widget ID can be used.

XmClipboardCopy() is then called with a buffer value of NULL. XmClipboardEndCopy() is called as
usua l . When a c l i en t reques ts the da ta f rom the c l i pboard , the ca l l back rou t ine p rov ided to
XmCl ipboa rdS ta r tCopy () i s ca l l ed and the app l i ca t i on p rov ides the ac tua l da ta us ing
XmClipboardCopyByName().

You can use the convenience function XmClipboardBeginCopy() instead of XmClipboardStartCopy().
The only difference between the two routines is that the convenience function does not take a timestamp parameter;
it simply uses CurrentTime as the timestamp value.

The program shown in the source code demonstrates copying data to the clipboard by name.

 /* copy_by_name.c −− demonstrate clipboard copies "by−name".
 * Copying by name requires that the copy *to* clipboard
 * functions use the same window as the copy *from* clipboard
 * functions. This is a restriction placed on the API by the
 * toolkit, not by the ICCCM.
 */
 #include <Xm/CutPaste.h>
 #include <Xm/RowColumn.h>
 #include <Xm/PushB.h>

 static void to_clipbd(), from_clipbd();
 Widget toplevel;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget rowcol, button;
 XtAppContext app;

18 The Clipboard 18.2 Copy by Name

502

 XtSetLanguageProc (NULL, NULL, NULL);

 /* Initialize toolkit, application context and toplevel shell */
 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 /* manage two buttons in a RowColumn widget */
 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 NULL);

 /* button1 copies to the clipboard */
 button = XtVaCreateManagedWidget ("button1",
 xmPushButtonWidgetClass, rowcol,
 XtVaTypedArg, XmNlabelString, XmRString,
 "Copy To Clipboard", sizeof (char *),
 NULL);
 XtAddCallback (button, XmNactivateCallback, to_clipbd, NULL);

 /* button2 retrieves text stored in the clipboard */
 button = XtVaCreateManagedWidget ("button2",
 xmPushButtonWidgetClass, rowcol,
 XtVaTypedArg, XmNlabelString, XmRString,
 "Retrieve From Clipboard", sizeof (char *),
 NULL);
 XtAddCallback (button, XmNactivateCallback, from_clipbd, NULL);

 /* manage RowColumn, realize toplevel shell and start main loop */
 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 static void
 copy_by_name(widget, data_id, private_id, reason)
 Widget widget;
 int *data_id;
 int *private_id;
 int *reason;
 {
 Display *dpy = XtDisplay (toplevel);
 Window window = XtWindow (toplevel);
 static int cnt;
 int status;
 char buf[32];

 printf ("Copy by name called0reason: %s, private_id: %d, data_id: %d0,
 *reason == XmCR_CLIPBOARD_DATA_REQUEST? "request" : "delete",
 *private_id, *data_id);

 if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
 sprintf (buf, "stuff−%d", ++cnt); /* make each copy unique */

 do
 status = XmClipboardCopyByName (dpy, window, *data_id, buf,
 strlen (buf)+1, *private_id = cnt);
 while (status != ClipboardSuccess);
 }
 }

18 The Clipboard 18.2 Copy by Name

503

 /* copy data to clipboard */
 static void
 to_clipbd(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 unsigned long item_id = 0; /* clipboard item id */
 int status;
 XmString clip_label;
 Display *dpy = XtDisplay (toplevel);
 Window window = XtWindow (toplevel);

 clip_label = XmStringCreateLocalized ("to_clipbd");

 /* start a copy. retry till unlocked */
 do
 status = XmClipboardBeginCopy (dpy, window,
 clip_label, widget, copy_by_name, &item_id);
 while (status == ClipboardLocked);

 /* copy by name by passing NULL as the "data", copy_by_name() as
 * the callback and "widget" as the widget.
 */
 do
 status = XmClipboardCopy (dpy, window, item_id, "STRING",
 NULL, 8L, 0, NULL);
 while (status == ClipboardLocked);

 /* end the copy */
 do
 status = XmClipboardEndCopy (dpy, window, item_id);
 while (status == ClipboardLocked);
 }

 static void
 from_clipbd(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int status;
 unsigned total_bytes;
 unsigned long received;
 char *data = NULL, buf[32];
 Display *dpy = XtDisplay (toplevel);
 Window window = XtWindow (toplevel);

 do
 status = XmClipboardStartRetrieve (dpy, window, CurrentTime);
 while (status == ClipboardLocked);

 /* initialize data to contain at least one byte. */
 data = XtMalloc (1);
 total_bytes = 1;
 do {
 buf[0] = 0;
 /* retrieve data from clipboard −− if locked, try again */
 status = XmClipboardRetrieve (dpy, window, "STRING",
 buf, sizeof (buf), &received, NULL);
 if (status == ClipboardNoData) {

18 The Clipboard 18.2 Copy by Name

504

 puts ("No data on the clipboard");
 break;
 }
 /* reallocate data to contain enough space for everything */
 if (!(data = XtRealloc (data, total_bytes + received))) {
 XtError ("Can't allocate space for data");
 break; /* XtError may or may not return */
 }
 /* copy buf into data. strncpy() does not NULL terminate */
 strncpy (&data[total_bytes−1], buf, received);
 total_bytes += received;
 } while (status == ClipboardTruncate);
 data[total_bytes−1] = 0; /* NULL terminate */

 if (status == ClipboardSuccess)
 printf ("Retrieved
 data, total_bytes);

 status = XmClipboardEndRetrieve(dpy, window);
 }

Just as in Example 17−1, the function to_clipbd() is used to initiate copying data to the clipboard. However,
rather than passing actual data, we use:

 status = XmClipboardBeginCopy (dpy, window,
 clip_label, widget, copy_by_name, &item_id);

Passing a valid widget and a callback routine indicates that the copy−by−name method is being used. Here, the data is
provided through the given callback routine when it is requested, rather than being provided immediately. The
item_id parameter is filled in by the clipboard function to identify the particular data element. The parameter is
then used in the call to copy data:

 status = XmClipboardCopy (dpy, window, item_id, "STRING",
 NULL, 8L, 0, NULL);

Passing NULL as the data also indicates that the data is passed by name. The value 8L is passed as the size
parameter to indicate how much data will be sent if the data is requested. This value is important in case other clients
query the clipboard to find out how much data is available to copy.

The callback function copy_by_name() is called either when someone requests the data from the clipboard or
when another client copies new data (by name or with actual data) to the clipboard. In the first case, the data must be
copied to the clipboard; in the second case, the clipboard is telling the client that it can now free its data. The callback
function is an XmCutPasteProc, which takes the following form:

 typedef void
 (*XmCutPasteProc) (Widget, * int, * int, * int)
 Widget widget;
 int *data_id;
 int *private_id;
 int *reason;

The widget parameter is the same as that passed to XmClipboardStartCopy(). The data_id arguemnt is the
ID of the data item that is returned by XmClipboardCopy(), and private_id is the private data passed to
XmClipboardCopy(). The reason parameter takes the value XmCR_CLIPBOARD_DATA_REQUEST, which
indicates that the data must be copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indicates that
the client can delete the data from the clipboard. Although the last three parameters are pointers to integer values, the

18 The Clipboard 18.2 Copy by Name

505

values are read−only and changing them has no effect.

The purpose of the function is either to send the appropriate data to the clipboard or to free the data. The value of
reason determines which action is taken. Since no data is passed to the clipboard until this callback function is
called, either the data must be stored locally (in the application) or the function must be able to generate it
dynamically. The example makes no assumptions or suggestions about how to create the data, since it is entirely
subject to the nature of the data and/or the application.

Once the data is obtained, it is sent to the clipboard using XmClipboardCopyByName(). This function does not
need to lock the cl ipboard since the cl ipboard is already being locked by the window that cal led
XmClipboardRetrieve(). At this point in time, both routines are accessing the clipboard. If the same
application is both retr ieving the data and copying the data, the XmClipboardRetrieve() and
XmClipboardCopyByName() routines must use the same window for their respective window parameters
because otherwise deadlock will occur and the application will hang. There may be cases where you should copy data
to the clipboard incrementally. The data may be large enough that allocating one large data space to handle the entire
copy is unreasonable; its size may warrant sending it in smaller chunks. Moreover, data may be generated by a slow
mechanism such as a database library. If the database only returns data in specific block sizes, then you need not
buffer them all up and send to the clipboard with one call; you can send each block as it comes through.

I n c r e m e n t a l c o p y i n g r e q u i r e s m u l t i p l e c a l l s t o X m C l i p b o a r d C o p y B y N a m e () . S i n c e
XmClipboardCopyByName() does not lock the clipboard, you need to do that yourself by calling
XmClipboardLock(). However, you only need to call it once no matter how much data is transferred. When you
are through copying the data, you need to call XmClipboardUnlock(). In some cases, you may need to stop
sending data before the copy is complete. For example, if the database is not responding to your application or there
a re o the r ex tenua t i ng c i r cums tances , you may wan t t o t e rm ina te t he copy ope ra t i on us i ng
XmClipboardCancelCopy(), which has the following form:

 int
 XmClipboardCancelCopy(display, window, item_id)
 Display *display;
 Window window;
 long item_id;

When using XmClipboardCancelCopy, you should not unlock the clipboard using XmClipboardUnlock().

If you have copied data by name to the clipboard under a specific data format, you may withdraw it by calling
XmClipboardWithdrawFormat(). The function takes the following form:

 int
 XmClipboardWithdrawFormat(display, window, data_id)
 Display *display;
 Window window;
 int data_id;

Despite the name of the procedure, its main purpose is not to remove a format specification, but to remove a data
element in that format from the clipboard. The data_id parameter is the same value that is returned by
XmClipboardCopy() when the data is initially copied by name. If the specified window holds the clipboard data
but it is in a different format than that specified by data_id, then the data is not removed from the clipboard.

18 The Clipboard 18.2 Copy by Name

506

18.3 Clipboard Data Formats

As discussed in the introduction, the clipboard can contain data in arbitrary formats. While the most commonly used
format is text, other formats include integers, pixmaps, and arbitrary data structures. Since all applications on the
desktop have access to the clipboard, any of them may register a new format and place items of that type on the
clipboard.

When registering a new format, you must also register a corresponding format name and the format length in bits (8,
16, and 32). Determining the type of data on the clipboard is much easier when there is a descriptive name associated
with it. The length allows applications to send and receive data without suffering from byte−swapping problems due
to differing computer architectures.

To register a new format, use XmClipboardRegisterFormat(), which takes the following form:

 int
 XmClipboardRegisterFormat(display, format_name, format_length)
 Display *display;
 char *format_name;
 unsigned long format_length;

The function may return ClipboardBadFormat if the format name is NULL or the format length is other than 8,
16, or 32. The format length may be specified as 0, in which case Motif will attempt to look up the default length for
the given name. shows the format lengths for some predefined format names.

tab(@), linesize(2); l | l lfCW | nfCW . Format Name@Format Length
_
"TARGETS"@32 "MULTIPLE"@32 "TIMESTAMP"@32 "STRING"@8 "LIST_LENGTH"@32 "PIXMAP"@32
"DRAWABLE"@32 "BITMAP"@32 "FOREGROUND"@32 "BACKGROUND"@32 "COLORMAP"@32
"ODIF"@8 "OWNER_OS"@8 "FILE_NAME"@8 "HOST_NAME"@8 "CHARACTER_POSITION"@32
"LINE_NUMBER"@32 "COLUMN_NUMBER"@32 "LENGTH"@32 "USER"@8 "PROCEDURE"@8
"MODULE"@8 "PROCESS"@32 "TASK"@32 "CLASS"@8 "NAME"@8 "CLIENT_WINDOW"@32
_ Although these format names are known, they are not necessarily registered automatically with the server; you may
still need to register the one(s) you want to use. If you are specifying your own data structure as a format, you should
choose an appropriate name for it and use 32 as the format size.

The following code fragment shows how you can register a data format and then copy data in that format to the
clipboard:

 unsigned long item_id;
 int data_id;
 Display *dpy = XtDisplay (widget);
 Window window = XtWindow (widget);
 XmString label = XmStringCreateLocalized ("my data");

 /* register our own data structure with clipboard. */
 XmClipboardRegisterFormat (dpy, "MY_DATA_STRUCT", 32);

 /* use the copy−by−name method to transfer data to clipboard */
 do
 status = XmClipboardStartCopy (dpy, window, label, CurrentTime,
 my_data_callback, widget, &item_id);
 while (status == ClipboardLocked);

 XmStringFree (label); /* don't need this anymore */

18 The Clipboard 18.3 Clipboard Data Formats

507

 /* MY_DATA_SIZE is presumed to be the amount of data to transfer */
 do
 status = XmClipboardCopy (dpy, window, item_id, "MY_DATA+STRUCT",
 NULL, MY_DATA_SIZE, 0, &data_id); /* save the data_id! */
 while (status == ClipboardLocked);

 do
 status = XmClipboardEndCopy (dpy, window, item_id);
 while (status == ClipboardLocked);

Once the "MY_DATA_STRUCT" format has been registered with the server, we follow the standard procedure for
copying data to the clipboard. Here, we chose to use the copy−by−name method discussed earlier. Note that we save
the value of the data_id returned by XmClipboardCopy(). This value is used so that we may withdraw the data
later using XmClipboardWithdrawFormat() if necessary. Note that formats are never removed from the
clipboard; only data can be removed from the clipboard. Once a particular format is registered with the clipboard, it is
there until the server goes down. If you plan on retrieving data held by the clipboard, you may wish to inquire about
the format of the data it is holding. To do so, you must use two functions together:
XmClipboardInquireCount() and XmClipboardInquireFormat(). They take the following form:

 int
 XmClipboardInquireCount(display, window, count, max_length)
 Display *display;
 Window window;
 int *count;
 int *max_length;

 int
 XmClipboardInquireFormat(display, window, index,

format_name_buf, buffer_len, copied_len)
 Display *display;
 Window window;
 int index;
 char *format_name_buf;
 unsigned long buffer_len;
 unsigned long *copied_len;

XmClipboardInquireCount() returns the number of formats the clipboard knows about for the data item it is
currently holding. Also returned is the string length of the longest format name. You can iterate through the formats
starting from 1 (one) through count by calling XmClipboardInquireFormat(). The iteration number is
passed as the index parameter. You should use this value to ensure that you can read all the format types in your
search for the desired format.

Although there is only one data item stored on the clipboard at any one time, that item may have multiple formats
associated with it. While this is unusual, it is possible to handle this case by providing different formats to successive
calls to XmClipboardCopy() or XmClipboardCopyByName().

18.4 The Primary Selection and the Clipboard

Since text is the most commonly used format in the clipboard, there is a natural interaction between the clipboard and
windows that contain text. In most situations, it is usual (even expected) that when the user selects text, the selection
should be placed on the clipboard, which is known as a copy operation. Retrieving text from the clipboard and placing

18 The Clipboard18.4 The Primary Selection and the Clipboard

508

it in another window is known as a paste operation. In some cases, after the data is pasted from the clipboard, the
original window deletes the data it copied, which is classified as a cut operation. The clipboard uses what is
commonly referred to as the cut and paste model.

The low−level implementation of the clipboard mechanism uses the X Toolkit selection mechanism. This model has
additional properties that provide for more detailed communication between the clients involved. For example, cutting
text from a Text widget and placing it in another widget involves more communication between the widgets than that
of the clipboard copy and retrieval mechanism. When the text that was selected in the first widget is pasted in the
other, the first widget may be notified to delete the selected text. This type of communication can be handled either
automatically by the Text widgets or through low−level X calls where the corresponding windows of the widgets send
real events called client messages to one another.

18.4.1 Clipboard Functions With Text Widgets

In most cases, you should not need to access the clipboard functions to perform simple text copy and retrieval (cut and
paste) for Text widgets. If you need to access the clipboard above and beyond the normal selection mechanisms
provided by the Text widgets, there are a number of convenience routines that deal with selections automatically. We
present a brief overview of these functions here; see Chapter 14, Text Widgets, for detailed information.

The XmTextCut(), XmTextCopy(), and XmTextPaste() routines handles cutting, copying, and pasting
operations for the Text widget. There are also corresponding functions for the TextField widget. XmTextCut() and
XmTextCopy() take the following form:

 Boolean
 XmTextCut(widget, time)
 Widget widget;
 Time time;

 Boolean
 XmTextCopy(widget, time)
 Widget widget;
 Time time;

If there is text selected in the Text widget referred to by the widget parameter, the selected text is placed on the
clipboard. For XmTextCut(), the selected text is also deleted from the Text widget, while for XmTextCopy() it is
not. The functions return True if all of these things happen successfully. If False is returned, it is usually because
the Text widget does not have any selected text.

The time parameter controls when the operation takes place and may be set to any server timestamp value. For
example, if you are calling this function from a callback routine, you may wish to use the time field from the event
pointer in the callback structure provided by the Motif toolkit. The value CurrentTime can also be used, but there
is no guarantee that this value will prevent any race conditions between other clients wanting to use the clipboard.
Although race conditions are not likely, the possibility does exist. The result of the race condition is that one widget
may appear to have cut or copied selected text to the clipboard when in fact another Text widget got there first.

XmTextPaste() takes the following form:

 Boolean
 XmTextPaste(widget)
 Widget widget;

18 The Clipboard18.4.1 Clipboard Functions With Text Widgets

509

XmTextPaste() gets the current data from the clipboard and places it in the Text widget. The routine returns
False if there is no data on the clipboard.

XmTextCut() and XmTextCopy() only work if there is a current selection in the specified Text widget, which
may be dependent on whether or not the user has made a selection. However, you can force a selection in a Text
widget using XmTextSetSelection(). This routine takes the following form:

 void
 XmTextSetSelection(widget, first, last, time)
 Widget widget;
 XmTextPosition first;
 XmTextPosition last;
 Time time;

XmTextSetSelection() selects the text between the specified positions in the Text widget. Once the text has
been selected, either XmTextCut() or XmTextCopy() may be called to place the selection on the clipboard.

Although XmTextGetSelection() does not deal with the clipboard directly, it provides a convenient way to get
the current selection from the corresponding Text widget. This routine takes the following form:

 char *
 XmTextGetSelection(widget)
 Widget widget;

Note that the text returned by the routine is allocated data and must be freed by the caller using XtFree(). The
function returns NULL if the specified widget does not own the text selection.

To deselect the current selection in a Text widget, you can use XmTextClearSelection(), which takes the
following form:

 void
 XmTextClearSelection(widget, time)
 Widget widget;
 Time time;

18.4.2 The Owner of the Selection

Sometimes, if you have a large number of Text widgets, you may need to know which of the widgets has the text
selection. You can determine this by using the Xlib function XGetSelectionOwner():

 Window
 XGetSelectionOwner(display, selection)
 Display *display;
 Atom selection;

The display parameter can be taken from any widget using XtDisplay(). The selection argument
represents the Atom associated with the kind of selection you are looking for. For example, you can determine the
Text widget that has the current clipboard selection with the following calls:

 Display *dpy = XtDisplay (widget);
 Atom clipboard_atom = XmInternAtom (dpy, "CLIPBOARD", False);
 Window win = XGetSelectionOwner (dpy, clipboard_atom);
 Widget text_w = XtWindowToWidget (dpy, win);

18 The Clipboard 18.4.2 The Owner of the Selection

510

18.5 Implementation Issues

The Motif clipboard mechanism relies on an underlying X mechanism referred to as properties. As you know,
windows are data structures maintained by the X server; each window can have an arbitrary list of properties
associated with it. Each property consists of a name (called an atom), an arbitrary amount of data, and a format.
Property formats are not at all the same thing as the higher−level Motif formats−−they simply indicate whether the
data is a list of 8−bit, 16−bit, or 32−bit quantities, so that the server can perform byte−swapping, if appropriate.
Properties are the underlying mechanism for all interclient communication, including interaction between applications
and window managers, and interapplication interaction such as the transfer of selections.

In order to simplify communication over the network, property names are not passed as -arbitrary−length strings, but
as defined integers known as atoms. A number of standard properties (such as those used for communication between
applications and window managers) are predefined and interned, or made known to, and cached by the server.
However, -application−defined atoms can also be interned with the server by calling the Xlib function
XInternAtom() or the Motif function XmInternAtom(). Atoms are not only used to name properties, but to
name any string data that may need to be passed back and forth between a client and the server.

We started this chapter with the analogy that the Motif toolkit is the moderator of the clipboard. In reality, the
clipboard itself is a property (called CLIPBOARD) that is automatically maintained by the X server. A property is
uniquely identified by both an atom and a window, which means that it is possible for there to be multiple copies of a
given property. However, there should be only one CLIPBOARD property active at one time, based on conventions
about the use of properties set forth in a document called the Inter−Client Communication Conventions Manual
(ICCCM) and followed by the deeper layers of X software. Reprinted as Appendix L of Volume Zero, X Protocol
Reference Manual. Among these conventions are that certain properties should only be set by application top−level
windows and that only one window should own the CLIPBOARD property at any one time. When an application
makes a call to XmClipboardCopy(), the data is actually stored in the CLIPBOARD property of the window that
was identified in the call to XmClipboardCopy().

The format of the data stored in a property is defined by another property. The standard formats are based on those
recommended by the ICCCM. For example, the FONT format might suggest that an application wants the font that the
data string is rendered in, rather than the data string itself. At present, Motif does not support this functionality. You
have to remember that formats (or targets, as they are referred to in the ICCCM) are not really things that have any
functionality. They are simply names that are translated into integer atoms. The meaning of the formats to an
application depends entirely on convention. At present, most applications only support the STRING format. But
eventually, conventions will doubtless be articulated for doing far more with the selection mechanism.

A further complication that needs some mention is how the Motif clipboard implementation relates to the underlying
X Toolkit implementation of selections. The ICCCM actually defines three separate properties that can be used for
selections: PRIMARY, SECONDARY, and CLIPBOARD. Standard Xt applications, including all of the clients
distributed by MIT, use the PRIMARY property for storing selections.

The SECONDARY property is designed for quicker, more transient selections. An application that makes use of this
property usually copies data directly to another window instantly when the owner finishes copying data to the
property. The Motif Text widget uses the SECONDARY property when the META key is down while the middle
button is clicked and dragged. As soon as the selection is complete, the selected data is immediately sent to the
window that has the input focus, which may be the same window.

In the standard MIT implementation, the CLIPBOARD property is used by an independent client called xclipboard.
Keep in mind that a property stays around only as long as the window with which it is associated. When you terminate
a client and close its windows, any data stored in a property on one of the client's windows is lost. If the CLIPBOARD

18 The Clipboard 18.5 Implementation Issues

511

property is associated with a client that is kept around between invocations of other applications, it embodies a
consistent repository for information to be passed between applications.

The ICCCM blesses the use of both the PRIMARY and CLIPBOARD selection properties. However, you should be
aware that the difference between the Motif use of the CLIPBOARD property and the use of the PRIMARY selection
property by other Xt applications makes interoperability questionable, unless you take care to handle the PRIMARY
selection in your application. The X Toolkit mechanisms for handling selections are described in Volume Four, X
Toolkit Intrinsics Programming Manual. The Motif Text widgets support both the Xt mechanism, which uses the
PRIMARY selection, and the Motif clipboard, depending on the interaction. You should probably do the same for
your application.

While you can manipulate properties and atoms directly using Xlib, the higher−level API provided by Motif and Xt
should insulate you from many of the details and ensure that your applications interoperate well with others.
Eventually, toolkits and applications will doubtless support numerous extensions of the current clipboard and selection
mechanisms.

18.6 Summary

The clipboard provides a convenient mechanism that allows applications to interact with one another in a way that is
independent of the application, operating system, and system architecture. The clipboard is one of two common
mechanisms used to handle data transfer between objects. The primary selection is still regarded as the most common
method for data transfer between applications, mostly because it is the standard cut and paste method used to move
textual data between terminal emulators like xterm. A secondary selection method is also available, but is not very
widely used.

The Motif toolkit tries to compensate for the de facto standard use of the primary selection method by integrating both
the primary and clipboard selections into the same set of functions. Although users seem to be oblivious to the
differences, this technique has the unfortunate side effect of confusing programmers.

18 The Clipboard 18.6 Summary

512

19 Drag and Drop

This chapter describes the drag and drop mechanism provided by the Motif toolkit. Drag and drop can be used to
transfer data within and between applications on the desktop.

A graphical user interface provides objects that the user can manipulate and actions that can be performed on those
objects. The drag and drop mechanism for transferring data is a natural one for a GUI, as drag and drop allows the
user to transport data within and between applications by dragging an iconic representation of the data from one
location to another. The ability to transfer data using drag and drop is new in Motif 1.2.

An important question that a developer needs to consider is whether or not drag and drop is appropriate for a
particular application. You need to think about the data that is manipulated by the application, the actions that can be
performed on the data, and whether the drag and drop metaphor makes sense in this context. This decision involves
figuring out if drag and drop allows you to enhance the usability of your application by making it easier for the user to
perform various tasks.

For example, an electronic mail application might allow the user to drag messages that have been received into folders
for storage or into a text editor for composing a response. Perhaps the most common use of drag and drop
functionality is for desktop−style applications. These programs allow the user to manipulate files in the directory
structure and run other applications by dragging objects around on the desktop.

19.1 Using Drag and Drop

From the user's perspective, drag and drop involves choosing a data source, dragging the data around on the desktop,
and dropping the data on a new location. The mechanism is the same no matter what type of data is being
manipulated. In most cases, the data is moved or copied to the new location. However, an application can also allow
the user to drag an object and drop it to invoke an action. For example, dropping a file on a printer icon could cause
the file to be printed.

The Motif Style Guide specifies that the middle mouse button is used for drag and drop. The user starts a drag and
drop transfer by pressing the second button over the data, which is referred to as the drag source. While the user is
dragging the data, the pointer shape is changed to a drag icon which is a picture that represents the type of data being
dragged. The drag icon is meant to provide the user with feedback about the current data transfer, so different drag
icons can be used to represent textual data and graphical data, for example.

The user can drag the data to another location within the same application or to a location within another application
by moving the pointer with the middle button pressed. The data can be dropped in any location that has been
registered as a drop site. The drop occurs when the user releases the mouse button. the figure shows the conceptual
model of drag and drop.

513

Drag and drop conceptual model

A drag and drop transfer can result in the data being moved, copied, or linked. A move operation copies the data to the
drop site and then removes it from the drag source, while a copy operation copies the data to the drop site without
removing it. A link operation allows the drop site access to the data in the drag source without copying it.

The default operation depends on the type of data that is being manipulated. In an editable text area, the default
operation might be a move, while in a read−only area, the default operation should be a copy. A drag source can
support multiple operations, in which case the user should be able to select the operation that is used. The Style Guide
specifies that the SHIFT key selects a move operation, the CTRL key selects a copy operation, and CTRL−SHIFT
selects a link operation.

The user can cancel a drag at any time by pressing the ESCAPE key. The user can also request help on a drop site by
pressing the HELP or F1 key before dropping the data. The help information should tell the user what will happen if
the data is dropped in the drop site.

Besides representing the type of data being manipulated, the drag icon can also indicate the current operation and
whether the pointer is over a valid drop site, over an invalid drop site, or not over a drop site at all. For a drop site to
be valid, the drag source and the drop site must understand at least one common data format. If a drag source only
provides graphical data and a drop site only understands text, the data transfer cannot succeed.

The drag icon may change as it enters and leaves drop sites to provide this state information; these changes are called
drag−over visuals. For example, the drag icon could be displayed without any modification when it is over a valid
drop site, but be superimposed with a do−not−enter symbol when the drop site is invalid. A drop site may also change
its appearance when the drag icon is within it; these effects are known as drag−under visuals. A "garbage can" drop
site might use animation to show the lid opening when a drag icon moves into the drop site. When the user performs a
drop, the drag icon melts into the drop site if the data transfer is successful or springs back to the drag source if the
transfer fails.

19 Drag and Drop 19 Drag and Drop

514

19.2 The Drag and Drop Model

The Motif implementation of drag and drop introduces a number of new programming constructs. The interaction
between the different components is complex, so it may be difficult to understand just what needs to be done to
implement drag and drop functionality. Since you need to understand all of the different components before you can
see what your application may need, we've decided to describe all of the components of drag and drop in a somewhat
abstract way before we present any examples. Although this material may be a bit dry, we think that this approach
works better than presenting an example early and then having to jump around a lot to explain all of its parts.
Hopefully, once you see the big picture, it will be easier to understand the different pieces more fully.

From the programmer's perspective, providing drag and drop functionality in an application can be as simple as using
the Motif widgets that support drag and drop. In Motif 1.2, the Text, TextField, and List widgets are all drag sources,
which means that the textual data they contain can be dragged. The Label widget and its subclasses are also drag
sources for both textual and pixmap data. The Text and TextField widgets are registered as drop sites, which means
that textual data can be dropped in them. When you use these widgets in an application, you do not have to do any
extra programming to provide their drag and drop capabilities since the functionality is built into the widgets.

The drag and drop capabilities provided by the Motif toolkit are highly customizable, so an application can also
implement custom drag and drop transfers. Drag source and/or drop site functionality can be added to any widget. An
application can provide custom drag icons and implement custom drag−under effects, such as animated drop sites.
Drag and drop can be made to handle any type of data. The amount of programming required to implement custom
drag and drop features varies depending on the degree of customization that is desired. While it is relatively easy to
provide a new drop site for textual information, supporting drag and drop for graphical objects requires quite a bit of
work.

The Motif toolkit layers the implementation of drag and drop on top of the selection mechanisms provided by the X
Toolkit Intrinsics. If you are simply using the built−in drag and drop functionality, the implementation details are
completely invisible. However, if you are customizing drag and drop in any way, you need to understand the
underlying selection mechanisms because the drag and drop implementation is not a complete abstraction over the Xt
mechanisms. For example, an application that uses custom drag sources and drop sites must provide certain selection
conversion and transfer procedures in order for the data transfer to occur.

Since the Xt selection mechanisms are based on X's Inter−Client Communications Conventions Manual (ICCCM),
the Motif implementation of drag and drop also adheres to the ICCCM. Data is transferred using properties on the
server, where properties are referenced using atoms. Drag sources and drop sites also use atoms to specify the data
formats, or targets, that they support. The ICCCM suggests a list of possible target types so that applications can
understand each other. These targets and their meanings are shown in You can also define your own targets, but unless
you document them, other applications will not necessarily be able to communicate with your application using these
targets.

linesize(2), tab(@); l | l | l lp9 | lp9 | l. Atom@Type@Meaning
_
TARGETS@ATOM@List of valid target atoms MULTIPLE@ATOM_PAIR@Multiple conversion requests
TIMESTAMP@INTEGER@Timestamp used to acquire selection STRING@STRING@ISO Latin 1 text
COMPOUND_TEXT@COMPOUND_TEXT@Text in compound text encoding TEXT@TEXT@Text in owner's
encoding LIST_LENGTH@INTEGER@Number of disjoint parts of selection PIXMAP@DRAWABLE@Pixmap ID
DRAWABLE@DRAWABLE@Drawable ID BITMAP@BITMAP@Bitmap ID FOREGROUND@PIXEL@Pixel
value BACKGROUND@PIXEL@Pixel value COLORMAP@COLORMAP@Colormap ID ODIF@TEXT@ISO
Office Document Interchange Format OWNER_OS@TEXT@Operating system of owner
FILE_NAME@TEXT@Full path name of a file HOST_NAME@TEXT@Hostname of machine of owner

19 Drag and Drop 19.2 The Drag and Drop Model

515

CHARACTER_POSITION@SPAN@Start and end of selection in bytes LINE_NUMBER@SPAN@Start and end
line numbers COLUMN_NUMBER@SPAN@Start and end column numbers LENGTH@INTEGER@Number of
bytes in selection USER@TEXT@Name of user running owner PROCEDURE@TEXT@Name of selected procedure
MODULE@TEXT@Name of selected module PROCESS@INTEGER, TEXT@Process ID of owner
TASK@INTEGER, TEXT@Task ID of owner CLASS@TEXT@Class of owner (WM_CLASS)
NAME@TEXT@Name of owner (WM_NAME) CLIENT_WINDOW@WINDOW@Top−level window of owner
DELETE@NULL@True if owner deleted selection INSERT_SELECTION@NULL@Insert specified selection
INSERT_PROPERTY@NULL@Insert specified property
_ Motif uses some new objects to encapsulate information about various aspects of a drag and drop transfer. These
objects act like widgets, in that they are created by the programmer, they have resources that can be set and retrieved,
and they interact with the application using callbacks. However, they are unlike traditional widgets in that they are not
visible components of the user interface. The DragContext object is used to store information during a drag, while the
DropTransfer object keeps track of information during a drop. The DragIcon object is used to represent the pointer
shape that is used during a drag and drop transfer. The DropSite object maintains information about all of the drop
sites in an application. The new Display and Screen objects also provide resources that control the behavior of drag
and drop, although they are not specifically part of drag and drop.

The following sections describe all the components of a drag and drop transfer and present the Motif objects that are
used to implement drag and drop. As we describe the objects, we mention many of their resources, callbacks, and
related functions so that you can see how everything fits together. We describe each of the objects in much greater
detail later in the chapter when we talk about how they can be used to customize different aspects of drag and drop.
However, this chapter does not attempt to describe all of the possible ways in which drag and drop can be customized.
We present some common situations and leave you to explore all of the details on your own. For complete
information about each Motif object used to implement drag and drop, see the appropriate reference pages in Volume
SixB, Motif Reference Manual.

19.2.1 The Drag Source

The widget that contains the data being manipulated with drag and drop is known as the drag source. When the user
starts a drag, the application that contains the drag source is considered the initiator of the transfer. The data provided
by a drag source depends on the type of object the source represents. For example, a Text widget provides textual
data, while a DrawingArea could provide some form of graphical data.

A drag source can be designed to support and transfer any type of data. There can even be multiple formats for a given
piece of data if appropriate. A drag source also specifies the operations (move, copy, or link) that it allows. The type
of data, and in some cases the widget that contains the data, affects the operations that are supported. For example, the
List widget only supports copy operations because it is a read−only component.

In order for a drag and drop transfer to work, the drag source and the drop site need to understand the same type of
data. The drag source announces the data targets it can supply to the drop site. A drag source that supports textual data
might offer the data using COMPOUND_TEXT, STRING, and TEXT targets, while a graphical drag source could
provide PIXMAP, FOREGROUND, and BACKGROUND targets. When the drop occurs, the drop site can request
the data in any of the targets supported by the drag source, so the drag source needs to know how to convert between
supported types.

In order for a widget to be a drag source, the widget must be able to recognize a ButtonPress event for the second
mouse button. Essentially, you need to set up a translation and action or an event handler for this event that invokes a
function that starts the drag. The following code fragment shows the definition of a translation and an action for a drag
source:

 static char dragTranslations[] =

19 Drag and Drop 19.2.1 The Drag Source

516

 "#override <Btn2Down>: StartDrag()";

 static XtActionsRec dragActions[] =
 { {"StartDrag", (XtActionProc) StartDrag} };

Just as with any translation and action, the application needs to call XtParseTranslationTable() and
XtAppAddActions(). The parsed translation table can be used to set the XmN-translations resource for the
drag source widget.

The Motif toolkit uses the DragContext object to store information about a drag source once a drag has started. This
object also keeps track of state information about the transfer as it is happening. The routine that starts a drag calls
XmDragStart() to create the DragContext and get things rolling. The DragContext object has resources that need
to be set at creation time to provide information about the drag source. The XmN-dragOperations resource
s p e c i f i e s t h e o p e r a t i o n s s u p p o r t e d b y t h e d r a g s o u r c e , w h i l e X m N - e x p o r t T a r g e t s a n d
-XmNnumExportTargets indicate the data targets that are supported.

The DragContext also has a number of resources that control the visual effects used during the drag. Many of these
resources specify various attributes of the drag icon for the transfer. For example, the XmN-sourceCursorIcon,
XmN-operationCursorIcon, and XmN-stateCursorIcon resources indicate the images that are used for
different parts of the drag icon. If these resources are not specified, the DragContext uses default icons. There are also
resources that allow you to specify different foreground and background colors for the drag icon. We describe the drag
icon in more detail in Section #sdragicon.

The DragContext also provides callback routines that can be used to monitor the drag and provide custom visual
effects. All of the routines use special callback structures that provide information about the current state of the drag.
Section #sdragcallbk provides more information about these callbacks.

The XmN-convertProc is a procedure that must be specified when a DragContext is created. This procedure is
used to convert the drag source data to the format requested by the drop site when the drop occurs. The procedure is
either an XtConvertSelectionProc or an XtConvertSelectionIncrProc, depending on whether or not
the drag source is using incremental transfer. If the XmN-incremental resource is set to True, the data is
transferred incrementally. Both of these procedures are part of the underlying Xt selection mechanism that is not
completely hidden by the Motif drag and drop abstraction. See Volume Four, X Toolkit Intrinsics Programming
Manual, for more information on these procedures.

The following code fragment shows the creation of a DragContext object with a minimal set of resources:

 Atom exportList[1];
 Widget widget, dc;
 Arg args[5];
 int n;
 Boolean ConvertProc();
 XEvent *event;

 ...
 n = 0;
 exportList[0] = COMPOUND_TEXT;
 XtSetArg (args[n], XmNexportTargets, exportList); n++;
 XtSetArg (args[n], XmNnumExportTargets, XtNumber (exportList)); n++;
 XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
 dc = XmDragStart (widget, event, args, n);

19 Drag and Drop 19.2.1 The Drag Source

517

In Section #sdragsource, we present an example that creates a custom drag source, and we describe the source code in
detail.

Once a DragContext has been created, the Motif toolkit for the initiating application assumes control of the drag, so
the application itself doesn't have to do anything during the drag. If any of the DragContext callbacks have been
specified, they are called automatically by the Motif toolkit at the appropriate time.

When the drop occurs, the drop site determines whether or not the data transfer can succeed based on the operations
and targets supported by the drag source and the drop site. If the transfer can succeed, the drop site initiates the
transfer, which causes the XmN-convertProc to be called for each data target that the drop site has requested. This
routine converts the data into the requested format and passes it back to the drop site, so the drop site can do whatever
it needs with the data.

19.2.2 The Drop Site

Once the user starts a drag and drop transfer, the data can be dropped in any location that has been registered as a drop
site, and if the drop site understands the data, the transfer will succeed. The application that contains the drop site
where data is dropped is the receiving client in a drag and drop transfer. A drop site is always associated with a
widget. Like a drag source, a drop site supports particular types of data, depending on the type of object it is.

A drop site can be designed to handle any type of data, or even multiple types if appropriate. A drop site also specifies
the operations that it supports. The standard operations are to move, copy, and link data. However, a drop site can
instead invoke an action as the result of a drop. For example, a "send message" drop site could send an electronic mail
message when text is dropped in it. The type of object that functions as the drop site also has an effect on the
supported operations. In most cases, it only makes sense for writable components to act as drop sites, since read−only
components like Lists and Labels cannot be modified by the user.

Motif stores information about all of the drop sites in an application using DropSite objects. An application registers a
widget as a drop site by calling XmDropSiteRegister() for the widget. The DropSite object uses resources to
keep track of information about the drop site. This information can be set when the drop site is registered, or it can be
specif ied later using XmDropSiteUpdate() ; the values of the resources can be retr ieved using
XmDropSiteRetrieve(). Since a widget is being used as the handle to the drop site, you cannot use
XtVaSetValues() and XtVaGetValues() to set and retrieve drop site information, as these routines
manipulate the widget's resources.

Just as a drag source specifies the data types that it can process, a drop site also needs to -provide this information.
The XmN-importTargets and XmN-numImportTargets re-sources specify this information, while the
XmN-dropSiteOperations resource specifies the operations supported by the drop site.

A drop site provides visual effects when the drag icon passes through it; these effects are called drag−under effects.
By default, the widget is highlighted. Other simple effects, such as a shadow border or a special pixmap, can be
specified using the XmN-animationStyle resource. All of these effects are handled automatically by the toolkit
on the initiating side once the resource is set. For more sophisticated effects, such as animation, a drop site must
register an XmN-dragProc. This callback is invoked whenever there is any drag activity in the drop site, so the
application can do whatever it likes in terms of drag−under effects.

While the XmN-dragProc is optional, every drop site must have a XmN-dropProc registered. This routine is
called when a drop occurs in the drop site. The procedure is responsible for determining whether the drop is successful
or not, based on the targets and operations supported by the drag source and the drop site. The following code
fragment shows how a widget that can handle compound text is registered as a drop site:

19 Drag and Drop 19.2.2 The Drop Site

518

 Arg args[10];
 int n;
 Widget label;
 Atom importList[1];
 void HandleDrop();

 ...
 n = 0;
 importList[0] = COMPOUND_TEXT;
 XtSetArg (args[n], XmNimportTargets, importList); n++;
 XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
 XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNdropProc, HandleDrop); n++;
 XmDropSiteRegister (label, args, n);

When a drop occurs in the drop site, the XmN-dropProc is called automatically by the Motif toolkit. This routine
must call XmDropTransferStart() whether or not the drop is -successful. XmDropTransferStart()
creates a DropTransfer object that maintains information about the data transfer. When The DropTransfer object is
created, the XmN-transferStatus resource must be set to indicate the success or failure of the drop. If the
resource is set to XmTRANSFER_FAILURE, XmDropTransferStart() does not transfer any data and merely
cleans up after the drag and drop transfer.

If XmN-transferStatus is set to XmTRANSFER_SUCCESS when the DropTransfer object is created, some other
resources must also be specified to cause the data to be transferred. The XmN-dropTransfers and
XmN-numDropTransfers resources specify the data targets to be processed, while XmN-transferProc
indicates the procedure that receives the converted data from the drag source. This procedure is of type
XtSelectionCallbackProc. Once the data transfer has started, XmDropTransferAdd() can be used to
request the processing of additional data targets. In Section #sdropsite, we discuss in detail the tasks involved in
creating a drop site.

When a drop takes place, visual effects are used to indicate the status of the transfer. Unlike the different drag effects,
these visuals are not customizable. When the drop occurs, the pointer shape is changed back to the standard cursor,
while the drag icon sits over the drop site. If the drop succeeds, the icon melts into the drop site. If the transfer fails or
is cancelled by the user, the icon snaps back to the drag source.

A drop site is normally the size and shape of the widget with which it is associated. However, a drop site can also be
shaped. The XmN-dropRectangles and XmN-numDropRectangles resources control this feature. Drop sites
can also be nested, so that a manager widget can be a drop site and can also contain children that are drop sites. The
XmN-dropSiteType resource controls whether the drop site is a simple drop site or a compound drop site. Drop
sites have a stacking order, which means that they can overlap. When drop sites overlap, the drop site on the top of the
stack obscures the drop sites beneath it, as you would expect. An application can control the stacking order of drop
sites using XmDropSiteQueryStackingOrder() and XmDropSiteConfigureStackingOrder().

19.2.3 The Drag Icon

During a drag, the pointer shape is changed into a drag icon that represents the data that is being dragged. One of the
purposes of the special icon is to make it clear that a drag and drop transfer is in progress. The drag icon can also
change during a drag to indicate the current status of the transfer. These visual effects are called drag−over visuals.
Typical effects include changing the shape and changing the color of the icon.

A drag icon can be composed of three distinct parts, each of which is really a separate icon. The source icon
represents the type of data that is being dragged; this icon is the only necessary component of a drag icon. The source
icon for a drag that manipulates files might be an image of a piece of paper, for example. The state icon indicates

19 Drag and Drop 19.2.3 The Drag Icon

519

whether the pointer is over a valid drop site, over an invalid drop site, or not over a drop site. The operation icon
specifies the current operation. The source icon in a drag icon is static, while the state and operation icons can be
dynamic. the figure shows the components of a drag icon.

A drag icon

The Motif toolkit provides default icons for all of the different drag icon components. The default source icons for
textual data and for generic data are shown in the figure.

Default source icons

The default state icon for all of the different states is an arrow, as shown in the figure, while the default operation
icons for the move, copy, and link operations are shown in the figure.

Default operation icons

Motif uses DragIcon objects to represent the parts of a drag icon. In order to use a custom image, you need to create
each part of the icon using XmCreateDragIcon(). The XmN-blendModel resource of the DragContext for a
drag and drop transfer specifies the different pieces that are blended together to create the actual drag icon.

A drag icon is essentially a pixmap, and the DragIcon object encapsulates all of the information about the image.
When you create a DragIcon, you specify resources that describe the image. The XmN-pixmap and XmN-mask
resources represent the actual pixmap and its mask if you use one. Other resources include XmN-height,

19 Drag and Drop 19.2.3 The Drag Icon

520

XmN-width, and XmN-depth for specifying those attributes of the image, as well as XmN-hotX and XmN-hotY
for indicating the x,y coordinate of the hotspot for the icon. The XmN-attachment, XmN-offsetX, and
XmN-offsetY resources specify how the icon is attached to the other parts of a drag icon.

There are a number of ways in which you can customize the drag icons that are used for drag and drop. You can
specify default icons for all drag and drop transfers that start from your application by setting various resources of the
Screen object. When you change the default drag icons for the Screen, the toolkit handles the drag−over effects using
the icons, as we discuss in Section #smodicon. An application can also specify custom drag icons for a particular drag
and drop transfer by setting resources on its DragContext object. In this case, the application has to manage the
drag−over visuals using the different DragContext callback routines.

19.2.4 Protocols

For drag and drop to work, the initiating and receiving applications must be able to talk to each other. The Motif
toolkit supports two different mechanisms by which clients can communicate with each other during drag and drop.
The main information that needs to be -passed back and forth during a drag concerns the location of the drag icon
relative to drop sites in the receiving application. The dynamic drag protocol requires messaging between the two
applications, while the preregister drag protocol does not. During the drop, the Xt selection protocol is used to transfer
the data from one application to the other. An application can quite easily support both the dynamic and preregister
drag protocols, although it can just support one or neither of the protocols if necessary. If an application does not
support either of the protocols, it can still participate in drag and drop, but it does not provide any visual effects during
the drag. The best approach is to support both protocols so that users can specify the protocol that is used based on
their needs. By default the toolkit supports both protocols, so it is easy for an application to support both as well. The
code for the initiating client is the same for both protocols, while the code for the receiver is the same except for an
additional procedure that can be specified for use under the dynamic protocol.

With the preregister protocol, information about all of the drop sites in an application is stored in a database. This
database is kept in a property on the top−level window of the application (or on each top−level window, if there is
more than one) so that it can be read by an initiating application. During a drag, the initiator uses information in the
database to manage both drag−over and drag−under visuals. Drop sites in the receiving application can set some
resources to control the style of drag−under effect used, but the receiver does not participate directly in the drag.

One benefit of the preregister protocol is that it does not require dynamic communication between the initiating and
receiving applications, so the performance of drag and drop does not suffer if the network is heavily loaded. However,
a receiving application cannot provide sophisticated drag−under effects when the preregister protocol is being used.
Under this protocol, the server is grabbed during the drag, which means that the drag icon can be any size (the size is
not limited to the largest cursor size, as it is for the dynamic protocol).

Under the dynamic protocol, when the drag icon moves into a receiving application's window, the initiator sends a
message to the application. Based on this message, the toolkit on the receiving side determines whether or not the drag
icon is in a valid drop site. The toolkit also initializes state and operation information for the receiver, although the
receiving application can update this information using its XmN-dragProc. Based on the movement of the drag
icon, the initiator receives the updated message back in one of its drag−related callbacks.

The benefit of the dynamic protocol is that the receiving application can provide sophisticated drag−under effects and
drag processing using its XmN-dragProc. However, the application does not have to provide these effects, as the
toolkit provides some basic effects by default. The dynamic protocol also has some drawbacks. One drawback is that
the messaging is expensive in terms of network traffic and may lead to unacceptable performance if the network is
heavily loaded. Another limitation is that the image used for the drag icon can only be as large as the largest cursor
supported by the system running the application.

19 Drag and Drop 19.2.4 Protocols

521

The Display object provides two resources that can be set to indicate which protocol the toolkit should use when an
application is the initiating or the receiving application in a drag and drop transfer. These resources are
XmN-dragInitiatorProtocolStyle and XmN-dragReceiverProtocolStyle. An application can set
the resources if it needs to specify a particular protocol, or they can be set by the user in a resource file. We describe
the different values for the resources and how the actual protocols are determined in Section #sdragprot, when we
discuss how to customize drag and drop. The protocol that is used to transfer data when the drop occurs encompasses
the Xt incremental and non−incremental selection protocols. The DropTransfer object created by the receiving
application handles the drop protocol. When the DropTransfer object is created using XmDropTransferStart(),
the receiver specifies resources that indicate the list of desired targets, as well as an XmNtransferProc that
handles the data once it has been converted by the initiator. The toolkit processes the requests one at a time by calling
the -XmNconvertProc of the initiating client. This procedure processes the request and passes the data back to the
XmN-transferProc.

The DragContext and DropTransfer objects both have XmN-incremental resources that specify whether or not the
data transfer is incremental. Incremental transfers are used when the data is too large for a single X protocol request.
No matter how the two resources are set, the toolkit handles the transfer of data using the underlying Xt selection
mechanisms. Both the initiator and the receiver are informed about the completion of the entire transfer once all of the
subtransfers are done, if there are any.

19.2.5 The Programming Model

If you review what we've just covered and put all of the pieces together, it creates a complex picture from the
programmer's perspective. Fortunately, unless you are trying to do something really complicated, you can ignore
many of the pieces and only use what you need. This section describes the complete picture by laying out the
responsibilities of both the initiating and receiving applications for each step of a drag and drop operation. the figure
shows the steps graphically.

Even though most applications contain both drag sources and drop sites, it makes sense to think about the two roles
separately, as the programming requirements for each are separate. If the initiator and receiver are in the same
application, then the same toolkit is used by both parties. Otherwise, each application is using a separate toolkit.

19 Drag and Drop 19.2.5 The Programming Model

522

Drag and drop programming model

During the initialization and setup of the user interface, the initiating application needs to create any custom drag
icons that it wants to use for drag−over visual effects. The initiator also needs to set up translations or event handlers
to deal with ButtonPress events for the second mouse button. The initiator (or the user) can specify the drag

19 Drag and Drop 19.2.5 The Programming Model

523

protocol if necessary.

The receiving application needs to register widgets as drop sites. For each drop site, the receiver must specify the valid
data targets and the XmN-dropProc that takes over when a drop occurs in the drop site. The receiver can also
specify an XmN-dragProc to handle special processing during the drag and custom drag−under visuals for the drop
site. The receiver can query and modify the stacking order of drop sites, as well as update information about drop sites
while the application is running. When the user starts a drag operation, the toolkit on the initiating side takes control.
The application needs to create a DragContext by calling XmDragStart(). It must specify the valid targets for the
operation and the XmN-convertProc that processes data transfer requests from the receiving client. The
application can also specify callbacks that are invoked at various points during the drag, custom drag−over visual
effects, and a drop callback that is called when the drop occurs. Receiving clients are not involved in this step. By
default, the toolkit on the initiating side handles all of the drag−over and drag−under visuals under both the preregister
and dynamic protocols. If the preregister protocol is being used, the receiving client is not involved during the drag,
but the initiating application can provide custom drag−over effects. These effects are handled by the various callbacks
that can be specified for a DragContext. At any point during the drag, the initiator can cancel the transfer by calling
XmDragCancel().

Under the dynamic protocol, the initiating application sends messages to receiving clients to get drop site information.
The toolkit on the receiving side handles these messages. If the receiver has registered an XmN-dragProc, it is
invoked each time a message is sent to the receiver. This routine can provide custom drag−under visuals and other
special processing. After the XmN-dragProc is finished, information about the drop site is passed back to the
initiator, and the DragContext callbacks are invoked, so the initiator can still perform any special processing and
provide custom drag−over visuals. When the user drops the data, the toolkit on the receiving side takes over from the
toolkit on the initiating side. The XmN-dropProc for the drop site determines what action the user has requested. If
the user has requested help, the receiving application should display a help dialog and see if the user wants to proceed.
If the user cancels the transfer, the drop does not proceed. Otherwise, the XmN-dropProc determines if the transfer
is possible by checking the targets supported by drag source.

If the drop is valid, the receiving client starts the transfer of data by calling XmDropTransferStart(). If the
transfer is not valid, the routine still needs to be called to clean up the operation. If the initiator has registered an
XmN-dropStartCallback on its DragContext, it is invoked now. Other than this callback, the initiating client
plays no role when the drop occurs. When the receiver calls XmDropTransferStart(), it must specify a list of
data and target formats that it wants from the initiating application. The routine creates a DropTransfer object that can
be updated during the transfer. The receiver must also specify an XmN-transferProc to handle the data once it
has been converted by the initiator. The receiver can cancel the transfer at any point.

For each target requested by the receiver, the XmN-convertProc of the initiator is called to convert the data to the
specified format. The formatted data is passed back to the receiver's XmN-transferProc. Once the entire transfer
is complete, the XmN-dropFinishCallback and XmN-dragDropFinishCallback callbacks of the
initiating client's DragContext are invoked, if they have been specified.

19.3 Customizing Built−in Drag and Drop

In Motif 1.2, the Text and TextField widgets, the List widget, and the Label widget and its subclasses all support drag
and drop functionality by default. When you use these widgets in an application, they provide built−in drag and drop
capabilities. All of the widgets are drag sources for textual data, while just the Text and TextField widgets are
registered as drop sites for text.

With a Label widget or a button, the user can drag the entire text string of the component by starting a drag in the
component. The Label widget and its subclasses are also drag sources for graphical data, but there are no built−in drop

19 Drag and Drop 19.3 Customizing Built−in Drag and Drop

524

sites for graphical data. However, when these components are in a menu, they do not function as drag sources. These
components are not drop sites because they are meant to be read−only components in a user interface. Most
applications would not want the user to be able to change the label on a button by dropping text on it. However, if you
want to provide this type of functionality, it is easy to register a Label or a button as a drop site using the technique we
describe in Section #sdropsite.

The user can drag the text of either a single item or the current selection in a List widget. If the pointer is over a
selected item when the drag is started, the text of the selected item is used for the drag. If multiple items are selected,
the text of all of the selected items is used, where the items are separated by newlines. If the drag is started over an
unselected item, the text of that item is transferred by drag and drop. The List widget is not a drop site because its
items are not meant to be modified by the user. If you want to allow the user to modify a List by dropping items in it,
however, you can register the widget as a drop site.

The Text and TextField widgets are the only Motif widgets that have built−in drop site functionality. The user can
drop textual data from any drag source in these widgets. The widgets also function as drag sources, so the user can
move and copy the current selection within and between Text and TextField widgets.

Applications that simply use the built−in drag and drop capabilities of the Motif widgets can still customize various
aspects of the functionality. This section explores the different types of customization that are possible.

19.3.1 Specifying the Drag Protocol

Motif supports two different protocols for communication between applications during a drag. The dynamic protocol
passes messages between the two applications about the location of drop sites, while the preregister protocol keeps
track of drop site information in a database. Since the preregister protocol does not require communication between
applications, it can provide better performance on a heavily−loaded network. However, the dynamic protocol offers
the advantage of sophisticated drag−under visual effects.

The p rog rammer o r the use r can spec i f y the d rag p ro toco l f o r an app l i ca t i on by se t t i ng the
XmN-dragInitiatorProtocolStyle and XmN-dragReceiverProtocolStyle resources defined by the
Display object. Motif creates a Display object automatically for an application when it creates the first shell on a
particular display. If an application uses multiple displays, it has a Display object for each one. An application can
retrieve the Display object for a specified display using XmGetXmDisplay().

The XmN-dragInitiatorProtocolStyle and XmN-dragReceiverProtocolStyle resources indicate
the preferred drag protocol for an application when it is acting as an initiator and as a receiver, respectively, in a drag
and drop transfer. Each resource can be set to one of the following values:

XmDRAG_PREREGISTER

This value means that the application can only support the preregister drag protocol.
XmDRAG_DYNAMIC

This value indicates that the application can only support the dynamic drag protocol.
XmDRAG_NONE

This value means that drag and drop is disabled for the application.

XmDRAG_DROP_ONLY

This value specifies that the application does not support either drag protocol, but it does support drag and

19 Drag and Drop 19.3.1 Specifying the Drag Protocol

525

drop transfers. The user can transfer data using drag and drop, but there are no visual effects during the drag.
XmDRAG_PREFER_DYNAMIC

This value means that the application supports both the preregister and dynamic protocols, but it prefers to use
the dynamic protocol.

XmDRAG_PREFER_PREREGISTER

This value means that the application supports both drag protocols, but it prefers to use the preregister
protocol. The value is the default value for XmN-dragReceiverProtocolStyle.

XmDRAG_PREFER_RECEIVER

This value indicates that the application supports both the preregister and dynamic protocols, but it defers to
the preference of the receiving application. The value can only be specified for the
XmN-dragInitiatorProtocolStyle resource, and it is the default value for the resource.
The actual protocol that is used during a drag and drop transfer is based on the preferences specified by the
initiating and receiving applications. The protocol can change during a drag as the drag icon enters and leaves
top−level windows. shows how the protocol is resolved based on the preferred protocols for the initiator and
the receiver. tab(@); l | c s s s ^ | l | l | l |l l | lp9 | lp9 | lp9 | lp9. T{
Initiator
Protocol Style
T}@Receiver Protocol Style
@Preregister@Prefer Preregister@Prefer Dynamic@Dynamic
_
P r e r e g i s t e r @ P r e r e g i s t e r @ P r e r e g i s t e r @ P r e r e g i s t e r @ D r o p O n l y P r e f e r
P r e r e g i s t e r @ P r e r e g i s t e r @ P r e r e g i s t e r @ P r e r e g i s t e r @ D y n a m i c P r e f e r
R e c e i v e r @ P r e r e g i s t e r @ P r e r e g i s t e r @ D y n a m i c @ D y n a m i c P r e f e r
D y n a m i c @ P r e r e g i s t e r @ D y n a m i c @ D y n a m i c @ D y n a m i c D y n a m i c @ D r o p
Only@Dynamic@Dynamic@Dynamic
_ If two applications cannot find an agreeable protocol style, the XmDRAG_DROP_ONLY style is used. In this
case, there are no drag−over or drag−under visuals except for the initial drag icon. An application can also
explicitly set the protocol resources to XmDRAG_DROP_ONLY, in which case the application does not provide
any visual effects during the drag.

I f a n a p p l i c a t i o n s e t s X m N - d r a g I n i t i a t o r P r o t o c o l S t y l e o r
XmN-dragReceiverProtocolStyle to XmDRAG_NONE, the application does not participate in drag
and drop as an initiator or a receiver, respectively. This value is useful for disabling drag and drop
functionality, as we discuss in the next section.

The actual protocol used for a drag and drop transfer controls the visual effects that the user sees during the
drag. Under the preregister protocol, the server is grabbed so the drag icon can be a pixmap of arbitrary size.
The drag icon uses the depth and colormap of the drag source widget, so it can be a color image. When the
dynamic protocol is used, the drag icon is implemented using the X cursor, so it must be a bitmap and is
limited in size (use XQueryBestCursor() to determine the largest size for a particular hardware
configuration).

An application should support both the dynamic and preregister protocols so that the user can select the
protocol based on his needs. Since the toolkit supports both protocols by default, an application can easily
support both as well. The code for handling drag sources is the same under both protocols. Drop sites can
specify an optional XmN-dragProc routine that is invoked under the dynamic protocol and can be used to
provide sophisticated drag−under effects.

19 Drag and Drop 19.3.1 Specifying the Drag Protocol

526

The only reason that you should specify the XmN-dragInit iatorProtocolStyle and
XmN-dragReceiverProtocolStyle resources in application code is if your application is going to
support only one of the drag protocols. In this case, you should set the resources to force the application to use
the supported protocol. You can retrieve the Display object for the application using XmGetXmDisplay()
and then use XtVaSetValues() to specify the resources. You can also use XtVaGetValues() to check
the values of the protocol resources.

If your application supports both drag protocols, you can specify the protocol resources in an app−defaults file
to indicate the application's preferred protocol. By default, an application uses the preregister protocol because
XmN-dragIn i t ia to rPro toco lSty le i s se t to XmDRAG_PREFER_RECEIVER and
XmN-dragReceiverProtocolStyle is set to XmDRAG_PREFER_PREREGISTER. If you have
implemented custom drag−under visuals with an XmN-dragProc, you should set the protocol resources to
XmDRAG_PREFER_DYNAMIC so that the dynamic protocol is used whenever possible. You can set these
resources in an app−defaults file as follows:

 *DragInitiatorProtocolStyle: DRAG_PREFER_DYNAMIC
 *DragReceiverProtocolStyle: DRAG_PREFER_DYNAMIC

If you set the protocol resources in an app−defaults file, users can specify their own values in a resource file. Users
that want to ensure good performance should specify a preference for the preregister protocol, while users that want
sophisticated drag−under effects should indicate a preference for the dynamic protocol.

19.3.2 Turning Off Drag and Drop Functionality

If you do not want to provide drag and drop in an application, you can turn off the functionality in a number of ways.
The most effective way to turn off the functionality is to set both XmN-dragInitiatorProtocolStyle and
XmN-dragReceiverProtocolStyle to XmDRAG_NONE. These settings completely disable drag and drop for
the application. You can also set just one of the resources to this value to prevent an application from participating in
drag and drop as either an initiator or a receiver.

You can also selectively turn off individual drag sources in an application. To prevent a widget from providing its
default drag source functionality, you need to override the translation for the second mouse button for the widget, as
shown in the following code fragment:

 static char dragTranslations[] =
 "#override <Btn2Down>: DoNothing()";

 static XtActionsRec dragActions[] =
 { {"DoNothing", (XtActionProc) DoNothing} };

True to its name, the DoNothing() action routine does nothing. Once you parse the translation table and add the
actions to the application, you can use the translation to set the XmN-translations resources of all of the widgets
that you do not want to function as drag sources.

There are two different ways to disable the drop site functionality of a Text or TextField widget. If you want to turn
off the drop site permanently, you can call XmDropSiteUnregister() for the widget. This routine removes the
drop site associated with the widget, so you have to reregister it if you want to enable the drop site. To disable a drop
site temporarily, it is easier to use the XmN-dropSiteActivity resource defined by the DropSite object. This
resource can be set to either XmDROP_SITE_ACTIVE or XmDROP_SITE_INACTIVE. When a drop site is inactive,
it does not participate in drag and drop. You can set a drop site inactive using XmDropSiteUpdate(), as shown in
the following code fragment:

19 Drag and Drop19.3.2 Turning Off Drag and Drop Functionality

527

 Widget text_w;
 Arg args[5];
 int n = 0;

 ...
 XtSetArg (args[n], XmNdropSiteActivity, XmDROP_SITE_INACTIVE); n++;
 XmDropSiteUpdate (text_w, args, n);
 ...

Even though drop sites are associated with widgets, you have to set DropSite resources using
XmDropSiteUpdate(), not XtVaSetValues().

One situation in which you would probably want to disable a built−in drop site is when the widget is designed to be
output−only. If you set the XmN-editable resource of a Text or TextField widget to False, the user cannot drop
data in the widget because it is uneditable. However, the toolkit still displays the default drag−under visual effects in
this case, so the widget appears as though it functions as a drop site. To make it clear that the widget is not a drop site,
you can disable the drop site using one of the techniques we just described. If the widget is always uneditable, it is
fine to use XmDropSiteUnregister(), but if the widget changes state, you are better off setting
XmN-dropSiteActivity.

When you set a Text or TextField widget insensitive, the user cannot interact with the widget, so it doesn't make sense
for the widget to function as a drop site. However, there is currently a bug in the implementation of drag and drop
such that the user can drop text in an insensitive widget. To prevent this problem, whenever you change the sensitivity
of a Text widget, you should set the XmN-dropSiteActivity resource to match the sensitivity.

19.3.3 Modifying the Visual Effects

Motif provides resources that both the user and the programmer can use to change the default drag−over visual effects
that are used during a drag and drop transfer. The Screen object provides the following resources:

 XmNdefaultSourceCursorIcon
 XmNdefaultMoveCursorIcon
 XmNdefaultCopyCursorIcon
 XmNdefaultLinkCursorIcon
 XmNdefaultValidCursorIcon
 XmNdefaultInvalidCursorIcon
 XmNdefaultNoneCursorIcon

These resources specify the default icons for all the components of a drag icon, including the different operations and
states.

Motif creates a Screen object automatically for an application when it creates the first shell on a particular screen. If
an application accesses multiple screens, it has a Screen object for each one. An application can retrieve the Screen
object for a specified screen using XmGetXmScreen().

The drag icon resources defined by the Screen object only take effect when the XmN-sourceCursorIcon,
XmN-operationCursorIcon, and XmN-stateCursorIcon resources have not been specified for a particular
DragContext. All Motif widgets with built−in drag source functionality set the XmN-sourceCursorIcon resource,
so the Screen resource cannot be used to specify a different source icon for these components. The widgets do not set
the XmN-operationCursorIcon and XmN-stateCursorIcon resources, so you can set the various default
icons for these components.

19 Drag and Drop 19.3.3 Modifying the Visual Effects

528

If neither the DragContext resources nor the Screen resources are specified, Motif uses hard−coded default icons. For
example, the running figure shown in the figure is used as the source icon whenever a source icon has not been
specified. Since this icon is rather arbitrary, you might want to set the XmN-defaultSourceCursorIcon
resource to something more appropriate for your application.

Before you can set the Screen resources in application code, you must create DragIcon objects for the different
resources. In Section #screateicon we describe how to create a drag icon using XmCreateDragIcon(). Once the
drag icon exists, you can retrieve the Screen object using XmGetXmScreen() and set its resources, as shown in the
following code fragment:

 Widget drag_icon, screen, toplevel;

 ...
 screen = XmGetXmScreen (XtScreen (toplevel));
 XtVaSetValues (screen, XmNdefaultSourceCursorIcon, drag_icon, NULL);
 ...

The specified icon is used whenever the source icon has not been set for the DragContext for a drag and drop transfer.

The Screen resources can also be set in a resource file. In this case, the icons can be specified as bitmap files, so the
application does not have to create DragIcon objects. Both the icon and an optional mask can be specified using
resources as follows:

 *defaultSourceCursorIcon.pixmap: icon.xbm
 *defaultSourceCursorIcon.mask: icon_mask.xbm

Although it is convenient to be able to set the Screen resources in a resource file, this feature really isn't that useful
since the Motif widgets and most applications specify their drag icons using DragContext resources.

T h e X m N - v a l i d C u r s o r F o r e g r o u n d , X m N - i n v a l i d C u r s o r F o r e g r o u n d , a n d
XmN-noneCursorForeground resources of the DragContext can be used to further distinguish between the
different states in a drag and drop transfer. These resources can be specified in a resource file as follows:

 *validCursorForeground: green
 *invalidCursorForeground: red
 *noneCursorForeground: yellow

In this case, the drag icon changes color as the user moves it between components that are valid drop sites,
components that are invalid drop sites, and components that are not drop sites. While it is possible to modify some
aspects of the drag−over effects using Screen and DragContext resources, if you really want to provide customized
visual effects, you need to understand more about the implementation of drag and drop. In Section #sdragcallbk we
discuss how to provide custom drag−over effects.

19.4 Working With Drag Sources

Many applications work with data other than text. In order to provide drag and drop capabilities, these applications
need to create drag sources for the data they manipulate. In this section, we describe the steps you need to follow to
create a new drag source. We use an example program that displays all the files in a directory and allows the user to
drag the files. However, in order for this drag to succeed, we need another application that understands files as objects
and allows the user to drop files. In Section #sdropsite, we present a text editor that handles the dropping of file data,
but for now we are just going to consider the ability to drag a file. the source code shows the file_manager.c
application, which we are going to describe in detail in the following sections. This chapter describes functionality

19 Drag and Drop 19.4 Working With Drag Sources

529

that is new in Motif 1.2, so this example only works with the 1.2 version of the Motif toolkit.

 /* file_manager.c −− displays all of the files in the current directory
 * and creates a drag source for each file. The user can drag the
 * contents of the file to another application that understands
 * dropping file data. Demonstrates creating a drag source, creating
 * drag icons, and handling data conversion.
 */
 #include <Xm/Screen.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Form.h>
 #include <Xm/Label.h>
 #include <Xm/AtomMgr.h>
 #include <Xm/DragDrop.h>
 #include <X11/Xos.h>
 #include <stdio.h>
 #include <sys/stat.h>

 typedef struct {
 char *file_name;
 Boolean is_directory;
 } FileInfo;

 /* global variable −− arbitrarily limit number of files to 256 */
 FileInfo files[256];

 void StartDrag();

 /* translations and actions. Pressing mouse button 2 calls
 * StartDrag to start a drag transaction */

 static char dragTranslations[] =
 "#override <Btn2Down>: StartDrag()";

 static XtActionsRec dragActions[] =
 { {"StartDrag", (XtActionProc) StartDrag} };

 main (argc, argv)
 int argc;
 char *argv[];
 {
 Arg args[10];
 int num_files, n, i = 0;
 Widget toplevel, sw, panel, form;
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
 XtAppContext app;
 XtTranslations parsed_trans;
 char *p, *buf[256];
 FILE *pp, *popen();
 struct stat s_buf;
 Pixmap file, dir;
 Pixel fg, bg;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtAppInitialize (&app, "Demos", NULL, 0, &argc, argv,
 NULL, NULL, 0);

 /* intern the Atoms for data targets */

19 Drag and Drop 19.4 Working With Drag Sources

530

 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);
 DIRECTORY = XmInternAtom (dpy, "DIRECTORY", False);

 /* use popen to get the files in the directory */
 sprintf (buf, "/bin/ls .");
 if (!(pp = popen (buf, "r"))) {
 perror (buf);
 exit (1);
 }
 /* read output from popen −− store filename and type */
 while (fgets (buf, sizeof (buf), pp) && (i < 256)) {
 if (p = index (buf, '0))
 *p = 0;
 if (stat (buf, &s_buf) == −1)
 continue;
 else if ((s_buf.st_mode &S_IFMT) == S_IFDIR)
 files[i].is_directory = True;
 else if (!(s_buf.st_mode & S_IFREG))
 continue;
 else
 files[i].is_directory = False;
 files[i].file_name = XtNewString (buf);
 i++;
 }
 pclose (pp);
 num_files = i;

 /* create a scrolled window to contain the file labels */
 sw = XtVaCreateManagedWidget ("sw",
 xmScrolledWindowWidgetClass, toplevel,
 XmNwidth, 200,
 XmNheight, 300,
 XmNscrollingPolicy, XmAUTOMATIC,
 NULL);

 panel = XtVaCreateWidget ("panel", xmRowColumnWidgetClass, sw, NULL);

 /* get foreground and background colors and create label pixmaps */
 XtVaGetValues (panel,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);
 file = XmGetPixmap (XtScreen (panel), "file.xbm", fg, bg);
 dir = XmGetPixmap (XtScreen (panel), "dir.xbm", fg, bg);
 if (file == XmUNSPECIFIED_PIXMAP || dir == XmUNSPECIFIED_PIXMAP) {
 puts ("Couldn't load pixmaps");
 exit (1);
 }

 parsed_trans = XtParseTranslationTable (dragTranslations);
 XtAppAddActions (app, dragActions, XtNumber (dragActions));

 /* create image and filename Labels for each file */
 for (i = 0; i < num_files; i++) {
 form = XtVaCreateWidget ("form", xmFormWidgetClass, panel, NULL);
 XtVaCreateManagedWidget ("type", xmLabelWidgetClass, form,
 /* specify translation for drag and index into file array */
 XmNtranslations, parsed_trans,
 XmNuserData, i,

19 Drag and Drop 19.4 Working With Drag Sources

531

 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, files[i].is_directory ? dir : file,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 25,
 NULL);
 XtVaCreateManagedWidget (files[i].file_name,
 xmLabelWidgetClass, form,
 XmNalignment, XmALIGNMENT_BEGINNING,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 25,
 NULL);
 XtManageChild (form);
 }

 XtManageChild (panel);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* StartDrag() −− action routine called by the initiator when a drag starts
 * (in this case, when mouse button 2 is pressed). It starts
 * the drag processing and establishes a drag context.
 */
 void
 StartDrag(widget, event, params, num_params)
 Widget widget;
 XEvent *event;
 String *params;
 Cardinal *num_params;
 {
 Arg args[10];
 int n, i;
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
 Atom exportList[2];
 Widget drag_icon, dc;
 Pixel fg, bg;
 Pixmap icon, iconmask;
 XtPointer ptr;
 Boolean ConvertProc();
 void DragDropFinish();

 /* intern the Atoms for data targets */
 dpy = XtDisplay (widget);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);
 DIRECTORY = XmInternAtom (dpy, "DIRECTORY", False);

 /* get background and foreground colors and fetch index into file
 * array from XmNuserData.
 */
 XtVaGetValues (widget,
 XmNbackground, &bg,
 XmNforeground, &fg,

19 Drag and Drop 19.4 Working With Drag Sources

532

 XmNuserData, &ptr,
 NULL);

 /* create pixmaps for drag icon −− either file or directory */
 i = (int) ptr;
 if (files[i].is_directory) {
 icon = XmGetPixmapByDepth (XtScreen (widget), "dir.xbm", 1, 0, 1);
 iconmask = XmGetPixmapByDepth (XtScreen (widget), "dirmask.xbm",
 1, 0, 1);
 }
 else {
 icon = XmGetPixmapByDepth (XtScreen (widget), "file.xbm", 1, 0, 1);
 iconmask = XmGetPixmapByDepth (XtScreen (widget), "filemask.xbm",
 1, 0, 1);
 }
 if (icon == XmUNSPECIFIED_PIXMAP || iconmask == XmUNSPECIFIED_PIXMAP) {
 puts ("Couldn't load pixmaps");
 exit (1);
 }

 n = 0;
 XtSetArg (args[n], XmNpixmap, icon); n++;
 XtSetArg (args[n], XmNmask, iconmask); n++;
 drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

 /* specify resources for DragContext for the transfer */
 n = 0;
 XtSetArg (args[n], XmNblendModel, XmBLEND_JUST_SOURCE); n++;
 XtSetArg (args[n], XmNcursorBackground, bg); n++;
 XtSetArg (args[n], XmNcursorForeground, fg); n++;
 XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;
 /* establish the list of valid target types */
 if (files[i].is_directory) {
 exportList[0] = DIRECTORY;
 XtSetArg (args[n], XmNexportTargets, exportList); n++;
 XtSetArg (args[n], XmNnumExportTargets, 1); n++;
 }
 else {
 exportList[0] = FILE_CONTENTS;
 exportList[1] = FILE_NAME;
 XtSetArg (args[n], XmNexportTargets, exportList); n++;
 XtSetArg (args[n], XmNnumExportTargets, 2); n++;
 }
 XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
 XtSetArg (args[n], XmNclientData, widget); n++;

 /* start the drag and register a callback to clean up when done */
 dc = XmDragStart (widget, event, args, n);
 XtAddCallback (dc, XmNdragDropFinishCallback, DragDropFinish, NULL);
 }

 /* ConvertProc() −− convert the file data to the format requested
 * by the drop site.
 */
 Boolean
 ConvertProc(widget, selection, target, type_return, value_return,
 length_return, format_return)
 Widget widget;
 Atom *selection;
 Atom *target;

19 Drag and Drop 19.4 Working With Drag Sources

533

 Atom *type_return;
 XtPointer *value_return;
 unsigned long *length_return;
 int *format_return;
 {
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME, MOTIF_DROP;
 XtPointer ptr;
 Widget label;
 int i;
 char *text;
 struct stat s_buf;
 FILE *fp;
 long length;
 String str;

 /* intern the Atoms for data targets */
 dpy = XtDisplay (widget);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);
 MOTIF_DROP = XmInternAtom (dpy, "_MOTIF_DROP", False);

 /* check if we are dealing with a drop */
 if (*selection != MOTIF_DROP)
 return False;

 /* get the drag source widget */
 XtVaGetValues (widget, XmNclientData, &ptr, NULL);
 label = (Widget) ptr;

 if (label == NULL)
 return False;

 /* get the index into the file array from XmNuserData from the
 * drag source widget.
 */
 XtVaGetValues (label, XmNuserData, &ptr, NULL);
 i = (int) ptr;

 /* this routine processes only file contents and file name */
 if (*target == FILE_CONTENTS) {
 /* get the contents of the file */
 if (stat (files[i].file_name, &s_buf) == −1 ||
 (s_buf.st_mode & S_IFMT) != S_IFREG ||
 !(fp = fopen (files[i].file_name, "r")))
 return False;

 length = s_buf.st_size;
 if (!(text = XtMalloc ((unsigned) (length + 1))))
 return False;
 else if (fread (text, sizeof (char), length, fp) != length)
 return False;
 else
 text[length] = 0;
 fclose (fp);

 /* format the value for transfer */
 *type_return = FILE_CONTENTS;
 *value_return = (XtPointer) text;
 *length_return = length;
 *format_return = 8;

19 Drag and Drop 19.4 Working With Drag Sources

534

 return True;
 }
 else if (*target == FILE_NAME) {
 str = XtNewString (files[i].file_name);

 /* format the value for transfer */
 *type_return = FILE_NAME;
 *value_return = (XtPointer) str;
 *length_return = strlen (str) + 1;
 *format_return = 8;
 return True;
 }
 else
 return False;
 }

 /* DragDropFinish() −− clean up after a drag and drop transfer.
 */
 void
 DragDropFinish (widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget source_icon = NULL;

 XtVaGetValues (widget, XmNsourceCursorIcon, &source_icon, NULL);

 if (source_icon)
 XtDestroyWidget (source_icon);
 }

The output of this application is shown in the figure.

Output of file_manager.c

19 Drag and Drop 19.4 Working With Drag Sources

535

The application gets the names of all of the files in the current directory We use popen() here, but you should use
opendir() and readdir(). and displays the filenames using Label widgets. Each file has a file or folder image
next to it, depending on whether it is a regular file or a directory. The images are the drag sources for manipulating the
files. If the user presses the middle mouse button over one of the symbols, the pointer changes to a drag icon and he
can drag the file to another application that has a drop site that understands files.

19.4.1 Creating a Drag Source

When the application reads the files in the directory, it creates a global array of structures that contain information
about the files. This information is used to keep track of filenames and file types. For each file, the application creates
two Label widgets: an image that represents the type of the file and a string that specifies the filename. To link the
image Labels to the array, the application passes the index of each file in the array as the XmN-userData resource
for the associated Label. This value can be retrieved and used to access the information in the array.

Depending on whether a file is a regular file or a directory, the application places an image of a file or a folder next to
the filename Label. Each image is created using XmGetPixmap() and specified as the XmN-labelPixmap for the
appropriate image Labels. The images are also used for drag icons during the drag operation, as we describe in the
next section. For more information on XmGetPixmap(), see Section #spixmaps.

In order to specify that the file images are drag sources, we have to establish translations for the Label widgets that are
used for the images. Label widgets already have drag source functionality, so we need to decide whether to override or
augment this functionality. Since the existing translation merely allows the user to drag the pixmap image for the
Label, we override the translation as shown in the following code fragment:

 static char dragTranslations[] =
 "#override <Btn2Down>: StartDrag()";

 static XtActionsRec dragActions[] =
 { {"StartDrag", (XtActionProc) StartDrag} };

The application parses the translation table and adds the action using XtParseTranslationTable() and
XtAppAddActions(), respectively. The new translation table is specified for the XmN-translations resource
for each of the image Labels.

The only other operation performed in main() that is relevant for the drag functionality is the interning of atoms for
target types. We use the FILE_NAME target that is defined by the ICCCM, as well as two of our own targets,
FILE_CONTENTS and DIRECTORY. We chose these target names ourselves because the ICCCM does not define
any targets that are suitable for our purposes. We create atoms for these targets using XmInternAtom(), as shown
in the following code fragment:

 Widget toplevel;
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;

 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);
 DIRECTORY = XmInternAtom (dpy, "DIRECTORY", False);

Although we don't actually use the atoms in main(), we intern them so that they are cached by the Motif toolkit.
When we intern the atoms in other routines in the application, they are retrieved from the cache.

19 Drag and Drop 19.4.1 Creating a Drag Source

536

19.4.2 Starting the Drag

When the user starts a drag, the DragStart() action routine is called. This routine creates a custom drag icon and
calls XmDragStart() to start the drag. To create the appropriate drag icon, we need to know whether the drag
source represents a file or a directory, so we fetch the XmN-userData from the Label widget that is the drag source.
We use this value to access the appropriate structure in the files array and determine the type of file the user is
manipulating.

Once we know what type of file we are dealing with, we can create the source icon for the drag. We use the same
pixmap as for the image Label , so the drag icon is ei ther a f i le image or a fo lder image. We use
XmGetPixmapByDepth() to create both the icon and an iconmask so that we can specify a depth of 1. We call
XmCreateDragIcon() to create the drag icon, as shown in the following code fragment from the source code

 n = 0;
 XtSetArg (args[n], XmNpixmap, icon); n++;
 XtSetArg (args[n], XmNmask, iconmask); n++;
 drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

The DragIcon is created as a child of the drag source widget. We only need to specify the XmN-pixmap and
XmN-mask resources because the DragIcon sets its other attributes, such as width and height, based on the pixmap.
The DragIcon takes its foreground and background colors from its parent, so we don't need to specify these resources
either. The XmN-mask resource must be set to a pixmap of depth 1, while the XmN-pixmap can be any depth.

Now that we have a DragIcon object for the source icon, we can call XmDragStart() to start the drag as shown
below:

 n = 0;
 XtSetArg (args[n], XmNblendModel, XmBLEND_JUST_SOURCE); n++;
 XtSetArg (args[n], XmNcursorBackground, bg); n++;
 XtSetArg (args[n], XmNcursorForeground, fg); n++;
 XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;
 if (files[i].directory) {
 exportList[0] = DIRECTORY;
 XtSetArg (args[n], XmNexportTargets, exportList); n++;
 XtSetArg (args[n], XmNnumExportTargets, 1); n++;
 }
 else {
 exportList[0] = FILE_CONTENTS;
 exportList[1] = FILE_NAME;
 XtSetArg (args[n], XmNexportTargets, exportList); n++;
 XtSetArg (args[n], XmNnumExportTargets, 2); n++;
 }
 XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNconvertProc, ConvertProc); n++;
 XtSetArg (args[n], XmNclientData, widget); n++;
 dc = XmDragStart (widget, event, args, n);

This routine creates a DragContext object for the drag and drop transfer and sets a number of resources for the
DragContext. The XmN-sourceCursorIcon specifies the source drag icon that we just created. We also specify
the background and foreground colors for the icon. The DragContext also has XmN-operationCursorIcon and
XmN-stateCursorIcon resources for specifying the operation and state icons, but our drag icon does not use
these parts, so we don't set the resources.

The XmN-blendModel resource controls the components of the drag icon that are used during the drag. This
resource can take one of the following values:

19 Drag and Drop 19.4.2 Starting the Drag

537

 XmBLEND_ALL
 XmBLEND_STATE_SOURCE
 XmBLEND_JUST_SOURCE
 XmBLEND_NONE

XmBLEND_ALL indicates that all three parts of the drag icon should be used, while XmBLEND_STATE_SOURCE
causes only the state and source icons to be used. We specify the value XmBLEND_JUST_SOURCE since we only
want the source icon to be used for the drag icon. XmBLEND_NONE means that the DragContext does not generate a
drag icon.

Another important set of resources are the XmN-exportTargets and XmN-numExportTargets resources.
These resources specify the data targets to which the drag source can convert the actual data. The
XmN-exportTargets resource contains a list of target atoms. If the file is a directory, we specify the
DIRECTORY target. Otherwise, we specify both the FILE_CONTENTS and FILE_NAME targets, which means that
the drag source can provide both a filename and the actual contents of the file to a drop site. In order for the drag to
succeed, another application must use at least one of these targets for a drop site so that the user has some place to
drop the data.

The XmN-dragOperations resource specifies all of the operations that are supported by the application. This
value is specified as a bitmask formed by combining the following possible values:

 XmDROP_COPY
 XmDROP_MOVE
 XmDROP_LINK
 XmDROP_NOOP

For the limited purpose of this application, we specify XmDROP_COPY because we only allow the user to copy the
contents of a file. A fully−functional file manager application would probably also support moving and copying files
within the directory structure, but that functionality is beyond the scope of our discussion. During the drag, the
operations supported by the current drop site are matched against those supported by the drag source to see if the
transfer is possible.

The final DragContext resource that we specify is the XmN-convertProc. This resource indicates the procedure
that is called to convert the actual data into the format requested by the drop site when the drop occurs. We specify the
ConvertProc() routine for our application; this routine is described in the next section. We also set
XmN-clientData to the Label widget that started the drag, so that we have access to the filename and file type data
stored about that Label, as this information is needed to process the drop.

After we create the DragContext and start the drag with XmDragStart(), we register a callback routine for the
XmN-dragDropFinishCallback so that we can destroy the DragIcon that we created. This routine is discussed
further in Section #sdragclean.

19.4.3 Converting the Data

When a drop occurs, a procedure that has been registered by the drop site is called to verify that the drop can take
place. This procedure checks the status of the operation and then starts the data transfer. The receiving application
requests the format that it wants to receive the data in; the receiver can even request the data in multiple formats, if
they are available. For each requested data target, the initiating application's XmN-convertProc is invoked. In our
case, this is the ConvertProc() routine. Since we are not using incremental transfer, this routine is of type
XtConvertSelectionProc, which takes the following form:

 typedef Boolean (*XtConvertSelectionProc)(Widget, Atom *, Atom *,

19 Drag and Drop 19.4.3 Converting the Data

538

 Atom *, XtPointer *, unsigned long *, int *);
 Widget widget;
 Atom *selection;
 Atom *target;
 Atom *type_return;
 XtPointer *value_return;
 unsigned long *length_return;
 int *format_return;

The widget parameter is the DragContext for the drag operation, selection is the selection atom, which in this
case is _MOTIF_DROP, and target is the type of information requested about the selection. The type_return,
value_return, length_return, and format_return parameters return the type, value, length, and format
of the converted data. The routine should return True if the conversion succeeds and False otherwise. For more
information about this procedure type, see Volume Four, X Toolkit Intrinsics Programming Manual, and the
appropriate reference page in Volume Five, X Toolkit Intrinsics Reference Manual.

The ConvertProc() routine in the source code starts by retrieving the Label widget from the XmN-clientData
resource of the DragContext. The goal is to get an index into the files array so that we can access information about
the file. The index is stored in the -XmNuserData resource of the Label widget. Once we have the index, we can
use it to get the filename from the array.

Our conversion routine only handles requests for a filename or the contents of a file. If target is set to
FILE_CONTENTS, ConvertProc() retrieves the contents of the file and formats the data for transfer back to the
receiving client. The contents of the file are passed as a pointer to the text, using the value_return parameter. If
the drop site has requested the FILE_NAME target, the routine returns the filename in value_return. In either
case, the length_return argument is set to the length of the text, and format_return is set to 8 to specify the
length of each of the elements in value_return. The return_type parameter is set to the appropriate target. If
the drop site has requested any other target, the routine returns False to indicate that the transfer has failed.

The conversion routine does not handle the DIRECTORY target, partly because we have not implemented any drop
sites that understand the target. A real file manager application would want to support the dragging of directories to
allow the user to modify the file system using drag and drop. In this case, the conversion procedure would need to
have another branch for handling the DIRECTORY target.

Since the drag source only supports the copy operation, the conversion routine does not have to worry about deleting
the existing data. With a copy operation, the XmN-convertProc returns a pointer to the data so that when the
operation is done, both the initiator and the receiver have a copy of the data. With a move operation, the initiating
application returns a pointer to the data and then waits for the receiver to tell it to delete the data. The receiving
application gets the data, stores it, and then specifies the DELETE target to handle this situation. When the initiating
client gets this target, it can safely delete the data. With a link operation, the initiator again passes a pointer to the data,
but in this case the receiver uses the pointer to establish a link to the data.

19.4.4 Modifying an Existing Drag Source

In file_manager.c, we decided to replace the existing drag capabilities of the image Label widgets and provide our
own functionality instead. By default, the Labels would function as graphical drag sources, but since there are no drop
sites that support graphical data, there is no reason to preserve this functionality.

However, if you want to provide the default functionality for a drag source as well as your own functionality, the set
up of the drag source becomes more complicated. Each Motif widget that acts as a drag source has a translation and
action that starts the drag. Since the existing action calls XmDragStart() for the transfer, another action routine
cannot call XmDragStart() again. The solution to this problem is to write an action routine that retrieves the

19 Drag and Drop 19.4.4 Modifying an Existing Drag Source

539

DragContext for the transfer and modifies its resources.

In our application, we want to augment the drag source functionality of the filename Labels. If the user drags the
Label to a drop site that understands file objects, the actual file is transferred. Otherwise, the default drag functionality
for the Label causes the text of the Label to be passed to the drop site. The first thing that we need to do is modify the
translations for the Label widgets. Since we want to provide the default functionality, the new translation calls the
widget's existing drag action routine followed by our own action. The existing drag action routine for the Label widget
is ProcessDrag(), so the translations and actions for the application can be defined as follows:

 static char dragTranslations[] =
 "#override <Btn2Down>: StartDrag()";

 static char newdragTranslations[] =
 "#override <Btn2Down>: ProcessDrag() UpdateDrag()";

 static XtActionsRec dragActions[] =
 { {"StartDrag", (XtActionProc) StartDrag},
 {"UpdateDrag", (XtActionProc) UpdateDrag} };

As always, the translations need to be parsed using XtParseTranslationTable(), and the actions need to be
registered using XtAppAddActions(). Now, when we create each of the filename Labels, we can specify the new
translation for the XmN-translations resource, as shown in the following code fragment:

 parsed_trans_text = XtParseTranslationTable (newdragTranslations);
 ...
 XtVaCreateManagedWidget (files[i].file_name,
 xmLabelWidgetClass, form,
 XmNtranslations, parsed_trans_text,
 XmNuserData, i,
 ...
 NULL);

Note that we also specify the index in the files array as the XmN-userData for these widgets, just as we did for
the image Labels in the source code

The UpdateDrag() action routine is invoked after the Label's default drag action, which means that
XmDragStart() has already been called for the operation. Our action routine retrieves the DragContext for the
operation and modifies it, as shown in the source code

 void (*convert_proc) ();

 void
 UpdateDrag(widget, event, params, num_params)
 Widget widget;
 XEvent *event;
 String *params;
 Cardinal *num_params;
 {
 Arg args[10];
 int n, m, i;
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME, DIRECTORY;
 Widget drag_icon, dc;
 Pixel fg, bg;
 Pixmap icon, iconmask;
 XtPointer ptr;
 Boolean NewConvertProc();

19 Drag and Drop 19.4.4 Modifying an Existing Drag Source

540

 void DragDropFinish();
 Cardinal numExportTargets;
 Atom *exportTargets, *newTargets;

 /* intern the Atoms for data targets */
 dpy = XtDisplay (widget);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);
 DIRECTORY = XmInternAtom (dpy, "DIRECTORY", False);

 /* get background and foreground colors and fetch index into file
 * array from XmNuserData.
 */
 XtVaGetValues (widget,
 XmNforeground, &fg,
 XmNbackground, &bg,
 XmNuserData, &ptr,
 NULL);

 /* create pixmaps for drag icon −− either file or directory */
 i = (int) ptr;
 if (files[i].is_directory) {
 icon = XmGetPixmapByDepth (XtScreen (widget), "dir.xbm", 1, 0, 1);
 iconmask = XmGetPixmapByDepth (XtScreen (widget), "dirmask.xbm",
 1, 0, 1);
 }
 else {
 icon = XmGetPixmapByDepth (XtScreen (widget), "file.xbm", 1, 0, 1);
 iconmask = XmGetPixmapByDepth (XtScreen (widget), "filemask.xbm",
 1, 0, 1);
 }
 if (icon == XmUNSPECIFIED_PIXMAP || iconmask == XmUNSPECIFIED_PIXMAP) {
 puts ("Couldn't load pixmaps");
 exit (1);
 }

 n = 0;
 XtSetArg(args[n], XmNpixmap, icon); n++;
 XtSetArg(args[n], XmNmask, iconmask); n++;
 drag_icon = XmCreateDragIcon (widget, "drag_icon", args, n);

 /* get the DragContext and retrive info about it */
 dc = XmGetDragContext (widget, event−>xbutton.time);

 n = 0;
 XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
 XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
 XtSetArg (args[n], XmNconvertProc, &convert_proc); n++;
 XtGetValues (dc, args, n);

 /* add new targets to the list of targets */
 n = 0;
 if (files[i].is_directory) {
 newTargets = (Atom *) XtMalloc
 (sizeof (Atom) * (numExportTargets + 1));
 for (m = 0; m < numExportTargets; m++)
 newTargets[m] = exportTargets[m];
 newTargets[m] = DIRECTORY;
 XtSetArg (args[n], XmNexportTargets, newTargets); n++;
 XtSetArg (args[n], XmNnumExportTargets, numExportTargets + 1); n++;
 }

19 Drag and Drop 19.4.4 Modifying an Existing Drag Source

541

 else {
 newTargets = (Atom *) XtMalloc
 (sizeof (Atom) * (numExportTargets + 2));
 for (m = 0; m < numExportTargets; m++)
 newTargets[m] = exportTargets[m];
 newTargets[m] = FILE_CONTENTS;
 newTargets[m+1] = FILE_NAME;
 XtSetArg (args[n], XmNexportTargets, newTargets); n++;
 XtSetArg (args[n], XmNnumExportTargets, numExportTargets + 2); n++;
 }

 /* modify other DragContext resources */
 XtSetArg (args[n], XmNblendModel, XmBLEND_JUST_SOURCE); n++;
 XtSetArg (args[n], XmNcursorBackground, bg); n++;
 XtSetArg (args[n], XmNcursorForeground, fg); n++;
 XtSetArg (args[n], XmNsourceCursorIcon, drag_icon); n++;
 XtSetArg (args[n], XmNdragOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNconvertProc, NewConvertProc); n++;
 XtSetArg (args[n], XmNclientData, widget); n++;
 XtSetValues (dc, args, n);

 XtAddCallback (dc, XmNdragDropFinishCallback, DragDropFinish, NULL);
 }

This routine performs many of the same tasks as the StartDrag() action routine, such as accessing the appropriate
structure in the files array and creating a DragIcon for the source icon. The main difference is that we use
XmGetDragContext() to retrieve the current DragContext object, rather than creating one using
XmStartDrag().

The routine retr ieves the values of the XmN-exportTargets , XmN-numExportTargets , and
XmN-convertProc resources using XtGetValues() so that it can preserve the existing functionality. The
appropriate new targets are added to the list of targets based on the type of the file, and XmN-exportTargets is set
to the new list. The NewConvertProc() routine is used for the XmN-convertProc. The rest of the DragContext
resources are specified as in StartDrag(), and the DragContext is modified using XtSetValues().

There is only one difference between the NewConvertProc() routine and ConvertProc() in file_manager.c.
Instead of simply returning False if the requested target is not FILE_CONTENTS or FILE_NAME,
NewConvertProc() calls the conversion procedure retrieved from the Label widget, as shown in the following
fragment:

 (*convert_proc) (widget, selection, target, type_return,
 value_return, length_return, format_return);

Essentially, our conversion routine handles our data targets and passes other targets to the Label widget's default
conversion procedure.

19.4.5 Providing Custom Drag−over Visuals

The DragContext has a number of callback routines that the initiating application can use to provide custom drag−over
visuals. These callbacks are invoked when different events occur during the drag, like when the drag icon enters or
leaves a drop site. The DragContext provides the following callback routines for monitoring the drag:

 XmNdragMotionCallback
 XmNdropSiteEnterCallback
 XmNdropSiteLeaveCallback

19 Drag and Drop19.4.5 Providing Custom Drag−over Visuals

542

 XmNoperationChangedCallback
 XmNtopLevelEnterCallback
 XmNtopLevelLeaveCallback

The names of the routines are fairly self−explanatory. Each callback has its own special callback structure that
contains the relevant information about the current state of the drag operation. For example, the
XmN-dropSiteEnterCallback uses a callback structure of type XmDropSiteEnterCallbackStruct,
which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Time timeStamp;
 unsigned char operation;
 unsigned char operations;
 unsigned char dropSiteStatus;
 Position x;
 Position y;
 } XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

The reason field in this structure is always XmCR_DROP_SITE_ENTER. The operation and operations
fields specify the current operation and the set of supported operations, respectively. The dropSiteStatus
element indicates whether or not the current drop site is valid, based on the targets supported by the drag source and
the drop site. This field can have one of the following values:

 XmDROP_SITE_VALID
 XmDROP_SITE_INVALID
 XmNO_DROP_SITE

The operation, operations, and dropSiteStatus fields are initialized by the toolkit based on the values of
different resources for both the drag source and the drop site. If the drop site has registered an XmN-dragProc and
the dynamic protocol is being used, this routine can update these fields as necessary before the data is passed to the
callback routine. A drop site might want to update these fields if it is performing any special processing or simulating
multiple drop sites.

All of the callback structures for the DragContext callback routines have a reason field that indicates why the
callback was invoked. The callback structures also provide information that is relevant to the particular routine; they
are all similar to the XmDropSiteEnterCallbackStruct. See the DragContext reference page in Volume Six
B, Motif Reference Manual, for complete information about the different callback structures.

When an application creates the DragContext for a drag, it can register routines for the different callback resources.
These routines can perform any special processing that is necessary, as well as handle custom drag−over effects for
the transfer. The typical way to handle drag−over effects is to modify the various drag icon resources of the
DragContex t dur ing the drag . The XmN-sourcePixmapIcon , XmN-sourceCursor Icon ,
XmN-operationCursorIcon, and XmN-stateCursorIcon resources specify the different components of the
drag icon. The XmN-val idCursorForeground , XmN-inval idCursorForeground , and
XmN-noneCursorForeground resources of the DragContext can be used to further distinguish between the
different states during a drag.

The XmN-sourcePixmapIcon is used under the preregister protocol and can be any size, while the
XmN-sourceCursorIcon is used for the dynamic protocol and is limited to the size of the largest cursor for a
particular platform. If you want to specify a color icon, you must use the XmN-sourcePixmapIcon resource. If
XmN-sourcePixmapIcon is not specified, the value of XmN-sourceCursorIcon is used. If this resource has

19 Drag and Drop19.4.5 Providing Custom Drag−over Visuals

543

not been specified, the default source icon for the Screen object is used.

At any point during a drag, the initiating client can call XmDragCancel() to cancel the transfer. The user can also
cancel the operation by pressing the ESCAPE key. The initiating client can retrieve additional information about the
current drop site by calling XmDropSiteRetrieve() during the drag.

After the user drops the data in a drop site, the drag source has one last chance to check the status of the transfer and
provide custom visual effects. After the receiving client's XmN-dropProc completes, the DragContext's
X m N - d r o p S t a r t C a l l b a c k i s i n v o k e d . T h i s r o u t i n e h a s a c a l l b a c k s t r u c t u r e o f t y p e
XmDropStartCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Time timeStamp;
 unsigned char operation;
 unsigned char operations;
 unsigned char dropSiteStatus;
 unsigned char dropAction;
 Position x;
 Position y;
 } XmDropStartCallbackStruct, *XmDropStartCallback;

The reason field is set to XmCR_DROP_START, while the operation, operations, and dropSiteStatus
fields are set as described previously. The dropAction field is set to XmDROP if the user has simply dropped the
data, XmDROP_HELP if the user has requested help on the drop site, or XmDROP_CANCEL if the user has cancelled
the transfer.

19.4.6 Cleaning Up

The initiating client can also register callbacks that are invoked after a drag and drop transfer has completed. The
XmN-dropFinishCallback is called after the receiver's XmN-transferProc has finished processing all of
the da ta ta rge ts reques ted by the rece iver . Th is rou t ine rece ives a ca l lback s t ruc tu re o f t ype
XmDropFinishCallbackStruct, where the reason field is XmCR_DROP_FINISH.

The XmN-dragDropFinishCallback is invoked when the entire operation has completed, which is immediately
a f t e r t h e X m N - d r o p F i n i s h C a l l b a c k . I n t h i s c a s e , t h e c a l l b a c k s t r u c t u r e i s a n
XmDragDropFinishCallbackStructure, and reason is XmCR_DRAG_DROP_FINISH. Our application
uses this callback to destroy the drag icon that we created, as shown below:

 void
 DragDropFinish (widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget source_icon = NULL;

 XtVaGetValues (widget, XmNsourceCursorIcon, &source_icon, NULL);

 if (source_icon)
 XtDestroyWidget (source_icon);
 }

19 Drag and Drop 19.4.6 Cleaning Up

544

The widget passed to the callback routine is the DragContext object for the drag and drop transfer. The routine
retrieves the source icon from the DragContext and destroys it using XtDestroyWidget().

19.5 Working With Drop Sites

In order to handle data from drag sources that provide something other than textual data, an application has to register
drop sites that understand other types of data. To make the file_manager.c application useful, we need an application
that has drop sites that can handle file objects. In this section, we are going to modify the text editor from Chapter 14,
Text Widgets, so that it understands file data. The application contains two drop sites that handle files: the main text
entry area and a fi lename status area. the source code shows the main(), HandleDropLabel(),
HandleDropText(), and TransferProc() routines for editor_dnd.c. The rest of the routines in the application
are the same as in Section #stexteditor, so we have not shown them here.

 /* editor_dnd.c −− create an editor application that contains drop sites
 * that understand file data. A file can be dragged from another
 * application and dropped in the text entry area or the filename status
 * area.
 */
 #include <Xm/Text.h>
 #include <Xm/TextF.h>
 #include <Xm/LabelG.h>
 #include <Xm/PushBG.h>
 #include <Xm/RowColumn.h>
 #include <Xm/MainW.h>
 #include <Xm/Form.h>
 #include <Xm/FileSB.h>
 #include <Xm/SeparatoG.h>
 #include <Xm/DragDrop.h>
 #include <X11/Xos.h>
 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/stat.h>

 #define FILE_OPEN 0
 #define FILE_SAVE 1
 #define FILE_EXIT 2

 #define EDIT_CUT 0
 #define EDIT_COPY 1
 #define EDIT_PASTE 2
 #define EDIT_CLEAR 3

 #define SEARCH_FIND_NEXT 0
 #define SEARCH_SHOW_ALL 1
 #define SEARCH_REPLACE 2
 #define SEARCH_CLEAR 3

 /* global variables */
 void (*drop_proc) ();
 Widget text_edit, search_text, replace_text, text_output;
 Widget toplevel, file_label;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app_context;
 Display *dpy;

19 Drag and Drop 19.5 Working With Drop Sites

545

 Atom FILE_CONTENTS, FILE_NAME;
 Widget main_window, menubar, form, search_panel;
 Widget sep1, sep2;
 void file_cb(), edit_cb(), search_cb();
 Arg args[10];
 int n = 0;
 XmString open, save, exit, exit_acc, file, edit, cut,
 clear, copy, paste, search, next, find, replace;
 Cardinal numImportTargets;
 Atom *importTargets, *newTargets;
 Atom importList[2];
 void HandleDropLabel(), HandleDropText();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app_context, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);

 main_window = XtVaCreateWidget ("main_window",
 xmMainWindowWidgetClass, toplevel, NULL);

 /* Create a simple MenuBar that contains three menus */
 file = XmStringCreateLocalized ("File");
 edit = XmStringCreateLocalized ("Edit");
 search = XmStringCreateLocalized ("Search");
 menubar = XmVaCreateSimpleMenuBar (main_window, "menubar",
 XmVaCASCADEBUTTON, file, 'F',
 XmVaCASCADEBUTTON, edit, 'E',
 XmVaCASCADEBUTTON, search, 'S',
 NULL);
 XmStringFree (file);
 XmStringFree (edit);
 XmStringFree (search);

 /* First menu is the File menu −− callback is file_cb() */
 open = XmStringCreateLocalized ("Open...");
 save = XmStringCreateLocalized ("Save...");
 exit = XmStringCreateLocalized ("Exit");
 exit_acc = XmStringCreateLocalized ("Ctrl+C");
 XmVaCreateSimplePulldownMenu (menubar, "file_menu", 0, file_cb,
 XmVaPUSHBUTTON, open, 'O', NULL, NULL,
 XmVaPUSHBUTTON, save, 'S', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, exit, 'x', "Ctrl<Key>c", exit_acc,
 NULL);
 XmStringFree (open);
 XmStringFree (save);
 XmStringFree (exit);
 XmStringFree (exit_acc);

 /* ...create the "Edit" menu −− callback is edit_cb() */
 cut = XmStringCreateLocalized ("Cut");
 copy = XmStringCreateLocalized ("Copy");
 clear = XmStringCreateLocalized ("Clear");
 paste = XmStringCreateLocalized ("Paste");
 XmVaCreateSimplePulldownMenu (menubar, "edit_menu", 1, edit_cb,
 XmVaPUSHBUTTON, cut, 't', NULL, NULL,

19 Drag and Drop 19.5 Working With Drop Sites

546

 XmVaPUSHBUTTON, copy, 'C', NULL, NULL,
 XmVaPUSHBUTTON, paste, 'P', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, clear, 'l', NULL, NULL,
 NULL);
 XmStringFree (cut);
 XmStringFree (copy);
 XmStringFree (paste);

 /* create the "Search" menu −− callback is search_cb() */
 next = XmStringCreateLocalized ("Find Next");
 find = XmStringCreateLocalized ("Show All");
 replace = XmStringCreateLocalized ("Replace Text");
 XmVaCreateSimplePulldownMenu (menubar, "search_menu", 2, search_cb,
 XmVaPUSHBUTTON, next, 'N', NULL, NULL,
 XmVaPUSHBUTTON, find, 'A', NULL, NULL,
 XmVaPUSHBUTTON, replace, 'R', NULL, NULL,
 XmVaSEPARATOR,
 XmVaPUSHBUTTON, clear, 'C', NULL, NULL,
 NULL);
 XmStringFree (next);
 XmStringFree (find);
 XmStringFree (replace);
 XmStringFree (clear);

 XtManageChild (menubar);

 /* create a form work are */
 form = XtVaCreateWidget ("form",
 xmFormWidgetClass, main_window, NULL);

 /* create horizontal RowColumn inside the form */
 search_panel = XtVaCreateWidget ("search_panel",
 xmRowColumnWidgetClass, form,
 XmNorientation, XmHORIZONTAL,
 XmNpacking, XmPACK_TIGHT,
 XmNtopAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);

 /* Create two TextField widgets with Labels... */
 XtVaCreateManagedWidget ("Search Pattern:",
 xmLabelGadgetClass, search_panel, NULL);
 search_text = XtVaCreateManagedWidget ("search_text",
 xmTextFieldWidgetClass, search_panel, NULL);
 XtVaCreateManagedWidget (" Replace Pattern:",
 xmLabelGadgetClass, search_panel, NULL);
 replace_text = XtVaCreateManagedWidget ("replace_text",
 xmTextFieldWidgetClass, search_panel, NULL);
 XtManageChild (search_panel);

 text_output = XtVaCreateManagedWidget ("text_output",
 xmTextFieldWidgetClass, form,
 XmNeditable, False,
 XmNcursorPositionVisible, False,
 XmNshadowThickness, 0,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);

19 Drag and Drop 19.5 Working With Drop Sites

547

 sep2 = XtVaCreateManagedWidget ("sep2",
 xmSeparatorGadgetClass, form,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_WIDGET,
 XmNbottomWidget, text_output,
 NULL);

 /* create file status area */
 file_label = XtVaCreateManagedWidget ("Filename:",
 xmLabelGadgetClass, form,
 XmNalignment, XmALIGNMENT_BEGINNING,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_WIDGET,
 XmNbottomWidget, sep2,
 NULL);

 /* register the file status label as a drop site */
 n = 0;
 importList[0] = FILE_CONTENTS;
 importList[1] = FILE_NAME;
 XtSetArg (args[n], XmNimportTargets, importList); n++;
 XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
 XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNdropProc, HandleDropLabel); n++;
 XmDropSiteRegister (file_label, args, n);

 sep1 = XtVaCreateManagedWidget ("sep1",
 xmSeparatorGadgetClass, form,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_WIDGET,
 XmNbottomWidget, file_label,
 NULL);

 /* create text entry area */
 n = 0;
 XtSetArg (args[n], XmNrows, 10); n++;
 XtSetArg (args[n], XmNcolumns, 80); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
 XtSetArg (args[n], XmNtopWidget, search_panel); n++;
 XtSetArg (args[n], XmNleftAttachment, XmATTACH_FORM); n++;
 XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
 XtSetArg (args[n], XmNbottomAttachment, XmATTACH_WIDGET); n++;
 XtSetArg (args[n], XmNbottomWidget, sep1); n++;
 text_edit = XmCreateScrolledText (form, "text_edit", args, n);
 XtManageChild (text_edit);

 /* retrieve drop site info so that we can modify it */
 n = 0;
 XtSetArg (args[n], XmNimportTargets, &importTargets); n++;
 XtSetArg (args[n], XmNnumImportTargets, &numImportTargets); n++;
 XtSetArg (args[n], XmNdropProc, &drop_proc); n++;
 XmDropSiteRetrieve (text_edit, args, n);

 /* add FILE_CONTENTS and FILE_NAME to the list of targets */
 newTargets = (Atom *) XtMalloc (sizeof (Atom) * (numImportTargets + 2));
 for (n = 0; n < numImportTargets; n++)

19 Drag and Drop 19.5 Working With Drop Sites

548

 newTargets[n] = importTargets[n];
 newTargets[n] = FILE_CONTENTS;
 newTargets[n+1] = FILE_NAME;

 /* update the drop site */
 n = 0;
 XtSetArg (args[n], XmNimportTargets, newTargets); n++;
 XtSetArg (args[n], XmNnumImportTargets, numImportTargets+2); n++;
 XtSetArg (args[n], XmNdropProc, HandleDropText); n++;
 XmDropSiteUpdate (text_edit, args, n);

 XtManageChild (form);
 XtManageChild (main_window);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app_context);
 }

 /* HandleDropLabel() −− start the data transfer when data is dropped in
 * the filename status area.
 */
 void
 HandleDropLabel(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {

 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME;
 XmDropProcCallback DropData;
 XmDropTransferEntryRec transferEntries[2];
 XmDropTransferEntry transferList;
 Arg args[10];
 int n, i;
 Widget dc;
 Cardinal numExportTargets;
 Atom *exportTargets;
 Boolean file_name = False;
 void TransferProc();

 /* intern the Atoms for data targets */
 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);

 DropData = (XmDropProcCallback) call_data;
 dc = DropData−>dragContext;

 /* retrieve the data targets and search for FILE_NAME */
 n = 0;
 XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
 XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
 XtGetValues (dc, args, n);

 for (i = 0; i < numExportTargets; i++) {
 if (exportTargets[i] == FILE_NAME) {
 file_name = True;
 break;
 }
 }

19 Drag and Drop 19.5 Working With Drop Sites

549

 /* make sure we have a drop that is a copy operation and one of
 * the targets is FILE_NAME. if not, set the status to failure.
 */
 n = 0;
 if ((!file_name) || (DropData−>dropAction != XmDROP) ||
 (DropData−>operation != XmDROP_COPY)) {
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 }
 else {
 /* set up transfer requests for drop site */
 transferEntries[0].target = FILE_CONTENTS;
 transferEntries[0].client_data = (XtPointer) text_edit;
 transferEntries[1].target = FILE_NAME;
 transferEntries[1].client_data = (XtPointer) file_label;
 transferList = transferEntries;
 XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
 XtSetArg (args[n], XmNnumDropTransfers,
 XtNumber (transferEntries)); n++;
 XtSetArg (args[n], XmNtransferProc, TransferProc); n++;
 }
 XmDropTransferStart (dc, args, n);
 }

 /* HandleDropText() −− start the data transfer when data is dropped in
 * the text entry area.
 */
 void
 HandleDropText(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {

 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME;
 XmDropProcCallback DropData;
 XmDropTransferEntryRec transferEntries[2];
 XmDropTransferEntry transferList;
 Arg args[10];
 int n, i;
 Widget dc;
 Cardinal numExportTargets;
 Atom *exportTargets;
 Boolean file_contents = False;
 void TransferProc();

 /* intern the Atoms for data targets */
 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);

 DropData = (XmDropProcCallback) call_data;
 dc = DropData−>dragContext;

 /* retrieve the data targets and search for FILE_CONTENTS */
 n = 0;
 XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
 XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
 XtGetValues (dc, args, n);

19 Drag and Drop 19.5 Working With Drop Sites

550

 for (i = 0; i < numExportTargets; i++) {
 if (exportTargets[i] == FILE_CONTENTS) {
 file_contents = True;
 break;
 }
 }

 if (file_contents) {
 /* make sure we have a drop that is a copy operation.
 * if not, set the status to failure.
 */
 n = 0;
 if ((DropData−>dropAction != XmDROP) ||
 (DropData−>operation != XmDROP_COPY)) {
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 }
 else {
 /* set up transfer requests for drop site */
 transferEntries[0].target = FILE_CONTENTS;
 transferEntries[0].client_data = (XtPointer) text_edit;
 transferEntries[1].target = FILE_NAME;
 transferEntries[1].client_data = (XtPointer) file_label;
 transferList = transferEntries;
 XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
 XtSetArg (args[n], XmNnumDropTransfers,
 XtNumber (transferEntries)); n++;
 XtSetArg (args[n], XmNtransferProc, TransferProc); n++;
 }
 XmDropTransferStart (dc, args, n);
 }
 else
 (*drop_proc) (widget, client_data, call_data);
 }

 /* TransferProc() −− handle data transfer of converted data from drag
 * source to drop site.
 */
 void
 TransferProc(widget, client_data, seltype, type, value, length, format)
 Widget widget;
 XtPointer client_data;
 Atom *seltype;
 Atom *type;
 XtPointer value;
 unsigned long *length;
 int format;
 {
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME;
 Widget w;
 XmString string;
 char *label[256];

 /* intern the Atoms for data targets */
 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);

 w = (Widget) client_data;

19 Drag and Drop 19.5 Working With Drop Sites

551

 if (*type == FILE_CONTENTS)
 XmTextSetString (w, value);
 else if (*type == FILE_NAME) {
 sprintf (label, "Filename: %s", value);
 string = XmStringCreateLocalized (label);
 XtVaSetValues (w, XmNlabelString, string, NULL);
 XmStringFree (string);
 }
 }

The application basically has the same functionality as editor.c in Chapter 14. The only difference in the interface is
the Filename: status area that displays the name of the current file. This status area is also a drop site for file objects,
so the user can drag a file from the file_manager.c application and drop it in this area. When a file is dropped here, the
filename is displayed in the status area, and the contents of the file are copied into the ScrolledText object. The
ScrolledText object has also been modified to function as a drop site for file data, so the user can drop a file in the text
entry area. the figure shows the output of the application before and after a file has been dropped in the file status area.

19.5.1 Creating a Drop Site

The file status area is a Label widget, so it does not have any drop site capabilities by default. In order for the widget
to function as a drop site, we have to register it using XmDropSiteRegister(), as shown below:

 n = 0;
 importList[0] = FILE_CONTENTS;
 importList[1] = FILE_NAME;
 XtSetArg (args[n], XmNimportTargets, importList); n++;
 XtSetArg (args[n], XmNnumImportTargets, XtNumber (importList)); n++;
 XtSetArg (args[n], XmNdropSiteOperations, XmDROP_COPY); n++;
 XtSetArg (args[n], XmNdropProc, HandleDropLabel); n++;
 XmDropSiteRegister (file_label, args, n);

This routine registers information about the drop site in a DropSite object using resources that are specified as for a
normal widget. Since drop sites are referenced by their associated widget, however, the resources cannot be set using
XtVaSetValues().

The XmN-importTargets resource specifies the data targets that the drop site can handle. We use the
FILE_CONTENTS and FILE_NAME targets that we have interned using XmInternAtom(). The drop site only
supports copy operations, so XmN-dropSiteOperations is set to XmDROP_COPY. The final resource that we
specify is the XmN-dropProc. This callback is invoked when a drop occurs in the drop site; it is responsible for
starting the transfer of data from the drag source to the drop site. The HandleDropLabel() routine handles the
drop for the file status area, as we describe in Section #shandledrop.

19 Drag and Drop 19.5.1 Creating a Drop Site

552

Output of editor_dnd.c

19.5.2 Modifying an Existing Drop Site

The editor_dnd.c application also allows the user to drag a file from file_manager.c to the main text entry area and
drop it. This action causes the contents of the file to be copied to the Text widget. By default, the Text widget also has
its own drop site functionality that allows the user to drop textual data. We want to modify the drop site to incorporate
our own functionality but still allow the user to drag and drop textual data in the widget. The Text widget has already
been registered as a drop site by the Motif toolkit, so we do not need to call XmDropSiteRegister(). In fact, if
we did call that routine, we would override the default functionality.

Ins tead, we ca l l XmDropSi teRetr ieve() to get the va lues o f the XmN-impor tTargets ,
XmN-numImportTargets, and XmN-dropProc resources for the Text widget drop site, as shown in the
following fragment:

 n = 0;

19 Drag and Drop 19.5.2 Modifying an Existing Drop Site

553

 XtSetArg (args[n], XmNimportTargets, &importTargets); n++;
 XtSetArg (args[n], XmNnumImportTargets, &numImportTargets); n++;
 XtSetArg (args[n], XmNdropProc, &drop_proc); n++;
 XmDropSiteRetrieve (text_edit, args, n);

Although a drop site is always associated with a widget, the XtVaGetValues() routine cannot be used to retrieve
drop site resources, as the resources are stored separately from the widget in a DropSite object. We retrieve the
XmN-importTargets resource so that we can add our own targets to the list of data targets for the drop site. A
drop site can only have one XmN-dropProc associated with it, so we need to get the existing routine and store it
before we specify our own routine.

Once we have the data targets for the drop site, we create a new list that contains the existing targets, as well as the
FILE_CONTENTS and FILE_NAME targets. We use XmDropSiteUpdate() to modify the drop site:

 n = 0;
 XtSetArg (args[n], XmNimportTargets, newTargets); n++;
 XtSetArg (args[n], XmNnumImportTargets, numImportTargets + 2); n++;
 XtSetArg (args[n], XmNdropProc, HandleDropText); n++;
 XmDropSiteUpdate (text_edit, args, n);

The HandleDropText() routine processes the drops that occur in the Text widget. We explain this routine in
detail in the following section.

If you need to update information for a number of drop sites, you should use the XmDropSiteStartUpdate()
a n d X m D r o p S i t e E n d U p d a t e () r o u t i n e s , a s t h e y o p t i m i z e t h e p r o c e s s . A f t e r a c a l l t o
XmDropSiteStartUpdate(), you can call XmDropSiteUpdate() repeatedly for different drop sites. When
you are finished updating all of the drop sites, call XmDropSiteEndUpdate().

19.5.3 Handling the Drop

When a drop occurs, the receiving application takes over and the XmN-dropProc for the drop site is called. This
callback provides a callback structure of type XmDropProcCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Time timeStamp;
 Widget dragContext;
 Position x;
 Position y;
 unsigned char dropSiteStatus;
 unsigned char operation;
 unsigned char operations;
 unsigned char dropAction;
 } XmDropProcCallbackStruct, *XmDropProcCallback;

The reason field is always XmCR_DROP_MESSAGE, and dragContext specifies the DragContext object for the
drag operation that caused the drop. The dropSiteStatus element is set to either XmDROP_SITE_VALID or
XmDROP_SITE_INVALID, depending on the targets that are supported by the drop site and the drag source. The
callback routine can change this value if necessary.

The operations and operation fields are set to the possible operations for the drag source data and the current
operation, respectively. The dropAction field specifies the action requested by the user. If this field is set to
XmDROP, the user has requested a normal drop; if it is set to XmDROP_HELP, the user has requested help for the drop

19 Drag and Drop 19.5.3 Handling the Drop

554

site. We discuss providing help for a drop site in the next section.

The main task of the XmN-dropProc is to determine whether or not the operation is possible and to start the data
transfer by calling XmDropTransferStart(). This routine creates a DropTransfer object that keeps track of
information about the data transfer. The HandleDropLabel() routine initiates the data transfer for the file status
drop site, as shown in the following code fragment from the source code

 n = 0;
 if ((!file_name) || (DropData−>dropAction != XmDROP) ||
 (DropData−>operation != XmDROP_COPY)) {
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 }
 else {
 transferEntries[0].target = FILE_CONTENTS;
 transferEntries[0].client_data = (XtPointer) text_edit;
 transferEntries[1].target = FILE_NAME;
 transferEntries[1].client_data = (XtPointer) file_label;
 transferList = transferEntries;
 XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
 XtSetArg (args[n], XmNnumDropTransfers,
 XtNumber (transferEntries)); n++;
 XtSetArg (args[n], XmNtransferProc, TransferProc); n++;
 }
 XmDropTransferStart (dc, args, n);

If the action requested by the user is not a normal drop or if the operation is not a copy operation, we do not process
the data transfer. However, we still have to call XmDropTransferStart() to clean up after the whole drag and
drop operation. In this case, we set the XmN-transferStatus resource to XmTRANSFER_FAILURE to indicate
that the transfer should not proceed. We also set XmN-numDropTransfers to 0.

Otherwise, the drop can proceed, so we establish a list of target data types that we want to receive using the
XmN-dropTransfers and XmN-numDropTransfer resources. Each entry in XmN-dropTransfers is an
XmDropTransferEntryRec, which is defined as follows:

 typedef struct {
 XtPointer client_data;
 Atom target;
 } XmDropTransferEntryRec, *XmDropTransferEntry;

The target field specifies the requested data target, and client_data passes any additional data that is necessary
to the routine that processes the data transfer. We specify the FILE_CONTENTS and FILE_NAME targets. For each
target, we pass the widget that is modified by the data from the drag source as client_data. For the
FILE_CONTENTS format, the widget is the text entry area text_edit, while for FILE_NAME, the widget is the
file status area file_label.

The final resource that we specify for the DropTransfer is the XmN-transferProc routine. This routine is of type
XtSelectionCallbackProc; it is responsible for actually processing the formatted data that is received from the
drag source. The routine is called for each target data type requested by the drop site. This routine takes the following
form:

 typedef void (*XtSelectionCallbackProc)(Widget, XtPointer, Atom *,
 Atom *, XtPointer, unsigned long*, int *);
 Widget widget;
 XtPointer client_data;

19 Drag and Drop 19.5.3 Handling the Drop

555

 Atom *selection;
 Atom *type;
 XtPointer value;
 unsigned long *length;
 int *format;

The widget parameter is the widget that requested the data, and client_data is the data specified in the
client_data field of the XmDropTransferEntryRec that is being processed. The type, value, length,
and format arguments contain the data that was converted by the drag source in its XmN-convertProc.

The TransferProc() routine in the source code checks the type to determine what needs to be done with the
data. I f the data is FILE_CONTENTS data, the text in value is p laced in the Text widget wi th
XmTextSetString(). Otherwise, the text is used to create a new value for XmN-labelString for the file
status area. Since the fi le status area requests both target data types, both formats are processed by
TransferProc().

The HandleDropText() routine for the ScrolledText object is very similar to HandleDropLabel(). The main
difference is that the routine for the text area checks the XmN-exportTargets resource of the DragContext object
to determine whether or not the drag source provides file data. If it does, HandleDropText() initiates the data
transfer just as in HandleDropLabel(). Otherwise, the text routine calls the XmN-dropProc that we retrieved
from the Text widget when we modified the drop site. By calling the original drop routine, we allow the Text widget
to process textual data as it would by default. As a result, the user can drop a file object in the text entry area, as well
as manipulate textual data in the widget using drag and drop.

Once a data transfer is in progress, additional targets for the DropTransfer object can be specified using
XmDropTransferAdd(). The primary use of this routine is for move operations. In this case, the drop site receives
a copy of the data from the drag source and then requests that the source delete the data. Once the drop site has stored
the data, it can call XmDropTransferAdd() to specify the DELETE target, which indicates to the initiating
application that it should delete the data.

19.5.4 Providing Help

Since it is not always obvious what will happen when data is dropped on a particular drop site, the user can request
help on a drop site by pressing the HELP or F1 key when the drag icon is over the drop site. An application should
provide help information for its drop sites to assist users in understanding the drag and drop capabilities of the
application. When the user requests help, the drop site should respond by posting an InformationDialog that explains
what would happen and allows the user to proceed with the drop or cancel it.

When the user presses HELP while the drag icon is over a drop site, the XmN-dropProc for the drop site is called
with the dropAction field in the callback structure set to to XmDROP_HELP. the source code shows a new
HandleDropLabel() routine for the editor_dnd.c application that provides help for the file status drop site. The
example also shows the HandleDropOK() and HandleDropCancel() callback routines for the help dialog.

 /* HandleDropLabel() −− start the data transfer when data is dropped in
 * the filename status area.
 */
 void
 HandleDropLabel(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Display *dpy;

19 Drag and Drop 19.5.4 Providing Help

556

 Atom FILE_CONTENTS, FILE_NAME;
 XmDropProcCallback DropData;
 XmDropTransferEntryRec transferEntries[2];
 XmDropTransferEntry transferList;
 Arg args[10];
 int n, i;
 Widget dc;
 Cardinal numExportTargets;
 Atom *exportTargets;
 Boolean file_name = False;
 static XmDropProcCallbackStruct client;
 static Widget dialog = NULL;
 XmString message;
 void HandleDropOK(), HandleDropCancel();
 void TransferProc();

 /* intern the Atoms for data targets */
 dpy = XtDisplay (toplevel);
 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);

 DropData = (XmDropProcCallback) call_data;
 dc = DropData−>dragContext;

 /* retrieve the data targets and search for FILE_NAME */
 n = 0;
 XtSetArg (args[n], XmNexportTargets, &exportTargets); n++;
 XtSetArg (args[n], XmNnumExportTargets, &numExportTargets); n++;
 XtGetValues (dc, args, n);

 for (i = 0; i < numExportTargets; i++) {
 if (exportTargets[i] == FILE_NAME) {
 file_name = True;
 break;
 }
 }

 /* if one of the targets is not FILE_NAME, transfer fails */
 if (!file_name) {
 n = 0;
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 }
 /* check if the user has requested help */
 else if (DropData−>dropAction == XmDROP_HELP) {
 /* create a dialog if it doesn't already exist */
 if (!dialog) {
 n = 0;
 message = XmStringCreateLtoR (help_str, XmFONTLIST_DEFAULT_TAG);
 XtSetArg (args[n], XmNdialogStyle,
 XmDIALOG_FULL_APPLICATION_MODAL); n++;
 XtSetArg (args[n], XmNtitle, "Drop Help"); n++;
 XtSetArg (args[n], XmNmessageString, message); n++;
 dialog = XmCreateInformationDialog (toplevel, "help", args, n);
 XmStringFree (message);

 XtUnmanageChild (XmMessageBoxGetChild
 (dialog, XmDIALOG_HELP_BUTTON));

 XtAddCallback (dialog, XmNokCallback, HandleDropOK,
 (XtPointer) &client);

19 Drag and Drop 19.5.4 Providing Help

557

 XtAddCallback (dialog, XmNcancelCallback, HandleDropCancel,
 (XtPointer) &client);
 }

 /* set up the callback structure for when the user proceeds
 * with the drop and pass it as client data to the callbacks
 * for the buttons.
 */
 client.dragContext = dc;
 client.x = DropData−>x;
 client.y = DropData−>y;
 client.dropSiteStatus = DropData−>dropSiteStatus;
 client.operation = DropData−>operation;
 client.operations = DropData−>operations;

 XtManageChild (dialog);
 return;
 }
 else if (DropData−>operation != XmDROP_COPY) {
 /* if the operation is not a copy, the transfer fails */
 n = 0;
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 }
 else {
 /* set up transfer requests since this is a normal drop */
 n = 0;
 transferEntries[0].target = FILE_CONTENTS;
 transferEntries[0].client_data = (XtPointer) text_edit;
 transferEntries[1].target = FILE_NAME;
 transferEntries[1].client_data = (XtPointer) file_label;
 transferList = transferEntries;
 XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
 XtSetArg (args[n], XmNnumDropTransfers,
 XtNumber (transferEntries)); n++;
 XtSetArg (args[n], XmNtransferProc, TransferProc); n++;
 }
 XmDropTransferStart (dc, args, n);
 }

 /* HandleDropOK() −− callback routine for OK button in drop site help
 * dialog that processes the drop as normal.
 */
 void
 HandleDropOK(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Display *dpy;
 Atom FILE_CONTENTS, FILE_NAME;
 XmDropProcCallbackStruct *DropData;
 XmDropTransferEntryRec transferEntries[2];
 XmDropTransferEntry transferList;
 Arg args[10];
 int n;
 Widget dc;
 void TransferProc();

 /* intern the Atoms for data targets */
 dpy = XtDisplay (toplevel);

19 Drag and Drop 19.5.4 Providing Help

558

 FILE_CONTENTS = XmInternAtom (dpy, "FILE_CONTENTS", False);
 FILE_NAME = XmInternAtom (dpy, "FILE_NAME", False);

 /* get the callback structure passed via client data */
 DropData = (XmDropProcCallbackStruct *) client_data;
 dc = DropData−>dragContext;

 n = 0;
 /* if operation is not a copy, the transfer fails */
 if (DropData−>operation != XmDROP_COPY) {
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 }
 else {
 /* set up transfer requests to process data transfer */
 transferEntries[0].target = FILE_CONTENTS;
 transferEntries[0].client_data = (XtPointer) text_edit;
 transferEntries[1].target = FILE_NAME;
 transferEntries[1].client_data = (XtPointer) file_label;
 transferList = transferEntries;
 XtSetArg (args[n], XmNdropTransfers, transferEntries); n++;
 XtSetArg (args[n], XmNnumDropTransfers,
 XtNumber (transferEntries)); n++;
 XtSetArg (args[n], XmNtransferProc, TransferProc); n++;
 }
 XmDropTransferStart (dc, args, n);
 }

 /* HandleDropCancel() −− callback routine for Cancel button in drop site
 * help dialog that cancels the transfer.
 */
 void
 HandleDropCancel(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmDropProcCallbackStruct *DropData;
 Arg args[10];
 int n;
 Widget dc;

 /* get the callback structures passed via client data */
 DropData = (XmDropProcCallbackStruct *) client_data;
 dc = DropData−>dragContext;

 /* user has canceled the transfer, so it fails */
 n = 0;
 XtSetArg (args[n], XmNtransferStatus, XmTRANSFER_FAILURE); n++;
 XtSetArg (args[n], XmNnumDropTransfers, 0); n++;
 XmDropTransferStart (dc, args, n);
 }

When the user requests help on the file status drop site, the application displays a help dialog, as shown in the figure.

19 Drag and Drop 19.5.4 Providing Help

559

A drag and drop help dialog

The new HandleDropLabel() routine handles the case when the dropAction field is set to XmDROP_HELP. In
this case, the routine creates an InformationDialog if it has not already been created. The HandleDropOK() and
HandleDropCancel() routines are registered for the OK and Cancel buttons in the dialog. If the dialog already
exists, the necessary fields in the client structure are specified so that the callback structure information is passed
to the callback routines as client data. If the user has performed a normal drop operation, the drop proceeds just as it
did in editor_dnd.c.

The HandleDropOK() routine is invoked when the user presses the OK button in the help dialog. This routine
proceeds with the drop by calling XmDropTransferStart(). The status of the transfer is based on whether the
drop performs a copy operation or not. HandleDropCancel() cancels the drop when the user presses the Cancel
button by -calling XmDropTransferStart() with XmN-transferStatus set to XmTRANS-FER_FAILURE.
One thing to note about both of these procedures is that they get the XmDropProcCallbackStruct from the
client_data parameter, since the call_data parameter is the callback structure for the dialog.

19.5.5 Providing Custom Drag−under Visuals

Under the preregister protocol, the drop site does not participate during the drag. The initiating application handles the
drag−under visual effects based on the value of the XmN-animationStyle resource for the drop site. This
resource can have one of the following values:

 XmDRAG_UNDER_HIGHLIGHT
 XmDRAG_UNDER_SHADOW_OUT
 XmDRAG_UNDER_SHADOW_IN
 XmDRAG_UNDER_PIXMAP
 XmDRAG_UNDER_NONE

The default value is XmDRAG_UNDER_HIGHLIGHT, which means that a highlighting rectangle is displayed around
the drop site when the drag icon enters it. The drop site can also be displayed with an inset or outset shadow using
XmDRAG_UNDER_SHADOW_OUT and XmDRAG_UNDER_SHADOW_IN, respectively. The

19 Drag and Drop19.5.5 Providing Custom Drag−under Visuals

560

XmDRAG_UNDER_PIXMAP value specifies that a special pixmap is displayed in the drop site when the drag icon is in
it; the XmN-animationPixmap and XmN-animationMask resources indicate the pixmap that is used. If
XmN-animationStyle is set to XmDRAG_UNDER_NONE, there are no animation effects unless they are provided
by the XmN-dragProc.

Under the dynamic protocol, the drop site can participate in the drag by specifying an XmN-dragProc. This callback
routine is invoked when the drag icon enters or leaves the drop site, when the drag icon moves within the drop site,
and when the operation changes while the icon is in the drop site. The callback receives a callback structure of the
type XmDragProcCallbackStruct, which is defined as follows:

 typedef struct {
 int reason;
 XEvent *event;
 Time timeStamp;
 Widget dragContext;
 Position x;
 Position y;
 unsigned char dropSiteStatus;
 unsigned char operation;
 unsigned char operations;
 Boolean animate;
 } XmDragProcCallbackStruct, *XmDragProcCallback;

The reason field is set to XmCR_DROP_SITE_ENTER_MESSAGE, XmCR_DROP_ SITE_LEAVE_MESSAGE,
XmCR_DRAG_MOTION_MESSAGE, or XmCR_OPERATION_ CHANGED_MESSAGE, depending on the event that
triggered the callback.

The dragContext field specifies the current DragContext object, while dropSiteStatus is set to either
XmDROP_SITE_VALID or XmDROP_SITE_INVALID, based on the values of XmN-importTargets and
XmN-exportTargets for the drop site and the drag source, respectively. The operations and operation
fields are set to the possible operations for the drag source data and the current operation, repectively. The value of
operations is based on the value of the XmN-dragOperations resource for the DragContext, while the value
of operation is based on operations and the value of XmN-dropSiteOperations.

The XmN-dragProc can change the values of these three fields based on any special processing it performs, such as
handling simulated drop sites. When the routine is done, the toolkit uses these values of the fields to initialize the
fields in the callback structure that is passed to the corresponding DragContext callback routine in the initiating
application.

The animate field specifies whether the toolkit or the receiving client is handling drag−under effects for the drop
site. If the value is True, as it is by default, the toolkit handles the effects based on the XmN-animationStyle
resource. The receiving client can set the field to False so that it is responsible for providing drag−under effects. The
main use of the -XmNdragProc is for providing specialized drag−under effects, such as actual animation, that the
toolkit itself does not support.

19.6 Summary

The drag and drop capabilities provided by Motif 1.2 are highly customizable, so an application can use the toolkit to
implement whatever functionality is necessary. The examples in this chapter have demonstrated many of the
techniques that an application needs to use to provide drag and drop functionality, but they really just scratch the
surface of what is possible.

19 Drag and Drop 19.6 Summary

561

Our examples implement the drag and drop features directly in application code because that is sufficient for our
purposes. However, if you are developing real applications, you should think seriously about encapsulating drag and
drop functionality in widgets, so that you can reuse the components in all of the applications.

19 Drag and Drop 19.6 Summary

562

20 Compound Strings

This chapter describes Motif's technology for encoding font changes and character directions in the strings that are
used by almost all of the Motif widgets.

Compound strings are designed to address two issues frequently encountered by application designers: the use of
foreign character sets to display text in other languages and the use of multiple fonts to render text. With the addition
of internationalized string rendering capabilities in X11R5, the use of compound strings for internationalization
purposes is theoretically no longer necessary. However, the Motif widget set still uses compound strings extensively,
so applications have no choice but to create them to display text.

20.1 Internationalized Text Output

The internationalization features in X11R5 are based on the ANSI−C locale model. Under this model, an application
uses a library that reads a customization database at run−time to get information about the user's language
environment. An Xt−based application can establish its language environment (or locale) by registering a language
procedure with XtSetLanguageProc(), as described in Section #slangproc. The language procedure returns a
language string that is used by XtResolvePathname() to find locale−specific resource files. See Volume Four,
X Toolkit Intrinsics Programming Manual, for more information on the localization of the resource database.

One of the important characteristics of a language environment is the encoding that is used to represent the character
set for the particular language. In X, character set simply refers to a set of characters, while an encoding is a numeric
representation of these characters. Both of these terms are different from the definition of a font, which is a collection
of glyphs used to represent the characters in an encoding. A charset (not the same as a character set) is an encoding in
which all of the characters have the same number of bits. Charsets are often defined by standards bodies such as the
International Standards Organization (ISO). For example, the ISO Latin−1 charset (ISO8859−1) defines an encoding
for the characters used in all Western languages. The first half of Latin−1 is standard ASCII, while the second half
(with the eighth bit set) contains accented characters needed for Western languages other than English. Character 65 in
I S O L a t i n − 1 i s a n u p p e r c a s e " A " , w h i l e 2 4 6 i s a l o w e r c a s e " o " w i t h a n u m l a u t
(<OVERSTRIKE<o[[umlaut]]>OVERSTRIKE>).

However, not all languages can be represented by a single charset. Japanese text commonly contains words written
using the Latin alphabet, as well as phonetic characters from the katakana and hirigana alphabets, and ideographic
kanji characters. Each of these character sets has its own charset; the phonetic and Latin charsets are 8−bits wide,
while the ideographic charset is 16−bits wide. The charsets must be combined into a single encoding for Japanese text,
so the encoding uses shift sequences to specify the character set for each character in a string.

Strings in an encoding that contains shift sequences and characters with non−uniform width can be stored in a
standard NULL−terminated array of characters; this representation is known as a multibyte string. Strings can also be
stored using a wide−character type in which each character has a fixed size and occupies one array element in the
string. The text output routines in X11R5 support both multibyte and wide−character strings. To support languages
that use multiple charsets, X developed the XFontSet abstraction for its text output routines. An XFontSet
contains all of the fonts that are needed to display text in the current locale. The new text output routines work with
font sets, so they can render text for languages that require multiple charsets. See Volume One, Xlib Programming
Manual, for more information on internationalized text output.

With the addition of these features in X, a developer can write an internationalized application without using the
internationalization features provided by compound strings. In an internationalized application, strings are interpreted

563

using the encoding for the current locale. To support a number of locales, the application needs to store string data in
separate files from the application code. The application must provide a separate file for each of the locales supported,
so that the program can read the appropriate file during localization.

However, since most Motif widgets use compound strings for representing textual data, a Motif application has to use
compound strings to display text. As we describe compound strings in this chapter, we'll discuss how to use them so
as not to interfere with the lower−level X internationalization features.

20.2 Creating Compound Strings

Almost all of the Motif widgets use compound strings to specify textual data. Labels, PushButtons, and Lists, among
others, all require their text to be given in compound string format, whether or not you require the additional
flexibility compound strings provide. The only widgets that don't use compound strings are the Text and TextField
widgets. As a result, you cannot use the compound string techniques for displaying text using multiple fonts.
However, in Motif 1.2, these widgets do support internationalized text output, so they can display text using multiple
character sets. For information on the internationalization capabilities of the Text and TextField widgets, see Section
#stexti18n.

A compound string (XmString) is made of three components: a tag, a direction, and text. The tag is an arbitrary
name that the programmer can use to associate a compound string with a particular font or font set. In Motif 1.1, the
tag was referred to as a character set. Since the tag doesn't necessarily specify a character set, Motif 1.2 now refers to
the entity as a font list tag; this change is strictly semantic. The tag−to−font mapping is done on a per−widget basis, so
the same name can map to different fonts for different widgets.

An application can create a compound string that uses multiple fonts by concatenating separate compound strings with
different tags to produce a single compound string. Concatenating compound strings with different fonts is a powerful
way to create graphically interesting labels and captions. More importantly, because fonts are loosely bound to
compound strings via resources, you can dynamically associate new fonts with a widget while an application is
running and effectively change text styles on the fly.

20.2.1 The Simple Case

Many applications only need to use compound strings to specify various textual resources. In this case, all that is
needed is a routine that converts a standard C−style NULL−terminated text string into a compound string. The most
basic form of conversion can be done using the XmStringCreateLocalized() function, as demonstrated in
examples throughout this book. This routine takes the following form:

 XmString
 XmStringCreateLocalized(text)
 char *text;

The text parameter is a common C char string. The value returned is of type XmString, which is an opaque type
to the programmer.

XmStringCreateLocalized() is a new routine in Motif 1.2; it creates a compound string in the current locale,
which is specified by the tag XmFONTLIST_DEFAULT_TAG. This routine interprets the text string in the current
locale when creating the compound string. If you are writing an internationalized application that needs to support
multiple locales, you should use XmStringCreateLocalized() to create compound strings. The routine allows
you to take advantage of the lower−level internationalization features of X.

20 Compound Strings 20.2 Creating Compound Strings

564

Most applications specify compound string resources in resource files. This technique is appropriate for an
internationalized application, as there can be a separate resource file for each language environment that is supported.
Motif automatically converts all strings that are specified in resource files into compound strings using
XmStringCreateLocalized(), so the strings are handled correctly for the current locale. If an application
needs to create a compound string programmatically, it should use XmStringCreateLocalized() to ensure that
t h e s t r i n g i s i n t e r p r e t e d i n t h e c u r r e n t l o c a l e . A l l o f t h e e x a m p l e s i n t h i s b o o k u s e
XmStringCreateLocalized() to demonstrate the appropriate technique, even though the examples are only
designed to work in the C locale.

With Motif 1.1, you should use the XmStringCreateSimple() routine to create a compound string that uses the
default character set and direction. This function is obsolete in Motif 1.2; it remains for backwards−compatibility
purposes only. With both XmStringCreateLocalized() and XmStringCreateSimple(), you cannot
explicitly specify the tag or the string direction that is used for the compound string, and the string cannot have
multiple lines.

Both XmStringCreateLocalized() and XmStringCreateSimple() allocate memory to store the
compound string that is returned. Widgets that have compound string resources always allocate their own space and
store copies of the compound string values you give them. When you are done using a compound string to set widget
resources, you must free it using XmStringFree(). The following code fragment demonstrates this usage:

 XmString str = XmStringCreateLocalized ("Push Me");

 XtVaCreateManagedWidget ("widget_name",
 xmPushButtonGadgetClass, parent,
 XmNlabelString, str,
 NULL);

 XmStringFree (str);

The process of creating a compound string, setting a widget resource, and then freeing the string is the most common
use of compound strings. However, this process involves quite a bit of overhead, as memory operations are expensive.
Memory is allocated by the string creation function and again by the internals of the widget for its own storage, and
then your copy of the string must be deallocated.

The programmatic interface to the string creation process can be simplified by using the XtVaTypedArg feature in
Xt. This special resource can be used in variable argument l ist specif ications for functions such as
XtVaCreateManagedWidget() and XtVaSetValues(). It allows you to specify a resource using a
convenient type and have Xt do the conversion for you. In the case of compound strings, we can use this method to
convert a C string to a compound string. The following code fragment has the same effect as the previous example:

 XtVaCreateManagedWidget ("widget_name",
 xmPushButtonWidgetClass, parent,
 XtVaTypedArg, XmNlabelString, XmRString,
 "Push Me", 8, /* or strlen ("Push Me") + 1 */
 NULL);

XtVaTypedArg takes four additional parameters: the name of the resource, the type of the value specified for the
resource, the value itself, and the size of the value. We set the XmN-labelString resource. We want to avoid
converting the character string to a compound string, so we specify a char* value and XmRString as its type. This
terminology may be confusing to a new Motif programmer. Xt uses the typedef String for char*. The
representation type used by Xt resource converters for this type is XtRString (XmRString in Motif). A compound
string, on the other hand, is of type XmString; its representation type is XmRXmString. You just have to read the
symbols carefully. Resource converters are described in detail in Volume Four, X Toolkit Intrinsics Programming

20 Compound Strings 20.2 Creating Compound Strings

565

Manual, Motif Edition. The string "Push Me" is the string value; the length of the string, including the
NULL−terminating byte, is 8.

The XtVaTypedArg method for specifying a compound string resource is only a programmatic convenience; it does
not save time or improve performance. The three−step process of creating, setting, and freeing the compound string
still takes place, but it happens within Motif's compound string resource converter. Using automatic conversion is
actually slower than converting a string using XmStringCreateLocalized(). However, unless you are creating
hundreds of strings, the difference is negligible. The convenience and elegance of the XtVaTypedArg method may
be worth the performance tradeoff.

The reason most of the examples in this book do not make use of the feature is that we are trying to demonstrate good
programming techniques tuned to a large−scale, production−size, and quality application. Using the XtVaTypedArg
method for compound strings is painfully slow when repeated over hundreds of Labels, PushButtons, Lists, and other
widgets. The XtVaTypedArg method is perfectly reasonable for converting other types of resources, however. If
you are converting a lot of values from one type to another, it is in your own best interest to evaluate the conversion
process yourself by testing the automatic versus the manual conversion methods.

20.2.2 Font List Tags

Motif provides two different compound string creation routines that allow you to specify a tag used to associate the
compound string with a font or a font set. This tag is a programmer−specified identifier that enables a Motif widget to
pick its font from a list of fonts at run−time. In Motif 1.1, the font list tag was referred to as a character set, but strictly
speaking, it does not specify a character set.

The XmStringCreate() and XmStringCreateLtoR() routines allow you to specify a font list tag. These
routines take the following form:

 XmString
 XmStringCreate(text, tag)
 char *text;
 char *tag;

 XmString
 XmStringCreateLtoR(text, tag)
 char *text;
 char *tag;

Both of these routines create and allocate a new compound string and associate the tag parameter with that string. As
with any compound string, be sure to free it with XmStringFree() when you are done using it.

XmStringCreate() creates a compound string that has no specified direction. The default direction of a string
may be taken from the XmNstringDirection resource. This resource is defined by manager widgets; it specifies
the str ing di rect ion for a l l the chi ldren of the manager. I f the defaul t d i rect ion is not adequate,
XmStringDirectionCreate() can be used to create a compound string with an explicit direction, as we'll
discuss shortly.

XmStringCreateLtoR() creates a compound string in which the direction is hard−coded as left−to−right. Motif
also defines the XmStringLtoRCreate() routine; its functionality is identical to XmStringCreateLtoR().
This function is also useful for converting newline−separated strings into
compound strings, as we explain later in this section. Unfortunately, Motif
does not provide a corresponding right−to−left compound string creation
function. If you need such a routine, it is not that difficult to write one.

20 Compound Strings 20.2.2 Font List Tags

566

The actual font or font set that is associated with the compound string is dependent on the widget that renders the
string. Every Motif widget that displays text has an XmNfontList resource. This resource specifies a list of fonts
and/or font sets for the widget; each entry in the list may have an optional tag associated with it. For example, a
resource file might specify a font list as follows:

 fontList: −−courier−*−r−*−−*−120−*=TAG1, −*−courier−*−r−*−−*−140−*=TAG2, −*−courier−*−r−*−−*−180−*=TAG3

At run−time, the compound string is rendered using the first font or font set in the widget's font list that matches the
font list tag specified in the compound string creation function. In Motif 1.2, the compound string rendering functions
use the new X11R5 text output functions, so compound strings are displayed appropriately for the current locale. If
Motif cannot find a match, the compound string is rendered using the first item in the widget's font list, regardless of
its tag. This loose binding between the compound string and the font or font set used to render it is useful in a number
of ways:

The same compound string can be rendered using different fonts in different widgets simply by specifying a
different font list for each widget. For example:

•

 XmPushButton.fontList: −−courier−*−r−*−−*−120−*=TAG1
 XmPushButtonGadget.fontList: −−courier−*−r−*−−*−120−*=TAG1
 XmList.fontList: −−helvetica−*−r−*−−*−120−*=TAG1

These resource settings indicate that TAG1 maps to a 12−point Courier font for all PushButton widgets and
gadgets and maps to a 12−point Helvetica font for all List widgets.
Compound strings rendered in different fonts can be concatenated to create a multi−font compound string.
The font for each segment is selected from the widget's font list by means of a unique tag.

•

Compound strings can be language−independent, with the tag used to select between fonts with different
character set encodings. This is the least common use for compound strings, and as of X11R5, it is no longer
needed to support internationalized text output.

•

the source code demonstrates how a compound string can be rendered using different fonts in different PushButton
widgets. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* string.c −− create a compound string with the "MY_TAG" tag.
 * The tag defaults to the "9x15" font. Create three pushbuttons:
 * pb1, pb2, and pb3. The user can specify resources so that each of the
 * widgets has a different font associated with the "MY_TAG" tag
 * specified in the compound string.
 */
 #include <Xm/RowColumn.h>
 #include <Xm/PushBG.h>

 String fallbacks[] = { "*fontList:9x15=MY_TAG", NULL };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol;
 XtAppContext app;
 XmString text;
 Display *dpy;

 XtSetLanguageProc (NULL, NULL, NULL);

20 Compound Strings 20.2.2 Font List Tags

567

 toplevel = XtVaAppInitialize (&app, "String", NULL, 0,
 &argc, argv, fallbacks, NULL);

 text = XmStringCreate ("Testing, testing...", "MY_TAG");

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 NULL);

 XtVaCreateManagedWidget ("pb1",
 xmPushButtonGadgetClass, rowcol,
 XmNlabelString, text,
 NULL);

 XtVaCreateManagedWidget ("pb2",
 xmPushButtonGadgetClass, rowcol,
 XmNlabelString, text,
 NULL);

 XtVaCreateManagedWidget ("pb3",
 xmPushButtonGadgetClass, rowcol,
 XmNlabelString, text,
 NULL);

 XmStringFree (text);
 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

This simple program creates three PushButton gadgets that all use the same compound string for their labels. The font
list tag MY_TAG is associated with the 9x15 font in the fallback resources. By default, all of the buttons look the
same, as shown in the figure.

Output of string.c

However, the figure shows what happens to the output when the following resources are specified:

 pb1.fontList: −−courier−*−r−*−−*−120−*=MY_TAG
 pb2.fontList: −−courier−*−r−*−−*−140−*=MY_TAG
 pb3.fontList: −−courier−*−r−*−−*−180−*=MY_TAG

20 Compound Strings 20.2.2 Font List Tags

568

Output of string.c with font list resources set

The font associated with MY_TAG for each of the PushButtons is different, so the compound string for each one is
rendered in a different font. This case isn't really that exciting, however, because we could have achieved the same
effect without specifying a font list tag for each font. Since each font list only contains one font, Motif has no choice
but to display the compound string using that font. The following resource specification creates the output shown in
the figure:

 pb1.fontList: −−courier−*−r−*−−*−120−*
 pb2.fontList: fixed,−−courier−*−r−*−−*−140−*=ANOTHER_TAG
 pb3.fontList: fixed,−−courier−*−r−*−−*−180−*=MY_TAG

Output of string.c with multiple font list resources set

In this case, the compound string in the first PushButton uses a 12−point Courier font, since that is the only font in the
font list. The second PushButton uses the fixed font because it is first in the list and neither of the fonts has
MY_TAG associated with it. The third button uses the 18−point Courier font associated with MY_TAG. In Motif 1.2,
the constant XmFONTLIST_DEFAULT_TAG is used to tag compound strings that are created in the encoding of the
current locale. When a compound string is created using XmStringCreateLocalized(), this tag is used. The
equivalent compound string can also be created using XmStringCreate() with the tag explicitly set to
XmFONTLIST_DEFAULT_TAG. Just as with other font list tags, Motif looks for a font or font set with a matching tag
when it renders the compound string. This font list tag is used to identify the font or font set that is correct for the
encoding of the current locale. If a font list does not use XmFONTLIST_DEFAULT_TAG, the first item in the font list
is automatically associated with this tag.

An internationalized application should only use XmFONTLIST_DEFAULT_TAG in font lists to ensure that
compound strings are rendered correctly for the current locale. However, it is possible to use explicit font list tags for
locale−specific text. Explicit tags are necessary when an application wants to display compound strings using different
point sizes or type styles. In this case, the compound string and the font list associated with it need to use the same tag,
and the tag should be mapped to XmFONTLIST_DEFAULT_TAG using XmRegisterSegmentEncoding().

20 Compound Strings 20.2.2 Font List Tags

569

In Motif 1.1, the first font in widget's font list is the default character set for that widget. If the widget does not have a
font list, it uses a default character set referred to by the constant XmSTRING_DEFAULT_CHARSET. If the user has
set the LANG environment variable, its value is used for this character set. If this value is invalid or its associated font
cannot be used, Motif uses the value of XmFALLBACK_CHARSET, which is vendor−defined but typically set to
"ISO8859−1".

For backwards compat ib i l i ty , Mot i f 1.2 essent ia l ly equates XmFONTLIST_DEFAULT_TAG wi th
XmSTRING_DEFAULT_CHARSET when it cannot find an exact match between a compound string and a font list.
XmFONTLIST_DEFAULT_TAG in a compound string or font list matches the tag used in creating a compound string
or specifying a font list entry with the tag XmSTRING_DEFAULT_CHARSET. Some Motif widgets define font list
resources that allow them to provide a consistent appearance for all of their children. In Motif 1.2, the VendorShell
widget defines the XmNbuttonFontList, XmNlabelFontList, and XmNtextFontList resources, while the
MenuShell defines XmNbuttonFontList and XmNlabelFontList. These resources apply to all of the buttons,
Labels, and Text widgets that are descendents of the widget. In Motif 1.1, the VendorShell and MenuShell only
defined the XmNdefaultFontList resource; this resource applied to all of the children of the widget. For
backwards compatibility, if one of the more specific font list resources is not set, its value is taken from
XmNdefaultFontList.

The BulletinBoard widget defines the XmNbuttonFontList, XmNlabelFontList, and XmNtextFontList
resources primarily for use in dialog boxes. These font lists apply to the buttons, Labels, and Text widgets that
descend from a BulletinBoard. For more information on the use of the resources in dialog boxes, see Chapter 5,
Introduction to Dialogs.

All of these font list resources are designed to help you maintain a consistent interface. However, you can always
specify the font for a particular button, Label, or Text widget using the widget's XmNfontList resource, as this
resource overrides the more general ones.

20.2.3 Compound String Segments

A compound string is composed of segments, where each segment contains a continuous sequence of text with no
change in font list tag or direction. A compound string segment can be terminated by a separator, which is the
equivalent of a newline in a character string. Separators in compound strings should not be confused with the
Separator widget and gadget class. Segments can be concatenated with other segments or compound strings to create
longer strings; each segment can specify a different tag and direction to make a string that uses mutiple fonts and
directions.

XmStringSegmentCreate() provides complete control over the creation of a compound string, as it allows you
to specify the text, a font list tag, and a direction. This routine also lets you specify whether or not a separator is added
to the compound string. The routine takes the following form:

 XmString
 XmStringSegmentCreate(text, tag, direction, separator)
 char *text;
 char *tag;
 XmStringDirection direction;
 Boolean separator;

Compound strings are rendered either from left−to−right or from right−to−left. If you are going to use left−to−right
strings uniformly in your applications, you really don't need to read this section. There are several ways to build a
compound string that is rendered from right−to−left; the best method is dependent on the nature of your application.

20 Compound Strings 20.2.3 Compound String Segments

570

If your application uses right−to−left strings for all of its widgets, you may want to use the Manager
XmNstringDirection resource. This resource specifies the direction for compound strings used by widgets that
are immediate children of a Manager widget, provided that the string direction is not hard−coded in the compound
s t r i n g s . I f y o u u s e t h i s r e s o u r c e , y o u c a n c o n t i n u e t o u s e X m S t r i n g C r e a t e () o r
XmStringCreateLocalized() to create compound strings.

Most right−to−left languages display certain things, like numbers, from left−to−right, so it is not always possible to
use the XmNstringDirection resource. In this case, you have to create compound string segments that hard−code
their directional information. You can create individual string segments with a specific by direction using either
XmStringDirectionCreate() or XmStringSegmentCreate(). Both of these routines take an argument
of type XmStringDirection , which is defined as an unsigned char . You can specify either
XmSTRING_DIRECTION_R_TO_L or XmSTRING_DIRECTION_ L_TO_R for values of this type.

When using XmStringSegmentCreate(), you specify the string direction using the direction parameter. For
example, we can change the call to XmStringCreate() in the source code to the following:

 text = XmStringSegmentCreate ("Testing, testing...", "MY_TAG",
 XmSTRING_DIRECTION_R_TO_L, False);

Obviously, you would normally do this only if you were using a font that was meant to be read from right−to−left,
such as Hebrew or Arabic. The output that results from this change is shown in the figure.

Output of string.c using a right−to−left string direction

You can also use the function XmStringDirectionCreate() to create a compound string segment that contains
only directional information. This routine takes the following form:

 XmString
 XmStringDirectionCreate(direction)
 XmStringDirection direction;

The routine returns a compound string segment that can be concatenated with another compound string to cause a
directional change. Separators are used to break compound strings into multiple lines, in much the same way that a
newline character does in a character string. To demonstrate separators, we can change the string creation line in the
source code to the following:

 text = XmStringCreateLtoR ("Testing,0esting...", "MY_TAG");

In this case, we use XmStringCreateLtoR() not because we need to specify the left−to−right direction

20 Compound Strings 20.2.3 Compound String Segments

571

explicitly, but because this function interprets embedded newline characters (\n) as separators. The effect of this
change is shown in the figure, where the PushButtons display multiple lines of text.

Output of string.c using separators to render multiple lines

XmStringCreate() and XmStringSegmentCreate() do not interpret newline characters as separators; they
create a single compound string segment in which the '\n' is treated just like any other character value in the
associated font or font set, as shown in the figure. XmStringSegmentCreate(), however, can be told to append
a separator to the compound string it creates.

Output of string.c with \n not interpreted as a separator

Most applications need newline characters to be interpreted as separators. For example, if you are using fgets() or
read() to read the conten ts o f a f i le , and newl ines are read in to the bu f fe r , you shou ld use
XmStringCreateLtoR() to convert the buffer into a compound string that contains separators. the source code
shows a function that reads the contents of a file into a buffer and then converts that buffer into a compound string.
XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 XmString
 ConvertFileToXmString(filename, &lines)
 char *filename;
 int *lines;
 {
 struct stat statb;
 int fd, len, lines;
 char *text;
 XmString str;

 *lines = 0;
 if (!(fd = open (filename, O_RDONLY))) {

20 Compound Strings 20.2.3 Compound String Segments

572

 XtWarning ("Internal error −− can't open file");
 return NULL;
 }
 if (fstat (fd, &statb) == −1 ||
 !(text = XtMalloc ((len = statb.st_size) + 1))) {
 XtWarning ("Internal error −− can't show text");
 close (fd);
 return NULL;
 }
 (void) read (fd, text, len);
 text[len] = 0;

 str = XmStringCreateLtoR (text, XmFONTLIST_DEFAULT_TAG);

 XtFree (text);
 close (fd);

 *lines = XmStringLineCount (str);
 return str;
 }

Since separators are considered to be line breaks, we can count the number of lines in the compound string using the
function XmStringLineCount(). However, this does not imply that separators terminate compound strings or
cause font changes. As we have shown, a separator can be inserted into the middle of a compound string without
terminating it. The fact that separate segments are created has little significance unless you need to convert compound
strings back into C strings, which we discuss in Section #sstringcvt.

20.2.4 Multiple−font Strings

Once multiple font list tags are specified in a font list, you can use the list to display more than one font or font set in a
single compound string. You can create a multi−font string in one of two ways: create the compound text in segments
or create separate compound strings. Either way, once the segments or strings have been created, they must be
concatenated together to form a new compound string that has font−change information embedded in it. the source
code demonstrates the creation of a compound string that uses three fonts. XtSetLanguageProc() is only
available in X11R5; there is no corresponding function in X11R4.

 /* multi_font.c −− create three compound strings using 12, 14 and 18
 * point fonts. The user can specify resources so that each of the strings
 * use different fonts by setting resources similar to that shown
 * by the fallback resources.
 */
 #include <Xm/Label.h>

 String fallbacks[] = {
 "multi_font*fontList:−*−courier−*−r−*−−12−*=TAG1,−*−courier−bold−o−*−−14−*=TAG2,−*−courier−medium−r−*−−18−*=TAG3",
 NULL
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;
 XmString s1, s2, s3, text, tmp;
 String string1 = "This is a string ",
 string2 = "that contains three ",
 string3 = "separate fonts.";

20 Compound Strings 20.2.4 Multiple−font Strings

573

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "String", NULL, 0,
 &argc, argv, fallbacks, NULL);

 s1 = XmStringCreate (string1, "TAG1");
 s2 = XmStringCreate (string2, "TAG2");
 s3 = XmStringCreate (string3, "TAG3");

 /* concatenate the 3 strings on top of each other, but we can only
 * do two at a time. So do s1 and s2 onto tmp and then do s3.
 */
 tmp = XmStringConcat (s1, s2);
 text = XmStringConcat (tmp, s3);

 XtVaCreateManagedWidget ("widget_name",
 xmLabelWidgetClass, toplevel,
 XmNlabelString, text,
 NULL);

 XmStringFree (s1);
 XmStringFree (s2);
 XmStringFree (s3);
 XmStringFree (tmp);
 XmStringFree (text);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

The output of this program is shown in the figure.

Output of multi_font.c

The XmNfontList resource is specified using three fonts, each with a distinct font list tag. We create each string
using XmStringCreate() with the appropriate text and tag. Then we concatenate the strings using
XmStringConcat(), two at a time until we have a single compound string that contains all the text.
XmStringConcat() does not work like strcat() in C. The Motif function creates a new compound string that
is composed of the two existing strings, rather than appending one string to the other string. Details of this function
and other related functions are discussed in Section #sstringfunc.

It is possible to specify compound string resource values, such as the XmNlabelString resource of the Label
widget, in a resource file as normal C strings. Motif provides a resource converter that converts the character string
into a compound string. However, this resource converter does not allow you to specify font list tags in the character
string. If you need font changes within a compound string, you need to create the compound strings explicitly in your
application as we have done in the source code

20 Compound Strings 20.2.4 Multiple−font Strings

574

20.3 Manipulating Compound Strings

Most C programmers are used to dealing with functions such as strcpy(), strcmp(), and strcat() to copy,
compare, and modify strings. However, these functions do not work with compound strings, as they are not based on a
byte−per−character format, and they may have NULL characters as well as other types of information embedded in
them. In order to perform these common tasks, you can either convert the compound string into a character string, or
you can use the compound string manipulation functions provided by Motif. The method you choose depends largely
on the complexity of the compound strings you have and/or the complexity of the manipulation you need to do.

20.3.1 Compound String Functions

Motif provides a number of functions that allow you to treat compound strings in much the same way that you treat
C−style character arrays. The toolkit provides the following routines:

 XmStringByteCompare()
 XmStringCompare()
 XmStringConcat()
 XmStringCopy()
 XmStringEmpty()
 XmStringHasSubstring()
 XmStringLength()
 XmStringNConcat()
 XmStringNCopy()

Both XmStringCompare() and XmStringByteCompare() compare two compound strings. These routines
take the following form:

 Boolean
 XmStringCompare(string1, string2)
 XmString string1, string2;

 Boolean
 XmStringByteCompare(string1, string2)
 XmString string1, string2;

XmStringCompare() simply checks if the strings have the same text components, directions, and separators; it
returns True if they do. This routine is simpler and more frequently used than XmStringByteCompare(), which
performs a byte−by−byte comparison of the two compound strings. If each string uses the same font list tags, has the
same direction, and contains the same embedded char string internally, the function returns True. The mapping
between font list tags and fonts does not happen until a compound string is rendered by a widget, so whether or not the
same font list tag actually maps to two different fonts does not affect the results of this function.

XmStringConcat() and XmStringNConcat() can be used to concatenate compound strings. These functions
take the following form:

 XmString
 XmStringConcat(string1, string2)
 XmString string1, string2;

 XmString
 XmStringNConcat(string1, string2, n)
 XmString string1, string2;
 int n;

20 Compound Strings 20.3 Manipulating Compound Strings

575

Both of these routines create a new compound string and copy the concatenation of string1 and string2 into the
newly allocated string. XmStringNConcat() copies all of string1, but only n bytes from string2, into the
new string. The original strings are preserved, and you are responsible for freeing the string returned by the routines
using XmStringFree().

You can copy a compound string using either XmStringCopy() or XmStringNCopy(), which take the
following forms:

 XmString
 XmStringCopy(string)
 XmString string;

 XmString
 XmStringNCopy(string, n)
 XmString string;
 int n;

Both functions copy string into a newly−allocated compound string; XmStringNCopy() only copies n bytes
from string.

XmStringHasSubstring() determines whether or not a compound string contains a particular substring. The
routine has the following form:

 Boolean
 XmStringHasSubstring(string, substring)
 XmString string, substring;

For this function, substring must be a single−segment compound string. If its text is completely contained within
any single segment of string, the function returns True. The two strings must use the same font list tags for the
routine to return True.

To get the length of a compound string, use XmStringLength(), which has the following form:

 int
 XmStringLength(string)
 XmString string;

This function returns the number of bytes in the compound string including all tags, direction indicators, and
separators. If the structure of string is invalid, the routine returns zero. This function cannot be used to get the
length of the text represented by the compound string; it is not the same as strlen()).

You can determine whether or not a compound string contains any segments using XmStringEmpty(), which
takes the following form:

 Boolean
 XmStringEmpty(string)
 XmString string;

This function returns True if there are no segments in the specified string and False, otherwise. If the routine is
passed NULL, it returns True.

20 Compound Strings 20.3 Manipulating Compound Strings

576

20.3.2 Compound String Retrieval

You can retrieve a compound string from a Motif widget using XtVaGetValues(). However, the way
XtVaGetValues() is used for compound string resources is different than how it is used for most other resources.
The value returned by XtVaGetValues() for a compound string resource is a copy of the internal data, so the
compound string must be freed by the application, as shown in the following code fragment:

 XmString str;
 extern Widget pushbutton;
 char *text;

 XtVaGetValues (pushbutton, XmNlabelString, &str, NULL);
 ...
 /* do whatever you want with the compound string */
 ...
 XmStringFree (str); /* must free compound strings from GetValues */

To avoid memory leaks in your application, you must remember to free any compound strings that you retrieve from a
widget using XtVaGetValues().

20.3.3 Compound String Conversion

If the Motif routines described in the previous section are inadequate for your needs, you can convert compound
strings back into C strings and manipulate them using the conventional C functions. This process can be simple or
complicated depending on the complexity of the compound string to be converted. If the compound string only has
one tag associated with it and has a left−to−right orientation, the process is quite simple. In this case, which is quite
common, you can use the following function to make the conversion:

 Boolean
 XmStringGetLtoR(string, tag, text)
 XmString string;
 XmStringCharSet tag;
 char **text;

XmStringGetLtoR() takes a compound string and a tag and converts it back into a C character string. If
successful, the function returns True, and the text parameter points to a newly−allocated string. Since the routine
allocates storage for the character string, you must free this pointer when you are done using it, as shown in the
following code fragment:

 XmString string;
 char *text;

 if (XmStringGetLtoR (string, "MY_TAG", &text)) {
 printf ("Text = %s0, text);
 XtFree (text);
 }

As its name implies, XmStringGetLtoR() only gets left−to−right oriented text. Additionally, the function only
gets the first text segment from the compound string that is associated with the specified tag. If the string contains
multiple tags or has a right−to−left direction, you need to traverse the compound string and retrieve each segment
individually in order to obtain the entire string. Motif defines a new type, XmStringContext, that is used to
identify and maintain the position within the compound string being scanned. To cycle through a compound string,
you need to use the following sequence of operations:

20 Compound Strings 20.3.2 Compound String Retrieval

577

Initialize a string context for the compound string using XmStringInitContext().•
Iterate through the string by calling XmStringGetNextSegment() to get the character set, C string,
direction, and separator associated with each segment.

•

Free the string context using XmStringFreeContext().•

XmStringInitContext() initializes a string context that allows an application to read the contents of a
compound string segment by segment. This routine takes the following form:

 Boolean
 XmStringInitContext(context, string)
 XmStringContext *context;
 XmString string;

The function allocates a new XmStringContext type and sets the pointer that is passed by the calling function in
the context parameter to this data. If the allocation is successful and the compound string is valid, the function
returns True.

Once the s t r ing con tex t has been in i t ia l i zed , the con ten ts o f the s t r ing can be scanned us ing
XmStringGetNextSegment():

 Boolean
 XmStringGetNextSegment(context, text, tag, direction, separator)
 XmStringContext context;
 char **text;
 XmStringCharSet *tag;
 XmStringDirection *direction;
 Boolean *separator;

The routine does not take an XmString parameter because the context parameter is used to keep track of the
compound string. The function reads the next segment; it stops when it encounters a new tag or a directional change.
The values for text, tag, and direction are filled in, and if a separator is found at the end of the segment,
separator is set to True. The text parameter points to allocated data that should be freed by the caller using
XtFree().

When you are through scanning the compound st r ing, you need to f ree the st r ing context us ing
XmStringFreeContext(), which takes the following form:

 void
 XmStringFreeContext(context)
 XmStringContext context;

the source code shows a routine that uses these functions to print a compound string used as the label for a widget.

 void
 PrintLabel(widget)
 Widget widget;
 {
 XmString str;
 XmStringContext context;
 char *text, *tag, buf[128], *p;
 XmStringDirection direction;
 Boolean separator;

 XtVaGetValues (widget, XmNlabelString, &str, NULL);

20 Compound Strings 20.3.2 Compound String Retrieval

578

 if (!XmStringInitContext (&context, str)) {
 /* compound strings from GetValues still need to be freed! */
 XmStringFree (str);
 XtWarning ("Can't convert compound string.");
 return;
 }

 /* p keeps a running pointer thru buf as text is read */
 p = buf;

 while (XmStringGetNextSegment (context, &text, &tag,
 &direction, &separator)) {
 /* copy text into p and advance to the end of the string */
 p += (strlen (strcpy (p, text)));
 if (separator == True) { /* if there's a separator ... */
 *p++ = '0;
 p = 0; / add newline and null−terminate */
 }
 XtFree (text); /* we're done with the text; free it */
 }

 XmStringFreeContext (context);
 XmStringFree (str);

 printf ("Compound string:0s0, buf);
 }

20.4 Working With Font Lists

As we have demonstrated, font lists can be set in a resource file. If your application is robust enough to handle any
particular font that the user may specify, you are encouraged to use fallback resources and the application defaults
files for all font list specifications. This technique simplifies maintenance for your application, as you do not have to
open fonts, maintain handles to them, and free them. If you are writing an internationalized application, you should
only specify font lists in resource files so that you can specify different fonts and/or font sets in the resource files for
different locales.

However, if you specifically don't want the user to override your font specifications, you can hard−code fonts within
the application using various Motif routines to create a font list. In this case, you are taking on the responsibility of
creating, maintaining, and destroying fonts as necessary. Motif also provides routines that allow you to retrieve
information about a font list.

20.4.1 Creating Font Lists

All of the font list creation functions deal with a font list object of type XmFontList. This type is intended to be
opaque, so you should not attempt to access the internal fields of the data structure. If you need information about the
fonts in a font list, you can use the routines for querying a font list that we are going to describe.

The Motif API for font lists has changed significantly in Motif 1.2 to support the new XFontSet abstraction. The
Motif 1.1 routines exist for backwards compatibility, but they are now obsolete. In Motif 1.2, each item in a font list
specifies an XmFontListEntry and an associated tag, while in Motif 1.1 each item specifies a font and a character
set tag. The XmFontListEntry type is an opaque type that can specify either a font or a font set.

The process for creating a font list involves creating individual font list entries and then appending these entries to a
font list. the source code shows a program that produces the same output as the source code but now the font list is

20 Compound Strings 20.4 Working With Font Lists

579

hard−coded in the program. XtSetLanguageProc() is only available in X11R5; there is no corresponding
function in X11R4. XmFontListEntryCreate() is only available in Motif 1.2; there is no corresponding
function in Motif 1.1. XmFontListAppendEntry() is only available in Motif 1.2; XmFontListCreate()
and XmFontListAdd() are the corresponding functions in Motif 1.1.

 /* fontlist.c −− demonstrate how to create, add to, and destroy
 * font lists. The fonts and text displayed are hardcoded in
 * this program and cannot be overriden by user resources.
 */
 #include <Xm/Label.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel;
 XtAppContext app;
 XmString s1, s2, s3, text, tmp;
 XmFontListEntry entry1, entry2, entry3;
 XmFontList fontlist;
 String string1 = "This is a string ",
 string2 = "that contains three ",
 string3 = "separate fonts.";

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 entry1 = XmFontListEntryLoad (XtDisplay (toplevel),
 "−*−courier−*−r−*−−*−120−*", XmFONT_IS_FONT, "TAG1");
 entry2 = XmFontListEntryLoad (XtDisplay (toplevel),
 "−*−courier−bold−o−*−−*−140−*", XmFONT_IS_FONT, "TAG2");
 entry3 = XmFontListEntryLoad (XtDisplay (toplevel),
 "−*−courier−medium−r−*−−*−180−*", XmFONT_IS_FONT, "TAG3");
 fontlist = XmFontListAppendEntry (NULL, entry1);
 fontlist = XmFontListAppendEntry (fontlist, entry2);
 fontlist = XmFontListAppendEntry (fontlist, entry3);
 XmFontListEntryFree (&entry1);
 XmFontListEntryFree (&entry2);
 XmFontListEntryFree (&entry3);

 s1 = XmStringCreate (string1, "TAG1");
 s2 = XmStringCreate (string2, "TAG2");
 s3 = XmStringCreate (string3, "TAG3");

 /* concatenate the 3 strings on top of each other, but we can only
 * do two at a time. So do s1 and s2 onto tmp and then do s3.
 */
 tmp = XmStringConcat (s1, s2);
 text = XmStringConcat (tmp, s3);

 XtVaCreateManagedWidget ("label", xmLabelWidgetClass, toplevel,
 XmNlabelString, text,
 XmNfontList, fontlist,
 NULL);

 XmStringFree (s1);
 XmStringFree (s2);
 XmStringFree (s3);

20 Compound Strings 20.4 Working With Font Lists

580

 XmStringFree (tmp);
 XmStringFree (text);
 XmFontListFree (fontlist);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

This program creates font list entries for three fonts, appends the entries to a font list, and uses the resulting font list to
specify the XmNfontList resource of a Label widget. The compound strings are created using the same tags as the
font list entries, so they are displayed in the appropriate fonts.

In the source code we create the font list entries using XmFontListEntryLoad(), which takes the following
form:

 XmFontListEntry
 XmFontListEntryLoad(display, font_name, type, tag)
 Display *display;
 char *font_name;
 XmFontType type;
 char *tag;

This routine loads the font or creates the font set specified by font_name. The function uses Xt resource converters
to convert the string name of the font to the appropriate type. The type parameter specifies whether the font name is
a font or a font set; it can have the value XmFONT_IS_FONT or XmFONT_IS_FONT_SET. The tag is associated
with the font list entry. If the routine can load or create the specified font, it allocates and returns an
XmFontListEntry, which the application must free using XmFontListEntryFree(). If the routine cannot
find the specified font, it returns NULL.

Once we have created the font list entries, we can use them to make a font list. XmFontListAppendEntry()
appends a font l is t entry to a font l is t . We cal l th is rout ine three t imes to add the three entr ies.
XmFontListAppendEntry() takes the following form:

 XmFontList
 XmFontListAppendEntry(oldlist, entry)
 XmFontList oldlist;
 XmFontListEntry entry;

The routine adds the specified entry to the old font list and returns a new font list. If oldlist is NULL, the routine
simply creates a font list using the font list entry. Motif caches font lists, so when we add a font list entry to a font list,
the routine searches the cache for a font list that matches the new font list. If the routine finds a matching font list, it
returns that font list and increments its reference count. Otherwise, XmFontListAppendEntry() allocates space
for the new font list and caches it. The routine deallocates the storage for the old font list, but the application is
responsible for freeing the storage for the new font list using XmFontListFree().

After we add the font list entries to the font list, we don't need the individual entries, so we free them using
XmFontListEntryFree(). Notice that this routine takes an address of a font list entry, not the actual font list
entry. When Motif creates a font list entry, it does not copy the XFontStruct or XFontSet, so these items must
not be freed. If you pass a font list entry, instead of its address, to XmFontListEntryFree(), you end up freeing
the font or font set, which results in an X protocol error.

The fontlist.c program creates compound strings just like our previous examples. The strings are associated with the
same tags as the font list entries, so the strings are rendered using the appropriate fonts. The program sets the
XmNfontList resource of the Label widget, so the fonts are hard−coded in the application and cannot be modified

20 Compound Strings 20.4 Working With Font Lists

581

using a resource file. When a font list is assigned to a widget, the widget copies the list using XmFontListCopy().
After the resource has been specif ied, the program no longer needs the font l ist, so it frees it using
XmFontListFree().

We used XmFontListEntryLoad() to both load the font and create a font list entry. Alternatively, we could have
loaded the fonts using a routine like XLoadQueryFont() and then called XmFontListEntryCreate() to
create the font list entries. This routine takes the following form:

 XmFontListEntry
 XmFontListEntryCreate(tag, type, font)
 char *tag
 XmFontType type;
 XtPointer font;

The type parameter specifies whether the specified font is an XFontStruct or an XFontSet. You can load a
font using XLoadQueryFont(). Use XCreateFontSet() to create a font set. (See Volume One, Xlib
Programming Manual, for more information on these routines.) XmFontListEntryCreate() allocates and
returns a font list entry; the application is responsible for freeing this entry using XmFontListEntryFree().

I t i s p u r e l y a m a t t e r o f p r e f e r e n c e w h e t h e r y o u u s e X m F o n t L i s t E n t r y C r e a t e () o r
XmFontListEntryLoad(). In the source code we could replace our calls to XmFontListEntryLoad() with
the following code:

 XFontStruct *font1, *font2, *font3;
 XmFontListEntry entry1, entry2, entry3;

 font1 = XLoadQueryFont (XtDisplay (toplevel),
 "−*−courier−*−r−*−−*−120−*");
 font2 = XLoadQueryFont (XtDisplay (toplevel),
 "−*−courier−bold−o−*−−*−140−*");
 font3 = XLoadQueryFont (XtDisplay (toplevel),
 "−*−courier−medium−r−*−−*−180−*");

 entry1 = XmFontListEntryCreate ("TAG1", XmFONT_IS_FONT, font1);
 entry2 = XmFontListEntryCreate ("TAG2", XmFONT_IS_FONT, font2);
 entry3 = XmFontListEntryCreate ("TAG3", XmFONT_IS_FONT, font3);

The functionality of the program is the same in either case, so which method you use really depends on whether you
want to load the fonts yourself or let the routine handle it for you.

In Motif 1.1, there are two routines for dealing with font lists. XmFontListCreate() creates a new font list with
one entry, while XmFontListAdd() adds a font to an existing font list. These routines take the following form:

 XmFontList
 XmFontListCreate(font, charset)
 XFontStruct *font;
 XmStringCharSet charset;

 XmFontList
 XmFontListAdd(oldlist, font, charset);
 XmFontList oldlist;
 XFontStruct *font;
 XmStringCharSet charset;

The routines both take an XFontStruct, so you have to load the font yourself using XLoadQueryFont(). The

20 Compound Strings 20.4 Working With Font Lists

582

functions both allocate and return a font list that the application must free when it is done using it. These routines exist
for backwards compatibility purposes only, so you should not use them with Motif 1.2.

20.4.2 Retrieving Font Lists

You can retrieve a font list directly from a widget using XtVaGetValues() no matter whether the font list is
specified in a resource file or created programatically. The following code fragment demonstrates this technique:

 XmFontList fontlist;

 XtVaGetValues (widget, XmNfontList, &fontlist, NULL);

The font list returned by XtVaGetValues() is a pointer to internal data, so it should be considered read−only. You
should not alter this font list or free it. This is in direct contrast to how Motif uses XtVaGetValues() for
compound strings, where a copy of the string is returned. If you need to manipulate the font list, you can make a copy
of it using XmFontListCopy().

Once you have obtained a font list from a widget, you can use it to specify the font list for another widget, as shown in
the following code:

 XtVaSetValues (another_widget, XmNfontList, fontlist, NULL);

Since the font list was obtained through a call to XtVaGetValues(), we do not free it after setting the
XmNfontList resource.

20.4.3 Querying Font Lists

The XmFontList type is opaque to the programmer, so if you need to get information about a font list, you have to
use Motif−specific functions that access font list information. This internal information can be useful if you need the
font handles or tags for any reason. Motif provides a number of routines to cycle through the font list. The
XmFontContext type is used to identify and maintain the position within the font list being queried. To query a
font list, you need to use the following sequence of operations:

Initialize a font context for the font list using XmFontListInitFontContext().•
Iterate through the font list by calling XmFontListNextEntry() and access whatever information is
desired.

•

Free the font context using XmFontListFreeFontContext().•

XmFontListInitContext() initializes a font context that lets an application get the individual font list entries
from the font list. This routine takes the following form:

 Boolean
 XmFontListInitFontContext(context, fontlist)
 XmFontContext *context;
 XmFontList fontlist;

The routine is passed the address of an XmFontContext variable and a font list. It allocates a new font context
structure based on the font list and returns True. If the font list is not valid or there is not enough memory available
to allocate a new context, False is returned.

Once the fon t con tex t has been in i t ia l i zed , the en t r ies in the fon t l i s t can be re t r ieved us ing
XmFontListNextEntry():

20 Compound Strings 20.4.2 Retrieving Font Lists

583

 XmFontListEntry
 XmFontListNextEntry(context)
 XmFontContext context;

This routine cycles through all of the font list entries in the font list. The first call returns the first entry in the font list;
repeated calls using the same font context access successive entries. Since the XmFontListEntry type is also
opaque, you have to use XmFontListEntryGetFont() and XmFontListEntryGetTag() to retrieve the
actual font or font set and tag for the font list entry. These routines take the following form:

 XtPointer
 XmFontListEntryGetFont(entry, type_return)
 XmFontListEntry entry;
 XmFontType *type_return;

 char *
 XmFontListEntryGetTag(entry)
 XmFontListEntry entry;

XmFontListEntryGetFont() returns an XFontStruct or an XFontSet depending on the value of
type_return. The routine does not copy the data structure, so the application must not free it.
XmFontListEntryGetTag() retrieves the tag for the font list entry. This routine allocates storage for the tag, so
the application must free it.

In Motif 1.1, you call XmFontListGetNextFont() to cycle through the fonts in a font list. This routine has the
following form:

 Boolean
 XmFontListGetNextFont(context, charset, font)
 XmFontContext context;
 XmStringCharSet *charset;
 XFontStruct **font;

If the function returns True, the character set and font pointers are set to the appropriate values. The charset
returned is a pointer to allocated data that must be freed when no longer needed. The value for font points to the
actual XFontStruct data used in the font list, so it must not be freed. If the end of the list has been reached, the
function returns False. This routine exists for backwards compatibility and should not be used with Motif 1.2.

W h e n y o u a r e d o n e q u e r y i n g t h e f o n t l i s t , y o u n e e d t o f r e e t h e f o n t c o n t e x t u s i n g
XmFontListFreeFontContext(), which takes the following form:

 void
 XmFontListFreeFontContext(context)
 XmFontListFontContext context;

If you are searching through a font list and need to back up, you must restart the entire process by freeing the current
font context and creating a new one.

20.5 Rendering Compound Strings

Motif always renders compound strings automatically within its widgets, so you should never find yourself in a
situation where you need to render a compound string manually. However, if you are writing your own widget, you
may need to incorporate the same type of functionality. Motif provides three functions that render compound strings:

20 Compound Strings 20.5 Rendering Compound Strings

584

 XmStringDraw()
 XmStringDrawImage()
 XmStringDrawUnderline()

In Motif 1.2, all of these routines use the X11R5 text output routines when necessary, to ensure that the text is
rendered correctly for the current locale.

The most basic rendering function is XmStringDraw(), which takes the following form:

 XmStringDraw(display, window, fontlist, string, gc, x, y, width,
alignment, layout_direction, clip);

 Display *display;
 Window window;
 XmFontList fontlist;
 XmString string;
 GC gc;
 Position x, y;
 Dimension width;
 unsigned char alignment;
 unsigned char layout_direction;
 XRectangle *clip;

As you can see, the function requires a great deal of information to actually render the string. If you are rendering into
a widget, you can specify the display and window using XtWindow() and XtDisplay(). Since a gadget does
not have a window, you must use XtWindowOfObject() with a gadget. The fontlist parameter can be
constructed using any of the functions described in Section #sfontlist, or you can retrieve a font list from a widget
using XtVaGetValues().

The function also requires a graphics context (GC) so that certain rendering attributes such as color can be applied. A
graphics context is generally not available through a widget, so you have to get one at the Xlib level. If you are
writing your own widget, you can probably use a GC that is cached by Xt and returned by XtGetGC() (see
Volume Four, X Toolkit Intrinsics Programming Manual). Also, if you are writing your own widget, you may want
to consider exposing the GC to the programmer in the form of a resource.

The x, y, and width parameters specify the coordinates and width of the rectangle that contains the compound
string. The width parameter is used only for alignment purposes. There is no height parameter because the font list
may specify fonts that are unknown in size and whose heights are too variable. The clip parameter defines the
drawing boundary; you can pass NULL to indicate that the rendering should not be clipped.

The alignment parameter can be set to one of the following values:

 XmALIGNMENT_BEGINNING
 XmALIGNMENT_CENTER
 XmALIGNMENT_END

The value identifies the justification for the text. The effect of the value is modified by the value of the
layout_direction parameter, which can be set to XmSTRING_DIRECTION_L_TO_R or
XmSTRING_DIRECTION_R_TO_L.

The func t ion XmStr ingDrawImage() i s to XmStr ingDraw() as XDrawSt r ing() i s to
XDrawImageString(). The difference is that the image routines overwrite the background even in places where
the font does not set bits in the character image, while the other routines only render foreground pixels.

20 Compound Strings 20.5 Rendering Compound Strings

585

The XmStringDrawUnderline() routine takes the same parameters as XmStringDraw() with one addition.
The last parameter specifies the portion of the compound string that should be underlined. A compound string can be
wholly or partially underlined depending on whether the last parameter specifies the entire compound string or only a
substring of the string parameter.

It may be necessary to get dimensional information about a compound string in order to know where to place it within
the window when it is drawn. You may also want this data to determine the optimal or desired width and height of a
widget in case you have to provide a geometry callback method. When a call to XtQueryGeometry is made, a
widget that contains compound strings may need to tell the calling function the dimensions it needs to render its
compound strings adequately. Motif provides the following routines to help you determine compound string
dimensions:

 XmStringBaseLine()
 XmStringExtent()
 XmStringHeight()
 XmStringWidth()

Each of these functions takes fontlist (XmFontList) and string (XmString) parameters. The font list is
dependent on the widget associated with the string, but there is no requirement that you must use a string that is
associated with a widget. If you just want to get the dimensions of a particular compound string rendered using an
arbitrary font or font set, you can create a font list manually, as described in Section #sfontlist.

XmStringBaseline() returns the number of pixels between the top of the character box and the baseline of the
first line of text in the compound string. XmStringWidth() and XmStringHeight() return the width and
height, respectively, for the specified compound string. XmStringExtent() takes two additional parameters,
width and height. These arguments return the width and height in pixels of the smallest rectangle that encloses the
compound string specified in string.

20.6 Summary

Compound strings can be useful for creating multi−line or multi−font text for widgets such as Labels, PushButtons,
and ToggleButtons. Compound strings were also designed to help in making internationalized applications, but this
functionality has basically been made obsolete by the addition of internationalization features in X11R5. Since Motif
applications have to use compound strings to display most textual data, the trick to developing an internationalized
application is to use compound strings without interfering with lower−level X internationalization functionality.

The best practice is to specify compound string and font list resources in resource files, so that you can have a separate
file for each language that is supported by your application. If you have to create compound strings in an application,
you should use XmStringCreateLocalized() or specify the XmFONTLIST_DEFAULT_TAG font list tag to
ensure that the strings are interpreted and rendered in the current locale.

20 Compound Strings 20.6 Summary

586

21 Signal Handling

This chapter describes the problems that can occur when UNIX signals are mixed with X applications. It explains how
signals work, and why they can wreak havoc with X. The chapter also suggests some workarounds that can help an
application to minimize the damage. Since the technology is not well thought−through in this area and signals are a
fact of life for UNIX applications, something must be done. The techniques described here can be thought of as a
practical starting point until the problems are addressed by UNIX and X system developers at a more fundamental
level.

When writing an X−based application, programmers sometimes run into one of the most frustrating stumbling blocks
of development: how to handle UNIX signals appropriately for an X client application. The problem is difficult to
identify because there are rarely any adverse effects to the improper handling of signals. When problems do arise, the
unwitting developer may spend weeks trying to unravel the mystery. Symptoms include spurious X protocol errors,
lost X events, incomplete window redraws, or even core dumps. These problems arise because many people fail to
understand the relationship between UNIX signals and the X protocol design.

To make an analogy for the type of behavior associated with UNIX signals, let's examine a telephone feature most of
us are familiar with: call waiting. We start with a situation where you're on the phone talking to someone while
someone else is trying to call you. When you have call waiting and another caller is trying to get through, an audio
tone is sent to your receiver. (In most modern telephone systems, the other party doesn't hear the tone, but in older
systems, they may hear a click.) Quite literally, you've been interrupted by another call, and you have to handle it.
What you do next is what UNIX programmers would call interrupt handling.

In the UNIX operating system, signals are delivered to an application (a process) when an abnormal condition occurs.
The difference between call waiting and UNIX signals is that there is more than one signal that can be delivered by
UNIX, but there is only one tone that call waiting would deliver. These signals may be generated by the user at the
keyboard, by another process using the kill system call (which sends a signal to a process ID), by the operating
system itself, and so on. For example, job control typically involves one signal that indicates when the process has
stopped (SIGTSTP), and another that indicates when the process has continued (SIGCONT). Another signal is
generated when an application has spawned a new process with fork() and this child process dies. The operating
system notifies the parent about the child's death, so that the parent can reap the child. In this case, the operating
system delivers a SIGCHLD (SIGCLD for System V) to the parent. Still another signal is SIGFPE (floating point
exception), which indicates a division by 0 error. A final example is a segmentation fault (SIGSEGV), where the
application has exceeded some internal boundary, like an array index that is out of range.

In all these cases, the signal that the operating system sends to the application is like the tone that you hear when call
waiting is activated. The programmer has the ability to specify how these signals should be serviced by trapping them
using signal handlers. A signal handler is a function installed for a signal type using the signal() system call,
which takes the following form:

 signal(sig_number, function)

The sig_number is the signal identifier, which is a defined symbol like those described above, while function is
a routine that you write. If the signal is delivered, the routine is called automatically. What the signal handler function
actually does is up to you. For example, if you trap the SIGCHLD signal, when a previously forked process
terminates, your signal handler should probably call the wait() system call to reap the child. With SIGFPE, you
may want to notify the user that he has entered an invalid value. For SIGSEGV, your program should assume that the
application is no longer in a runnable state and clean up after itself by removing temporary files, making backup

587

copies of unfinished files, flushing buffers, or whatever.

Now, what does all this have to do with X applications? Let's say that you want to display an ErrorDialog upon receipt
of a signal. Here is where the problem with X and UNIX signals arises. To elaborate, we return to the call−waiting
analogy. The original telephone conversation that you were having before call waiting interrupted represents the X
protocol communication between an X client and the X server. Now, let's assume that instead of hearing a tone that
indicates there is an incoming call, you are immediately transferred to the new call without any notification. In
mid−conversation, the original caller can no longer hear you. Furthermore, when you are transferred back to the
original caller, the discussion may have progressed without your knowledge. Whatever you were saying would now
be completely confusing to anyone listening.

This situation is analogous to what happens when a UNIX signal interrupts a program that might be communicating
with the X server via the X protocol. When a UNIX signal is delivered, the operating system immediately branches to
your signal handler without notice. If you are in the middle of an X protocol message (an Xlib call) at the time of the
signal delivery, and your signal handler also calls an Xlib routine that generates another protocol message, the X
server is sent a garbled message. Basically, you started to say something and got interrupted, so now you are saying
something completely different. The result is an X protocol error.

What are the chances of this happening? Most of the time, it's pretty slim, especially when you're dealing with signals
that are delivered infrequently. An application doesn't spawn a new process or find a floating point exception very
often, and it certainly should never find a segmentation fault. It is unlikely that an Xlib call will be interrupted by a
UNIX signal, and many people get away with using the signal() system call without programming around
potential problems. However, this kind of sloppy programming can lead to problems that are extremely difficult to
decipher. The fact is, these problems do occur, so a robust program needs to be ready in case the improbability
machine is turned on.

Now that we've explained the problem, let's address the solution. We can learn something from the design of the
telephone call waiting system. Fortunately, call waiting doesn't disconnect you from the original caller and transfer
you to the new one; it just beeps and lets you switch over when you've had a chance to announce what you're going to
do. We'd like to handle UNIX signals this way, but unfortunately, that's not how they work. Signals do interrupt the
application without notice. It should be noted that BSD−style UNIX systems do provide a system call that effectively
suspends signal delivery, but it would be too costly to invoke this routine for each Xlib call. Furthermore, it is
inappropriate for X, a windowing system that is completely independent of the operating system, to use this technique.
Instead, we can emulate the behavior of the beep by writing a signal handler that notes the signal's delivery, but does
not actually do anything that involves X. Later, when we know it's safe, we can do what we originally intended to do.
Now all we have to do is determine when it is safe to take action.

21.1 Handling Signals in Xlib

An application that uses Xlib gets events from the server using a function like XNextEvent(). This function reads
the next event in the queue and fills an XEvent data structure that describes various things about the event, such as
the window associated with it, the time it took place, the event type, and so on. When the function returns, the event
has been delivered and it is up to the application to decide what to do next. The following code fragment demonstrates
a simplified view of Xlib event handling:

 void sigchld_handler();

 main_event_loop()
 {
 ...
 signal (SIGCHLD, sigchld_handler);

21 Signal Handling 21.1 Handling Signals in Xlib

588

 while (1) {
 XNextEvent (display, &event);
 switch (event.type) {
 case ConfigureNotify: /*...*/ break;
 case Expose: /*...*/ break;
 case ButtonPress: /*...*/ break;
 case EnterWindow: /*...*/ break;
 case LeaveWindow: /*...*/ break;
 case MapNotify: /*...*/ break;
 ...
 }
 }
 }

If the operating system decides to deliver a SIGCHLD signal, the signal can arrive at any time, possibly inside any of
the case statements or even inside the call to XNextEvent(). The signal handler for the signal is called
automatically by the operating system. If the signal handler makes any Xlib calls, you have no way of knowing if it is
doing so at a time when another Xlib call is being sent to the X server. The solution is to have the signal handler do
nothing but set a flag to indicate that the signal has been delivered. Then, just before the call to XNextEvent(), the
event loop can check the flag to determine whether or not to call another function that actually processes the signal.
This new design is shown in the following code fragment:

 static int sigchld_delivered;
 void sigchld_handler(), real_sigchld_handler();

 main_event_loop()
 {
 ...
 signal(SIGCHLD, real_sigchld_handler);

 while (1) {
 /* it's safe to handle signals that may have been delivered */
 if (sigchld_delivered > 0) {
 sigchld_handler (SIGCHLD); /* add other params as necessary */
 sigchld_delivered−−;
 }

 XNextEvent (display, &event);
 switch (event.type) {
 case ConfigureNotify: /*...*/ break;
 case Expose: /*...*/ break;
 case ButtonPress: /*...*/ break;
 case EnterWindow: /*...*/ break;
 case LeaveWindow: /*...*/ break;
 case MapNotify: /*...*/ break;
 ...
 }
 }
 }

All that real_sigchld_handler() does is increment the sigchld_delivered flag, as shown in the
following fragment:

 void
 real_sigchld_handler(sig)
 int sig;
 /* additional parameters differ between BSD and SYSV */

21 Signal Handling 21.1 Handling Signals in Xlib

589

 {
 sigchld_delivered++;
 }

The actual sigchld_handler() routine can do whatever it needs to do, including call Xlib routines, since it is
only called when it is safe to do so. You should note that XNextEvent() waits until it reads an event from the X
server before it returns, so handling the signal may take a long time if the program is waiting for the user to do
something.

These code fragments demonstrate the general design for handling signals in a rudimentary way. In a real application,
the actual signal handler would probably need access to all of the parameters passed to the original signal handling
function. One example of this situation would be a signal handler that displays the values of all its parameters in a
dialog box. You can't change anything on the display using the original signal handler because it would require
making Xlib calls, so you have to save the parameters until the real signal handler is called. To save the parameters,
you could define a data structure that contains fields for all of the parameters. The original signal handler could
allocate a new structure and fill it in each time a signal is delivered. As we will discuss later, there can also be
problems with memory allocation in a signal handler. When the real signal handler is called, it can access the data
structure and create a dialog using the appropriate Xlib calls.

21.2 Handling Signals in Xt

Since this is a book on Motif and Motif is based on Xt, the next step is to find a solution that is appropriate for
Xt−based applications. In Xt, you typically don't read events directly from the X server using XNextEvent() and
then branch on the event type to decide what to do next. Instead, Xt provides XtAppMainLoop(); the code for this
function is below:

 void
 XtAppMainLoop(app_context)
 XtAppContext app_context;
 {
 XEvent event;

 for (;;) {
 XtAppNextEvent (app_context, &event);
 XtDispatchEvent (&event);
 }
 }

Since the event processing loop is internal to the Xt toolkit, we don't have the opportunity to insert a check to see if
any signals have been delivered, as we did with Xlib. There are various ways to handle this problem. We could write
our own event processing loop and include code that tests for the delivery of a signal. One problem with this solution
is that it bypasses a standard library routine. We want to ensure upwards compatibility with future versions of Xt, and
if we write our own routine, we risk losing any functionality that might be introduced later.

Even though it is unlikely that XtAppMainLoop() will change in the future, we should find another way to solve
the problem. Clearly, the desired effect is to get Xt to notify us just before it's going to call XNextEvent(), since
this is the window of opportunity where it is safe for a signal handler to make Xlib or Xt calls. It just so happens that
Xt provides two methods that do what we want: work procedures and timers.

A work procedure is a function that is called by Xt when it does not have any events to process. Although an
application can register multiple work procedures, the procedures are processed one at a time, with the most recent
one being invoked first. We can solve the signal handler problem using a work procedure because most applications
spend a fair bit of time waiting for the user to generate events. In the signal handler, we register a work procedure

21 Signal Handling 21.2 Handling Signals in Xt

590

using XtAppAddWorkProc(). When the application is idle, Xt invokes the work procedure, which does the real
work of handling the signal. The following code fragment uses this approach:

 XtAppContext app;
 static void real_reset(), reset();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 ...
 signal (SIGCHLD, real_reset);
 ...
 }

 /* reset() −− a program died... */
 static void
 real_reset()
 {
 int pid, i;
 #ifdef SYSV
 int status;
 #else
 union wait status;
 #endif /* SYSV */

 if ((pid = wait (&status)) == −1)
 /* an error of some kind (fork probably failed); ignore it */
 return;

 (void) XtAppAddWorkProc (app, reset, NULL);
 }

 static Boolean
 reset(client_data)
 XtPointer client_data;
 {
 /* handle anything Xt/Xlib−related that needs to be done now */

 return True; /* remove the work procedure from the list */
 }

This example assumes that the application forks off a new process at some point. When the child eventually exits, the
parent is sent a SIGCHLD signal, at which point the application branches directly to the real_reset() signal
handler. This routine reaps the child using wait() and then adds a work procedure using XtAppAddWorkProc().
(The function normally returns a work procedure ID, but we're not interested in it here.) When Xt does not have any
events to process, it calls reset(). This routine can perform any other tasks necessary for handling the signal, such
as calling Xlib routines, popping up dialogs, or anything it likes.

If the application is waiting for events when it receives the signal, the work procedure is invoked almost immediately
after the actual signal handler. However, if the application is in a callback routine handling an event, the work
procedure is not called until control is passed back to the event loop. While it's true that there may be some delay
between the time that the signal is delivered and the time that it is actually processed, the delay is usually small
enough that an application doesn't need to worry about it. If timing is critical, you can always set a global signal flag
when the signal is received, and then test that variable in critical sections of your code to see if the signal has been
delivered.

21 Signal Handling 21.2 Handling Signals in Xt

591

21.3 An Example

The signal handling problem can also be solved with a timer, using the same approach as with a work procedure. the
source code demonstrates the use of a timer in a more realistic application. The program displays an array of
DrawnButtons that start application programs. While an application is running, the associated button is insensitive, so
that the user can only run one instance of the application. When the application exits, the button is reactivated, so that
the user can select it again. XtSetLanguageProc() is only available in X11R5; there is no corresponding
function in X11R4.

 /* app_box.c −− make an array of DrawnButtons that, when activated,
 * executes a program. When the program is running, the drawn button
 * associated with the program is insensitive. When the program dies,
 * reactivate the button so the user can select it again.
 */
 #include <Xm/DrawnB.h>
 #include <Xm/RowColumn.h>
 #include <signal.h>

 #ifndef SYSV
 #include <sys/wait.h>
 #else
 #define SIGCHLD SIGCLD
 #endif /* SYSV */

 #define MAIL_PROG "/bin/mail"

 typedef struct {
 Widget drawn_w;
 char *pixmap_file;
 char *exec_argv[6]; /* 6 is arbitrary, but big enough */
 int pid;
 } ExecItem;

 ExecItem prog_list[] = {
 { NULL, "terminal", { "xterm", NULL }, 0 },
 { NULL, "flagup", { "xterm", "−e", MAIL_PROG, NULL }, 0 },
 { NULL, "calculator", { "xcalc", NULL }, 0 },
 { NULL, "xlogo64", { "foo", NULL }, 0 },
 };

 XtAppContext app; /* application context for the whole program */
 GC gc; /* used to render pixmaps in the widgets */
 void reset(), reset_btn(), redraw_button(), exec_prog();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, rowcol;
 Pixmap pixmap;
 Pixel fg, bg;
 int i;

 /* we want to be notified when child programs die */
 signal (SIGCHLD, reset);

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",

21 Signal Handling 21.3 An Example

592

 NULL, 0, &argc, argv, NULL, NULL);

 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 /* get the foreground and background colors of the rowcol
 * so the gc (DrawnButtons) will use them to render pixmaps.
 */
 XtVaGetValues (rowcol,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);
 gc = XCreateGC (XtDisplay (rowcol),
 RootWindowOfScreen (XtScreen (rowcol)), NULL, 0);
 XSetForeground (XtDisplay (rowcol), gc, fg);
 XSetBackground (XtDisplay (rowcol), gc, bg);

 for (i = 0; i < XtNumber (prog_list); i++) {
 /* the pixmap is taken from the name given in the structure */
 pixmap = XmGetPixmap (XtScreen (rowcol),
 prog_list[i].pixmap_file, fg, bg);

 /* Create a drawn button 64x64 (arbitrary, but sufficient)
 * shadowType has no effect till pushButtonEnabled is false.
 */
 prog_list[i].drawn_w = XtVaCreateManagedWidget ("dbutton",
 xmDrawnButtonWidgetClass, rowcol,
 XmNwidth, 64,
 XmNheight, 64,
 XmNpushButtonEnabled, True,
 XmNshadowType, XmSHADOW_ETCHED_OUT,
 NULL);
 /* if this button is selected, execute the program */
 XtAddCallback (prog_list[i].drawn_w,
 XmNactivateCallback, exec_prog, &prog_list[i]);

 /* when the resize and expose events come, redraw pixmap */
 XtAddCallback (prog_list[i].drawn_w,
 XmNexposeCallback, redraw_button, pixmap);
 XtAddCallback (prog_list[i].drawn_w,
 XmNresizeCallback, redraw_button, pixmap);
 }

 XtManageChild (rowcol);
 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* redraw_button() −− draws the pixmap into its DrawnButton
 * using the global GC. Get the width and height of the pixmap
 * being used so we can either center it in the button or clip it.
 */
 void
 redraw_button(button, client_data, call_data)
 Widget button;
 XtPointer client_data;
 XtPointer call_data;
 {
 Pixmap pixmap = (Pixmap) client_data;

21 Signal Handling 21.3 An Example

593

 XmDrawnButtonCallbackStruct *cbs =
 (XmDrawnButtonCallbackStruct *) call_data;
 int srcx, srcy, destx, desty, pix_w, pix_h;
 int drawsize, border;
 Dimension bdr_w, w_width, w_height;
 short hlthick, shthick;
 Window root;

 /* get width and height of the pixmap. don't use srcx and root */
 XGetGeometry (XtDisplay (button), pixmap, &root, &srcx, &srcx,
 &pix_w, &pix_h, &srcx, &srcx);

 /* get the values of all the resources that affect the entire
 * geometry of the button.
 */
 XtVaGetValues (button,
 XmNwidth, &w_width,
 XmNheight, &w_height,
 XmNborderWidth, &bdr_w,
 XmNhighlightThickness, &hlthick,
 XmNshadowThickness, &shthick,
 NULL);

 /* calculate available drawing area, width 1st */
 border = bdr_w + hlthick + shthick;

 /* if window is bigger than pixmap, center it; else clip pixmap */
 drawsize = w_width − 2 * border;
 if (drawsize > pix_w) {
 srcx = 0;
 destx = (drawsize − pix_w) / 2 + border;
 }
 else {
 srcx = (pix_w − drawsize) / 2;
 pix_w = drawsize;
 destx = border;
 }

 drawsize = w_height − 2 * border;
 if (drawsize > pix_h) {
 srcy = 0;
 desty = (drawsize − pix_h) / 2 + border;
 }
 else {
 srcy = (pix_h − drawsize) / 2;
 pix_h = drawsize;
 desty = border;
 }

 XCopyArea (XtDisplay (button), pixmap, cbs−>window, gc,
 srcx, srcy, pix_w, pix_h, destx, desty);
 }

 /* exec_proc() −− the button has been pressed; fork() and call
 * execvp() to start up the program. If the fork or the execvp
 * fails (program not found?), the sigchld catcher will get it
 * and clean up. If the program is successful, set the button's
 * sensitivity to False (to prevent the user from execing again)
 * and set pushButtonEnabled to False to allow shadowType to work.
 */
 void

21 Signal Handling 21.3 An Example

594

 exec_prog(drawn_w, client_data, call_data)
 Widget drawn_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 ExecItem *program = (ExecItem *) client_data;
 XmDrawnButtonCallbackStruct *cbs =
 (XmDrawnButtonCallbackStruct *) call_data;

 switch (program−>pid = fork ()) {
 case 0: /* child */
 execvp (program−>exec_argv[0], program−>exec_argv);
 perror (program−>exec_argv[0]); /* command not found? */
 _exit (255);
 case −1:
 printf ("fork() failed.0);
 }

 /* The child is off executing program... parent continues */
 if (program−>pid > 0) {
 XtVaSetValues (drawn_w,
 XmNpushButtonEnabled, False,
 NULL);
 XtSetSensitive (drawn_w, False);
 }
 }

 /* reset() −− a program died, so find out which one it was and
 * reset its corresponding DrawnButton widget so it can be reselected
 */
 void
 reset()
 {
 int pid, i;
 #ifdef SYSV
 int status;
 #else
 union wait status;
 #endif /* SYSV */

 if ((pid = wait (&status)) == −1)
 /* an error of some kind (fork probably failed); ignore it */
 return;

 for (i = 0; i < XtNumber (prog_list); i++)
 if (prog_list[i].pid == pid) {
 /* program died −− now reset item. But not here! */
 XtAppAddTimeOut (app, 0, reset_btn, prog_list[i].drawn_w);
 return;
 }

 printf ("Pid #%d ???0, pid); /* error, but not fatal */
 }

 /* reset_btn() −− reset the sensitivity and pushButtonEnabled resources
 * on the drawn button. This cannot be done within the signal
 * handler or we might step on an X protocol packet since signals are
 * asynchronous. This function is safe because it's called from a timer.
 */
 void
 reset_btn(drawn_w)

21 Signal Handling 21.3 An Example

595

 Widget drawn_w; /* client_data from XtAppAddTimeOut() */
 {
 XtVaSetValues(drawn_w,
 XmNpushButtonEnabled, True,
 NULL);
 XtSetSensitive (drawn_w, True);
 }

The output of the program is shown in the figure.

Output of app_box.c

The program in the source code is almost identical in design to the code fragment that used a work procedure, but it is
more like something you might actually write. The program uses DrawnButtons to represent different application
programs. The idea is that when a button is pressed, the program corresponding to the image drawn on the button is
run. The button turns insensitive for as long as the application is alive. When the user exits the program, the button's
state is restored so the user can select it again.

Each button has a data structure associated with it that specifies the file that contains the icon bitmap, an argv that
represents the program to be run, the process ID associated with the program's execution, and a handle to the button
itself. The callback routine for each button spawns a new process, sets the button to insensitive, and immediately
returns control to the main event loop. The process ID is saved in the button's data structure. When the external
process terminates, a SIGCHLD signal is sent to the main program and the button is reset.

As a general note, it is crucial that you understand that the new process does not attempt to interact with the widgets in
its parent application or read events associated with the same display connection as its parent process. Even though the
child has access to the same data structures as the parent, it cannot use its parent's connection to the X server because
multiple processes cannot share an X server connection. If a child process intends to interact with the X server, it must
close its existing connection and open a new one.

In our application, we play it safe by running a completely new application using execvp(). This system call
executes a program provided it can be found in the user's PATH, so we don't need to specify full pathnames to the
applications. If the program cannot be found for whatever reason, the child process dies immediately and the
reset() signal handler is called by the operating system.

The reset() signal handler is called whenever a child process dies. At this point, the child needs to be reaped and
the state of the button needs to be reset. The wait() system call is used to reap the child; this routine can be called
from within reset() because it doesn't make any Xlib calls. However, we cannot reset the button's state by calling
XtVaSetValues() and XtSetSensitive() because these routines would ultimately result in Xlib calls.
Therefore, rather than actually resetting the button in reset(), we call XtAppAddTimeOut() to install a timer
routine. This Xt call is safe in a signal handler because it does not make any calls to Xlib; the timer is handled entirely
on the client side.

21 Signal Handling 21.3 An Example

596

XtAppAddTimeOut() registers a timer procedure that is called after a specified amount of time. Xt's main event
processing loop takes care of calling the timer routine after the appropriate time interval. Since we have specified an
interval of 0 for the reset_btn() timer, the routine is called immediately after the signal is received and control is
passed back to the main event loop. The reset_btn() routine handles restoring the state of the DrawnButton, so
that the user can run the associated application again.

In terms of signal handling, there is really one main difference between using a work procedure and using an interval
timer. The work procedure is called as soon as the application is idle and waiting for input, while the timer is called
after a specified interval.

21.4 Additional Issues

There are several loose ends that we need to address. One issue involves the way timers are implemented. You may be
thinking, "Isn't a timer another signal in UNIX?" While the answer is yes, what is important is that Xt−timers are not
implemented using UNIX signals, but instead using a feature of the select() system call. In this context,
select() is used to determine if the X server is sending events to the application (although this function does not
actually read any events). The last parameter to select() is a time interval that specifies how long the routine waits
before returning whether there is anything to read. Setting this time interval allows Xt to implement what appears to
be a timer. As long as there are events to read from the server, however, the timer is inactive, which is why a timer in
Xt can only be set in terms of an interval, rather than as a real−time value. It is also why you should never rely on the
accuracy of these timers.

Timers are not implemented using UNIX signals for the same reasons that we did not call XtVaSetValues() from
within the SIGCHLD signal handler. It is also for this reason that you should not use UNIX−based functions such as
sleep() or setitimer() to modify widgets or make Xlib calls. We don't mean to imply that you should not use
these functions at all; it's just that the same restrictions apply to UNIX timers as they do to other UNIX signals. If you
need to do any X or Xt−related function calls, don't do it from a signal handler. You should install a zero−length
interval timeout function using XtAppAddTimeOut() and, when the toolkit invokes your function, call whatever X
routines are necessary. Timers of this type are used frequently with clock programs and text widgets. In the case of a
clock, the timer advances the second hand, while for a text widget, it causes the insertion cursor to flash.

Another loose end that needs to be tied up involves System V's handling of signals. In most modern versions of UNIX
(derived from BSD UNIX), when a signal is delivered to an application, any system call that might be going on is
interrupted, the signal handler is called, and when it returns, the system call is allowed to continue. For example, if
you are reading in the text of a file using read() and a signal is sent to the application, the read() is suspended
while the signal handler is called. After your signal handler returns, the read() is restarted and it returns the actual
number of bytes read as if no signal had ever occurred. Under System V, all system calls are interrupted and return an
error (with errno set to EINTR). In this case, all of the data read by the read() call is lost.

This situation is a problem in X because read() is used to read events from the X server. If read() fails because a
signal is delivered, then the protocol that was being sent by the server is lost, as would be anything we were sending to
the server, since the same is true for calls to write(). There really isn't anything you can do about this problem,
except, perhaps, for upgrading to a more modern version of UNIX. This problem does not exist with SVR4 or Solaris.

Even system calls in BSD−derived UNIX systems may have problems. If, for example, you call read() from a
signal handler that interrupted another read(), you still might not get what you expected because read() is not
re−entrant. A function that is re−entrant is one that can be called at any time, even while the function is already being
executed.

We're pretty safe with the advice we've given so far, with one exception: calling XtAppAddTimeOut() or

21 Signal Handling 21.4 Additional Issues

597

XtAppAddWorkProc() eventually requires the allocation of memory to add the new timer or work procedure to
the respective list. If your application happens to be allocating memory when a signal is delivered and you try to add a
timer or a work procedure, you could make another call to alloc(), which is the lowest−level routine that allocates
memory from the system. Unless your version of UNIX has a re−entrant memory allocation system call, your memory
stack may be corrupted. The GNU version of malloc() is re−entrant, so it is safe from this problem. There really
isn't anything that you can do about these problems, and there are no official specifications anywhere in the X
documents that even address these issues, so the best tactic is to minimize the exposure using timers or work
procedures as described here.

21.5 Summary

The official advice of the X Consortium staff is that you should not mix signals with X applications. However, there
are cases where you must choose the lesser of two evils. The need for signal handling exists and cannot simply be
ignored. In X11R6, Xt will have support for signal handlers, so this problem should no longer exist. Until then,
however, the approaches given in this chapter should serve you well most of the time.

The most important lesson to learn from this chapter may well be that UNIX signals are dangerous to X applications,
or any sort of program that relies on a client−server protocol. They can also be a problem for system calls in an
extremely sensitive or real−time environment. Whenever the operating system can interrupt the client side (or the
server side, for that matter), you should be prepared to consider those cases where the protocol may be breached.

21 Signal Handling 21.5 Summary

598

22 Advanced Dialog Programming

This chapter describes some Motif features that have not been described, or at least not completely, in earlier chapters.
The topics, which all deal with dialogs, include the creation of multi−stage help systems, the development of
WorkingDialogs that allow the user to interrupt long−running tasks, and a method for dynamically changing the
pixmaps displayed in a dialog.

In one sense, this chapter isn't about dialogs at all, but about various aspects of X programming that become most
evident when working with dialogs. Here we address some issues involved in creating multi−stage help systems, we
show you how to create a WorkingDialogs that allows the user to interrupt a long−running task, and we describe a
method for dynamically changing the pixmaps that are displayed in a dialog. These topics explore some of the most
interesting problems in this book.

These topics take us deeper into the lower layers of X than anything we've discussed so far in this book. You should
have a good basic understanding of X event−processing, as implemented both in Xlib and Xt. Otherwise, be prepared
to refer frequently to Volume One, Xlib Programming Manual, and Volume Four, X Toolkit Intrinsics Programming
Manual, when faced with references to lower−level functions.

22.1 Help Systems

The Motif Style Guide doesn't have much to say about how help is presented to the user, although it does discuss the
ways in which the user can request help from an application. The user can request help by selecting the Help button in
a dialog box, by choosing help items from the Help menu in the MenuBar, or by pressing the HELP or F1 key on the
keyboard. Help information should be presented clearly, so that it is accessible and beneficial to users. You should
also maintain consistency in a help system, so that the user can become familiar with the style of help that you
provide.

The easiest and most straightforward method of presenting help information involves creating an InformationDialog
with the necessary text displayed as the XmNmessageString. the source code demonstrates how to display a help
dialog when the user presses the Help button in another dialog box. XtSetLanguageProc() is only available in
X11R5; there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif
1.2; XmStringCreateSimple() is the corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG
replaces XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* simple_help.c −− create a PushButton that posts a dialog box
 * that entices the user to press the help button. The callback
 * for this button displays a new dialog that gives help.
 */
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, button;
 XtAppContext app;
 XmString label;
 void pushed();

599

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 label = XmStringCreateLocalized ("Push Me");
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 NULL);
 XtAddCallback (button, XmNactivateCallback,
 pushed, "You probably need help for this item.");
 XmStringFree (label);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 #define HELP_TEXT "This is the help information.0ow press 'OK'"

 /* pushed() −− the callback routine for the main app's pushbutton. */
 void
 pushed(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *text = (char *) client_data;
 Widget dialog;
 XmString t = XmStringCreateLocalized (text);
 Arg args[5];
 int n;
 void help_callback(), help_done();

 n = 0;
 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 XtSetArg (args[n], XmNmessageString, t); n++;
 dialog = XmCreateMessageDialog (XtParent(w), "notice", args, n);
 XmStringFree (t);

 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));

 XtAddCallback (dialog, XmNokCallback, help_done, NULL);
 XtAddCallback (dialog, XmNhelpCallback, help_callback, HELP_TEXT);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /*
 * help_callback() −− callback routine for the Help button in the
 * original dialog box that displays an InformationDialog based on the
 * help_text parameter.
 */
 void
 help_callback(parent, client_data, call_data)
 Widget parent;
 XtPointer client_data;
 XtPointer call_data;
 {

22 Advanced Dialog Programming 22 Advanced Dialog Programming

600

 char *help_text = (char *) client_data;
 Widget dialog;
 XmString text;
 void help_done();
 Arg args[5];
 int n;

 n = 0;
 text = XmStringCreateLtoR (help_text, XmFONTLIST_DEFAULT_TAG);
 XtSetArg (args[n], XmNmessageString, text); n++;
 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 dialog = XmCreateInformationDialog (parent, "help", args, n);
 XmStringFree (text);

 XtUnmanageChild (/* no need for the cancel button */
 XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));
 XtSetSensitive (/* no more help is available. */
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON), False);
 /* the OK button will call help_done() below */
 XtAddCallback (dialog, XmNokCallback, help_done, NULL);

 /* display the help text */
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* help_done() −− called when user presses "OK" in dialogs. */
 void
 help_done(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 XtDestroyWidget (dialog);
 }

The main window contains a PushButton that posts a simple MessageDialog. This dialog, as you can tell from the
figure, contains a Help button, that pops up an InformationDialog. This dialog is intended to provide help text for the
user.

22 Advanced Dialog Programming 22 Advanced Dialog Programming

601

Output of simple_help.c

The callback routine for the Help button is installed using the XmNhelpCallback. This routine pops up an
InformationDialog that contains some predefined text. Obviously, this text is for demonstration purposes only. We
used XmStringCreateLtoR() to display the text, instead of XmStringCreateLocalized(), since the help
message contains newline characters. You could also use XmStringCreateLtoR() to specify an alternate font for
use in your help system, but we are not taking advantage of this feature. See Chapter 19, Compound Strings, for more
information on how you can use compound strings to display text using different fonts.

The XmNhelpCallback resource serves as the callback for any widget that wishes to provide help information;
every Motif widget has an XmNhelpCallback resource associated with it. Whenever the user presses the HELP
key on the keyboard (if one exists and the X server is set up correctly), By default, Sun workstations do not generate
the proper event when the HELP key is pressed, and your mileage may vary for other computers. the
XmNhelpCallback is invoked for the widget that has the keyboard focus. The F1 key also serves as a help key for
compatibility with Microsoft Windows and to compensate for any computer that may not have a HELP key. The F1
key works by default, but it may be remapped to perform another function in the user's .mwmrc file.

If a widget does not have an XmNhelpCallback function installed, Motif climbs the widget tree, searching for the
nearest ancestor that has a help callback. If you assign help callbacks to widgets, we recommend that you provide
specific help information for individual interface components, such as PushButtons, Lists, and Text widgets, and more
general information for manager widgets. It is possible to design an elaborate context−sensitive help system for an
application by installing help callback routines for the widgets in the interface and providing relevant help information
throughout the hierarchy.

Although simple_help.c is rather contrived, we can use it to examine the different actions the user might take within a
help system. You can think of the Push Me button as any widget in an application on which the user might want help.
When the button is activated, the user is presented with a MessageDialog that undoubtedly requires help. The user can
select the Help button or press the F1 or HELP keys to access the help information. Since the InformationDialog is
modeless, as it should be, the user can either close the InformationDialog or the original MessageDialog.

22 Advanced Dialog Programming 22 Advanced Dialog Programming

602

Since the InformationDialog is a child of the MessageDialog, if the MessageDialog is destroyed, the
InformationDialog is also destroyed. Similarly, if the MessageDialog is unmapped, so is the InformationDialog. In
general, when you display an InformationDialog, you should remove it if the user unmanages, destroys, or otherwise
disables the dialog from which it was posted because if the help dialog remains posted, it could confuse the user. By
making the InformationDialog the child of the original dialog, you can let the parent−child interaction handle this
behavior.

22.1.1 Multi−level Help

Developing a help systen may involve providing multiple levels of help information. If the user has already posted an
InformationDialog, it is possible to display an additional dialog if the user requests help in the original dialog.
However, multiple help windows can confuse the user, so they should be avoided. A better solution is to display the
new help text in the same InformationDialog, so that all of the help information is displayed in the same place. the
source code shows new help_callback() and help_done() routines that implement this technique.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in
Motif 1.2.

 #define MAX_HELP_STAGES 3
 char *help_text[3][5] = {
 {
 "You have reached the first stage of the help system.",
 "If you need additional help, select the 'More Help' button.",
 "You may exit help at any time by pressing 'Done'.",
 NULL,
 },
 {
 "This is the second stage of the help system. There is",
 "more help available. Press 'More Help' to see more.",
 "Press 'Previous' to return to the previous help message,",
 "or press 'Done' to exit the help system.",
 NULL,
 },
 {
 "This is the last help message you will see on this topic.",
 "You may either press 'Previous' to return to the previous",
 "help level, or press 'Done' to exit the help system.",
 NULL,
 }
 };

 /* help_callback() −− callback routine for the Help button in the
 * original dialog box. The routine also serves as its own help
 * callback for displaying multiple levels of help messages.
 */
 void
 help_callback(parent, client_data, call_data)
 Widget parent;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget dialog; /* prevent multiple help dialogs */
 XmString text;
 char buf[BUFSIZ], *p;
 static int index;
 int i;
 void help_done();

22 Advanced Dialog Programming 22.1.1 Multi−level Help

603

 int index_incr = (int) client_data;

 if (dialog && index_incr == 0) {
 /* user pressed Help button in MesageDialog again. We're
 * already up, so just make sure we're visible and return. */
 XtPopup (XtParent (dialog), XtGrabNone);
 XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
 return;
 }

 if (dialog)
 index += index_incr; /* more/previous help; change index */
 else {
 /* We're not up, so create new Help Dialog */
 Arg args[5];
 int n;

 /* Action area button labels. */
 XmString done = XmStringCreateLocalized ("Done");
 XmString cancel = XmStringCreateLocalized ("Previous");
 XmString more = XmStringCreateLocalized ("More Help");

 n = 0;
 XtSetArg (args[n], XmNautoUnmanage, False); n++;
 XtSetArg (args[n], XmNokLabelString, done); n++;
 XtSetArg (args[n], XmNcancelLabelString, cancel); n++;
 XtSetArg (args[n], XmNhelpLabelString, more); n++;
 dialog = XmCreateInformationDialog (parent, "help", args, n);

 /* pass help_done() the address of "dialog" so it can reset */
 XtAddCallback (dialog, XmNokCallback, help_done, &dialog);

 /* if more/previous help, recall ourselves with increment */
 XtAddCallback (dialog, XmNcancelCallback, help_callback, −1);
 XtAddCallback (dialog, XmNhelpCallback, help_callback, 1);

 /* If our parent dies, we must reset "dialog" to NULL! */
 XtAddCallback (dialog, XmNdestroyCallback, help_done, &dialog);

 XmStringFree (done); /* once dialog is created, these */
 XmStringFree (cancel); /* strings are no longer needed. */
 XmStringFree (more);

 index = 0; /* initialize index−−needed for each new help stuff */
 }

 /* concatenate help text into a single string with newlines */
 for (p = buf, i = 0; help_text[index][i]; i++) {
 p += strlen (strcpy (p, help_text[index][i]));
 *p++ = '0;
 *p = 0;
 }

 text = XmStringCreateLtoR (buf, XmFONTLIST_DEFAULT_TAG);
 XtVaSetValues (dialog, XmNmessageString, text, NULL);
 XmStringFree (text); /* after set−values, free unneeded memory */

 /* If no previous help msg, set "Previous" to insensitive. */
 XtSetSensitive (
 XmMessageBoxGetChild (dialog,XmDIALOG_CANCEL_BUTTON), index > 0);
 /* If no more help, set "More Help" insensitive. */

22 Advanced Dialog Programming 22.1.1 Multi−level Help

604

 XtSetSensitive (XmMessageBoxGetChild (
 dialog, XmDIALOG_HELP_BUTTON), index < MAX_HELP_STAGES−1);

 /* display the dialog */
 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* help_done () −− callback used to set the dialog pointer
 * to NULL so it can't be referenced again by help_callback().
 * This function is called from the Done button in the help dialog.
 * It is also our XmNdestroyCallback, so reset our dialog_ptr to NULL.
 */
 void
 help_done(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget *dialog_ptr;

 if (!client_data) { /* destroy original MessageDialog */
 XtDestroyWidget (dialog);
 return;
 }

 dialog_ptr = (Widget *) client_data;
 if (!*dialog_ptr) /* prevent unnecessarily destroying twice */
 return;
 XtDestroyWidget (dialog); /* this might call ourselves.. */
 *dialog_ptr = NULL;
 }

In our help system, each level has a new help string that needs to be displayed. All of the help text is displayed in the
same InformationDialog. The dialog for the first level of help is shown in the figure.

Displaying multiple levels of help text

The help_callback routine addresses several problems that arise when dealing with the added complexity of a
multi−level help system. Since many dialogs may be trying to pop up the same InformationDialog, the routine uses a
static variable for the dialog to prevent multiple instances of the dialog. This variable allows the routine to keep track
of when the dialog is active and when it is dormant.

22 Advanced Dialog Programming 22.1.1 Multi−level Help

605

The routine is conceptually recursive, in that it is used as the callback routine for the buttons in the help dialog. The
client_data is used as an index into the help_text array. When this parameter is 0, the routine was called by
the original MessageDialog. Otherwise, the routine was invoked as a result of the user pressing the Previous button or
the More Help button. In this case, the index is changed so that the help text changes.

If the InformationDialog has already been created and the user presses the Help button anyway, the dialog is
remapped and raised to the top of the screen using XMapRaised(). If the parent dialog is unmapped or destroyed,
the InformationDialog is also unmapped or destroyed. In order to maintain the correct state information, we install an
XmNdestroyCallback to monitor the destruction of the InformationDialog. When the dialog is destroyed, we
need to reset the handle to the dialog to NULL so that we cannot reference the destroyed dialog again from
help_callback() the next time help is requested.

All of our help text is fairly short, but if you need to provide help text that longer, you may want to use a ScrolledText
object in your help dialog. With a ScrolledText object, you can display text of an arbitrary length without worrying
about screen real estate. This technique is explained in Chapter 7, Custom Dialogs.

22.1.2 Context−sensitive Help

Although the user can access the help system by using the HELP or F1 keys, this interface is somewhat cumbersome
and it doesn't work for widgets like Labels that do not process input events. You can provide a more intuitive interface
that allows the user to point−and−click directly on a widget to obtain help. The Motif Style Guide refers to this style of
help as context−sensitive help.

Context−sensitive help is make possible by the XmTrackingEvent() routine, which takes the following form:

 Widget
 XmTrackingEvent(widget, cursor, confine_to, event)
 Widget widget;
 Cursor cursor;
 Boolean confine_to;
 XEvent *event;

The routine invokes a server−grab on the pointer, changes the pointer shape to that specified by the cursor
parameter, and waits until the user presses a mouse button. The routine returns the widget on which the user pressed
the button. If the confine_to parameter is True, the cursor is confined to the window of the specified widget.
This window is also used as the owner of the pointer grab. The event parameter returns the actual event performed
by the user.

XmTrackingEvent() is new in Motif 1.2; it replaces the existing XmTrackingLocate() routine.
XmTrackingEvent() should be used in place of the older routine because it works for all widgets, regardless of
whether they handle input events. For example, if the user presses the mouse button over a Label widget,
XmTrackingEvent() returns the Label, while XmTrackingLocate() would return the parent of the Label.

An application usually provides context−sensitive help through an item on the Help menu. the source code shows the
query_for_help() callback routine that could be used for such a menu item. XmTrackingEvent() is only
available in Motif 1.2; XmTrackingLocate() is the corresponding function in Motif 1.1.

 #include <X11/cursorfont.h>

 Widget toplevel;

 void
 query_for_help(widget, client_data, call_data)

22 Advanced Dialog Programming 22.1.2 Context−sensitive Help

606

 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Cursor cursor;
 Display *display;
 Widget help_widget;
 XmAnyCallbackStruct *cbs, *newcbs;
 XEvent *event;

 cbs = (XmAnyCallbackStruct *) call_data;
 display = XtDisplay (toplevel);
 cursor = XCreateFontCursor (display, XC_hand2);

 help_widget = XmTrackingEvent (toplevel, cursor, True, &event);
 while (help_widget != NULL) {
 if (XtHasCallbacks (help_widget, XmNhelpCallback) ==
 XtCallbackHasSome) {
 newcbs−>reason = XmCR_HELP;
 newcbs−>event = event;
 XtCallCallbacks (help_widget, XmNhelpCallback,
 (XtPointer) newcbs);
 help_widget = NULL;
 }
 else
 help_widget = XtParent (help_widget);
 }
 XFreeCursor (display, cursor);
 }

When the user selects the menu item for context−sensitive help, query_for_help() is invoked. This routine calls
XmTrackingEvent() to allow the user to specify a widget on which to see help information. The confine_to
parameter is set to True, so the pointer is constrained to the window of the toplevel widget. We use toplevel
so that the user can select any component in the entire application.

XmTrackingEvent() changes the pointer to the specified cursor to provide visual feedback that the application is
in a new state. Since the user is expected to click on a object, the routine uses the XC_hand2 glyph that shows a
pointing hand. The cursor is created using XCreateFontCursor(). See Volume One, Xlib Programming
Manual, for more information.

If the user clicks on any valid widget within the application, XmTrackingEvent() returns the ID for that widget.
The widget itself is not activated and it does not receive any events that indicate that anything has happened at all. If
the user does not click on a valid widget, the function returns NULL. If XmTrackingEvent() returns a widget ID,
we use XtCallCallbacks() to activate the XmNhelpCallback for the widget. If the widget does not have a
help callback, query_for_help() climbs the widget tree looking for an ancestor widget with a help callback.

While the confine_to flag makes XmTrackingEvent() useful for constraining mouse movement, you should
use this feature with caution. Once the cursor is confined to the window, the server grab is not released until the user
presses the mouse button. We also advise caution if you are using a debugger while working with this function. If the
debugger stops at a breakpoint while the function is invoked, you will have to log in remotely and kill the debugger
process to release the pointer grab. If you kill the process, you will have to shut down the computer.

22.2 Working Dialogs

22 Advanced Dialog Programming 22.2 Working Dialogs

607

The Motif WorkingDialog is used to inform the user that an application is busy processing, so that it doesn't have the
time to handle other actions the user may take. For example, if your application is busy trying to figure out the
complete value of pi, the user is probably going to have to wait for the application to respond to her next action. The
delay occurs because the application code has control, rather than Xt. When Xt has control, it processes events and
dispatches them to the appropriate widgets in the application. If a widget has a callback installed for an event, Xt
returns control to the application. While the application has control, there is no way for the window system to service
any requests the user may happen to make.

In the meantime, the application is faced with the dilemma of how it is going to process events that happen in the
interim. While your application is busy number−crunching, the user is frantically pounding on the Stop button and
hoping that the application will figure out that she really didn't want it to figure out the complete value of pi, but
instead to print out the recipe for cherry pie.

What the application needs to do is to find a way to do the necessary work for callback routine and process events at
the same time. The solution is conceptually simple: the application should periodically check to see if there are any
events in the input queue, and if there are, process and dispatch them. The implementation of this solution, on the
other hand, is quite a different story. There are a number of different approaches you can take, depending on the
nature of the work you are trying to do. Let's examine four of the options:

If the task can be broken down into tiny chunks, you can set up work procedures that are invoked
automatically by Xt when there are no events on the event queue. Since events are very infrequent in terms of
processor time, this type of processing goes quite quickly. This technique works best for tasks that are not
critical to the application; the tasks can be done in the background and not interfere with the normal
event−processing loop. To minimize the effect on system performance, you should be sure to break the task
into small components time−wise.

•

You can set timer event handlers to go off periodically using XtAppAddTimeOut(). As each timer fires,
another chunk of work is done before control is returned to Xt. While this method is similar to using work
procedures, the time intervals may be more in tune with the type of processing you are doing. Timers are
typically used when the work being done is synchronous with the system clock or some other regular interval.
However, timers are not associated directly with the system clock, so a task should not rely on their accuracy.

•

You can choose to maintain control and use Xlib and Xt functions to process events yourself. In this case,
your application checks for events in the queue and processes them. This technique is appropriate for
applications that need to perform complex operations, as it is possible to handle sophisticated looping
constructs, process recursively, or manage complex state information.

•

You can simply choose to ignore events entirely. In this case, it is best to set the cursor to a stopwatch or hour
glass shape, and/or post a message that indicates that the user must wait. This solution is sometimes the only
one available if the task is dependent on some outside entity. Examples include device driver communication
(printer, disk drives), network communications (NFS), interprocess activity (forks and pipes), or anything that
puts the application in a state where it has no control over the object with which it is communicating.

•

You can mix and match some of these techniques. Say the user wants to send a large PostScript file to a laser printer.
When she clicks on the Print button, you can post a WorkingDialog that reports that the file is being printed and the
user must wait. Additionally, you could provide an option that allows the user to send the file to the printer in the
background. In this case, you can send the file to the printer in small chunks using work procedures.

The four methods fall into two basic categories:

Xt maintains control, processes events as normal, and periodically calls application -routines•
The application takes control, performs the necessary tasks, and periodically calls Xlib functions to check the
event queue

•

22 Advanced Dialog Programming 22.2 Working Dialogs

608

Work procedures and timers return control to Xt and allow it to process events as normal. In turn, Xt gives control
back to the application for short intervals every now and then. When the application maintains control, it can query
and process X events whenever it wants. While this process is more complicated, it does make it easier for the
application to control its own processing.

In all four situations, you can decide whether or not to display a WorkingDialog. If you want to give the user the
ability to terminate the work in progress, you can provide a Stop button in the dialog. Otherwise, you can simply
display the dialog for informational purposes. If you do not want the user to interact with other windows in the
application while the WorkingDialog is being displayed, you can make the dialog modal as described in Section
#smodaldlg.

22.2.1 Using Work Procedures

Work procedures in Xt are extremely simple in design. They are typically used by applications that can process tasks
in the background. When a work procedure is used in conjunction with a WorkingDialog, the application can provide
feedback on the status of the task. Say the user wants to load a large bitmap into a window. The nature of your
application requires you to load the file from disk into client−side memory, perform some bitmap manipulation, and
then send the bitmap to the X server to be loaded into a pixmap. If you suspect that this task might take a long time
and you want to allow the user to interrupt it, you can use work procedures and a WorkingDialog.

Unfortunately, demonstrating such a task is difficult, due to its extremely complex nature. The bitmap loading
operation requires a great deal of image−handling code that is a distraction from the issue at hand, which is installing a
work procedure. To get around this problem, we present a short, abstract program that demonstrates the use of a work
procedure. In the source code we represent a t ime−consuming task by count ing from 0 to 20000.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* working.c −− represent a complicated, time−consuming task by
 * counting from 0 to 20000 and provide feedback to the user about
 * how far we are in the process. The user may terminate the process
 * at any time by selecting the Stop button in the WorkingDialog.
 * This demonstrates how a WorkingDialog can be used to allow the
 * user to interrupt lengthy procedures.
 */
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 #define MAXNUM 20000

 void done();

 /* Global variables */
 static int i = 0;
 static XtWorkProcId work_id;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, button;
 XmString label;
 void pushed();

22 Advanced Dialog Programming 22.2.1 Using Work Procedures

609

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 label = XmStringCreateLocalized ("Press Here To Start A Long Task");
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 NULL);
 XtAddCallback (button, XmNactivateCallback, pushed, app);
 XmStringFree (label);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* pushed() −− the callback routine for the main app's pushbutton. */
 void
 pushed(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XtAppContext app = (XtAppContext) client_data;
 Widget dialog;
 XmString stop_txt;
 Arg args[5];
 int n;
 Boolean count();

 /* Create the dialog −− the "cancel" button says "Stop" */
 n = 0;
 stop_txt = XmStringCreateLocalized ("Stop");
 XtSetArg(args[n], XmNcancelLabelString, stop_txt); n++;
 dialog = XmCreateWorkingDialog (w, "working", args, n);
 XmStringFree (stop_txt);

 work_id = XtAppAddWorkProc (app, count, dialog);

 XtUnmanageChild (XmMessageBoxGetChild (dialog, XmDIALOG_OK_BUTTON));
 XtUnmanageChild (XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));

 /* Use cancel button to stop counting. True = remove work proc */
 XtAddCallback (dialog, XmNcancelCallback, done, True);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* count() −− work procedure that counts to MAXNUM. When we get there,
 * change the "Stop" button to say "Done".
 */
 Boolean
 count(client_data)
 XtPointer client_data;
 {
 Widget dialog = (Widget) client_data;
 char buf[64];
 XmString str, button;
 Boolean finished = False;

22 Advanced Dialog Programming 22.2.1 Using Work Procedures

610

 /* If we printed every number, the flicker is too fast to read.
 * Therefore, just print every 1000 ticks for smoother feedback.
 */
 if (++i % 1000 != 0)
 return finished;

 /* display where we are in the counter. */
 sprintf (buf, "Counter: %d", i);
 str = XmStringCreateLocalized (buf);
 XtVaSetValues (dialog, XmNmessageString, str, NULL);
 XmStringFree (str);

 if (i == MAXNUM) {
 i = 0;
 finished = True;
 button = XmStringCreateLocalized ("Done");
 XtVaSetValues (dialog, XmNcancelLabelString, button, NULL);
 XmStringFree (button);
 XtRemoveCallback (dialog, XmNcancelCallback, done, True);
 XtAddCallback (dialog, XmNcancelCallback, done, False);
 XMapRaised (XtDisplay (dialog), XtWindow (XtParent (dialog)));
 }

 /* Return either True, meaning we're done and remove the work proc,
 * or False, meaning continue working by calling this function.
 */
 return finished;
 }

 /* done () −− user pressed "Stop" or "Done" in WorkingDialog. */
 void
 done(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 Boolean remove_work_proc = (Boolean) client_data;

 if (remove_work_proc) {
 i = 0;
 XtRemoveWorkProc (work_id);
 }
 XtDestroyWidget (dialog);
 }

The main application simply displays a button. When the user presses the button, the application starts counting and
displays a WorkingDialog. The user can press Stop at any time during the process. If the user allows the application to
finish counting, the button is changed from Stop to Done. the figure shows both states of the WorkingDialog.

22 Advanced Dialog Programming 22.2.1 Using Work Procedures

611

Output of working.c

This program is designed to demonstrate how a work procedure and a WorkingDialog can interact. The callback for
the button in the application creates a WorkingDialog using -XmCreateWorkingDialog(). The callback routine
also installs a work procedure using XtAppAddWorkProc(). This function takes the following form:

 XtWorkProcId
 XtAppAddWorkProc(app_context, proc, client_data)
 XtAppContext app_context;
 XtWorkProc proc;
 XtPointer client_data;

The WorkingDialog is used as the client data for the count() work procedure, so that the procedure can update the
dialog. To allow the user to interrupt the counting operation, we install done() as the XmNcancelCallback
resource. If the user presses the Stop button, this routine is invoked. The routine stops the counting operation by
removing the work procedure using XtRemoveWorkProc().

During the counting operation, Xt calls the work procedure when there are no events that need to be processed. The
work procedure increments the global counter variable, i. Each time i reaches an increment of 1000, the
XmNmessageString for the WorkingDialog is updated to inform the user about the progress of the operation. The
work procedure returns True when the task is complete, which causes Xt to remove the procedure from the list of
work procedures being called. When count() returns False, Xt continues to call the routine when the application
is idle.

If the user allows the task to complete, the work procedure changes the action button to say Done and removes the
XmNcancelCallback. The procedure then reinstalls the callback in order to change the client data from True to
False. The client data must be set to False so that done() does not try to remove the work procedure. Since the
work procedure returns True in this case, Xt removes the procedure for us.

The work procedure also calls XMapRaised() to ensure that the dialog is visible when the operation completes. The
user must explicitly press the Done button to remove the dialog. Another approach is to call XtDestroyWidget()
to remove the dialog when the processing is done. In this case, the user is not notified that the operation has finished,
but she also does not have to respond to the dialog.

An application can install multiple work procedures, but Xt only processes one procedure at a time. The last work
procedure installed has the highest priority, so it is the first one called, except if one work procedure installs another
work procedure. In this case, the new procedure has a lower priority than the current one.

22 Advanced Dialog Programming 22.2.1 Using Work Procedures

612

As you can see from running the program in the source code work procedures are called extremely frequently. In any
real application, however, the task that is being performed is going to be more sophisticated and time−consuming than
our example here. It is important that the operations you perform in a work procedure do not take too much time, or
response time will suffer. A work procedure should return frequently enough to allow Xt to process user events, so
that the operation of the entire application flows smoothly.

22.2.2 Using Timers

Using timers to process a task is very similar to using work procedures. Timers are not called as frequently as work
procedures, so Xt can wait longer for user events to be generated and processed when the application uses timers. An
application can add a timer using XtAppAddTimeOut(), which takes the following form:

 XtIntervalId
 XtAppAddTimeOut(app_context, interval, proc, client_data)
 XtAppContext app_context;
 unsigned long interval;
 XtTimerCallbackProc proc;
 XtPointer client_data;

The interval parameter specifies how long Xt waits before invoking the timer specified by proc. The main
difference between using a timer and a work procedure is that a timer is called once and then automatically
unregistered. To have a timer called at a regular interval, an application must call XtAppAddTimeOut() again from
within the timer callback. With this exception, using timers is similar to using work procedures, so we aren't going to
present a separate example here. See Chapter 11, Labels and Buttons, for some examples that use timers in various
contexts.

22.2.3 Processing Events

If your application needs to start a lengthy process that is difficult to break into small pieces, you probably don't want
to return control to Xt. In this case, you never lose control of your own processing loop, but you need to check for X
events that need to be processed every once in a while. This technique is more convenient than work procedures for
certain algorithms, since the application doesn't have to break out of its processing loop unless the user terminates the
operation or the task completes naturally.

Processing events is somewhat complicated, but not because of the function calls involved or the design required to
support the processing. The complications involve the decisions about which events you want to process, which you
want to ignore, and which you want to put off handling until later. Say you are rendering a complicated graphic
directly into a DrawingArea. While you are busy processing, you need to decide what to do if you get an incoming
ButtonPress, Expose, or ConfigureNotify event, among others. In many cases, what you do depends on the
widget or the window that receives the event.

When an application starts a lengthy task, it should post a WorkingDialog that displays an appropriate message. The
WorkingDialog can also provide a Stop button to allow the user to terminate the task. During the operation, the user
should not be interacting with other windows in the application. It is a good idea to change the cursor that is used in
these windows, to make it clear that the windows will not respond to user input. When the operation is finished, the
application needs to remove the WorkingDialog and reset the cursor.

If you are going to process events yourself, you probably want to write a routine that checks the event queue for
relevant events. This routine would process all of the important events, such as those that cause widgets to be
repainted. The routine should also handle events for the Stop button in the WorkingDialog, so the user can terminate
the task.

22 Advanced Dialog Programming 22.2.2 Using Timers

613

The program listed in the source code supports the requirements that we have laid out for an application that processes
its own events. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

 /* busy.c −− demonstrate how to use a WorkingDialog and to process
 * only important events. e.g., those that may interrupt the
 * task or to repaint widgets for exposure. Set up a simple shell
 * and a widget that, when pressed, immediately goes into its own
 * loop. Set a timeout cursor on the shell and pop up a WorkingDialog.
 * Then enter loop and sleep for one second ten times, checking between
 * each interval to see if the user clicked the Stop button or if
 * any widgets need to be refreshed. Ignore all other events.
 *
 * main() and get_busy() are stubs that would be replaced by a real
 * application; all other functions can be used as is.
 */
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>
 #include <X11/cursorfont.h>

 Widget shell;
 void TimeoutCursors();
 Boolean CheckForInterrupt();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget button;
 XmString label;
 void get_busy();

 XtSetLanguageProc (NULL, NULL, NULL);

 shell = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 label = XmStringCreateLocalized ("Press Here To Start A Long Task");
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, shell,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);
 XtAddCallback (button, XmNactivateCallback, get_busy, NULL);

 XtRealizeWidget (shell);
 XtAppMainLoop (app);
 }

 void
 get_busy(widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 int n;

 TimeoutCursors (True, True);

22 Advanced Dialog Programming 22.2.2 Using Timers

614

 for (n = 0; n < 10; n++) {
 sleep (1);
 if (CheckForInterrupt ()) {
 puts ("Interrupt!");
 break;
 }
 }
 if (n == 10)
 puts ("Done");
 TimeoutCursors (False, False);
 }

 /* The interesting part of the program −− extract and use at will */

 static Boolean stopped; /* True when user wants to stop task */
 static Widget dialog; /* WorkingDialog displayed */

 /* TimeoutCursors() −− turns on the watch cursor over the application
 * to provide feedback for the user that she's going to be waiting
 * a while before she can interact with the application again.
 */
 void
 TimeoutCursors(on, interruptable)
 Boolean on, interruptable;
 {
 static int locked;
 static Cursor cursor;
 extern Widget shell;
 XSetWindowAttributes attrs;
 Display *dpy = XtDisplay (shell);
 XEvent event;
 Arg args[5];
 int n;
 XmString str;
 extern void stop();

 /* "locked" keeps track if we've already called the function.
 * This allows recursion and is necessary for most situations.
 */
 if (on)
 locked++;
 else
 locked−−;
 if (locked > 1 || locked == 1 && on == 0)
 return; /* already locked and we're not unlocking */

 stopped = False;
 if (!cursor)
 cursor = XCreateFontCursor (dpy, XC_watch);

 /* if on is true, then turn on watch cursor, otherwise, return
 * the shell's cursor to normal.
 */
 attrs.cursor = on ? cursor : None;

 /* change the main application shell's cursor to be the timeout
 * cursor or to reset it to normal. If other shells exist in
 * this application, they will have to be listed here in order
 * for them to have timeout cursors too.
 */
 XChangeWindowAttributes (dpy, XtWindow (shell), CWCursor, &attrs);

22 Advanced Dialog Programming 22.2.2 Using Timers

615

 XFlush (dpy);

 if (on) {
 /* we're timing out, put up a WorkingDialog. If the process
 * is interruptable, allow a "Stop" button. Otherwise, remove
 * all actions so the user can't stop the processing.
 */
 n = 0;
 str = XmStringCreateLocalized ("Busy −− Please Wait.");
 XtSetArg (args[n], XmNmessageString, str); n++;
 dialog = XmCreateWorkingDialog (shell, "busy", args, n);
 XmStringFree (str);
 XtUnmanageChild (XmMessageBoxGetChild (dialog, XmDIALOG_OK_BUTTON));
 XtUnmanageChild (XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));
 if (interruptable) {
 str = XmStringCreateLocalized ("Stop");
 XtVaSetValues (dialog, XmNcancelLabelString, str, NULL);
 XmStringFree (str);
 XtAddCallback (dialog, XmNcancelCallback, stop, NULL);
 }
 else
 XtUnmanageChild (XmMessageBoxGetChild
 (dialog, XmDIALOG_CANCEL_BUTTON));
 XtManageChild (dialog);
 }
 else {
 /* get rid of all button and keyboard events that occured
 * during the time out. The user shouldn't have done anything
 * during this time, so flush for button and keypress events.
 * KeyRelease events are not discarded because accelerators
 * require the corresponding release event before normal input
 * can continue.
 */
 while (XCheckMaskEvent (dpy,
 ButtonPressMask | ButtonReleaseMask | ButtonMotionMask
 | PointerMotionMask | KeyPressMask, &event)) {
 /* do nothing */;
 }
 XtDestroyWidget (dialog);
 }
 }

 /* stop() −− user pressed the "Stop" button in dialog. */
 void
 stop(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 stopped = True;
 }

 /* CheckForInterrupt() −− check events in event queue and process
 * the interesting ones.
 */
 Boolean
 CheckForInterrupt()
 {
 extern Widget shell;
 Display *dpy = XtDisplay (shell);

22 Advanced Dialog Programming 22.2.2 Using Timers

616

 Window win = XtWindow (dialog);
 XEvent event;

 /* Make sure all our requests get to the server */
 XFlush (dpy);

 /* Let Motif process all pending exposure events for us. */
 XmUpdateDisplay (shell);

 /* Check the event loop for events in the dialog ("Stop"?) */
 while (XCheckMaskEvent (dpy,
 ButtonPressMask | ButtonReleaseMask | ButtonMotionMask |
 PointerMotionMask | KeyPressMask, &event)) {
 /* got an "interesting" event. */
 if (event.xany.window == win)
 XtDispatchEvent (&event); /* it's in our dialog.. */
 else /* uninteresting event−−throw it away and sound bell */
 XBell (dpy, 50);
 }
 return stopped;
 }

This program is obviously for demonstration purposes only. To keep to the subject matter, we have made the main
part of the program quite unrealistic and only use it to support the functions we are about to discuss. The application
displays a single button that starts a "long task." The get_busy() callback routine is trivial, but it demonstrates the
use of the TimeoutCursors() and CheckForInterrupt() routines.

The TimeoutCursors() routine is used to change the cursor for the main application shell and to post the
WorkingDialog. The cursor is changed to a watch shape to give the user visual feedback that the main window is not
responding to input. The routine uses the static variable locked to keep track of how many times it has been called
with on set to True. The function does not reset the cursor and remove the WorkingDialog until a matching number
of calls has been made with on set to False. This technique makes it possible for a low−level function in an
application to call TimeoutCursors() at its beginning and end, without affecting higher−level loops that also call
the function.

The routine stores the XC_watch cursor in the static cursor variable. The cursor is created using
XCreateFontCursor(), which is why <X11/cursorfont.h> is included. TimeoutCursors() uses
XChangeWindowAttributes() to change the cursor to the watch shape and to reset it to its normal shape when
on is False. The cursor is modified for the window of the shell widget, which is the main window for the
application. If your application uses multiple ApplicationShells or TopLevelShells, you will need to modify the
function to change the cursor shape for all of the shells.

At this point, we call XFlush() to make sure that all of our requests have been sent to the server. The
TimeoutCursors() function may be called from deep within an application, so there may be a number of server
requests that are waiting and we want to be sure that the server knows about them now. If the are turning off the
timeout cursor, we may also need to read any resulting events.

Now we determine whether we are locking or unlocking the application. If we are locking it, we create and post a
WorkingDialog. The dialog is created with a standard message. If the interruptable parameter is True, we
provide a Stop button by changing the label of the Cancel button. We also add a callback routine for button, so that
we can actually stop the task in progress.

We should note that an application does not necessarily have to post a WorkingDialog, as long as it changes the
cursor. The watch cursor provides enough feedback to indicate that the application is in a busy state. The decision

22 Advanced Dialog Programming 22.2.2 Using Timers

617

about whether or not to post a dialog really depends on the length of the task being performed. For relatively short
tasks, it typically doesn't make sense to provide a WorkingDialog, as it takes some time to actually create and post the
dialog.

Now the application is in a busy state. However, the user has yet to see anything; events need to be processed in order
for the dialog to be mapped to the screen. At this point, the CheckForInterrupt() routine takes over. This
routine handles Expose events by calling XmUpdateDisplay(). This Motif function processes all of the Expose
events in the event queue by causing the server to flush these events for all of the windows on the display. This
processing may cause redrawing event handlers to be called for various widgets. If you have installed your own
exposure routines for any widgets, be sure that they are not too time consuming, or you may find yourself in a bind.
You can check to see which windows are going to be repainted before it actually happens by using
XCheckMaskEvent() to process Expose events.

After any possible repainting has occurred, we check for any button or keyboard events in the event queue. If one has
been generated, we extract it from the input queue using XCheckMaskEvent(). The function takes the following
form:

 Bool
 XCheckMaskEvent(display, event_mask, event_return)
 Display *display;
 long event_mask;
 XEvent *event_return;

This Xlib function looks for events in the queue that match event_mask. If there is a matching event, the
event_return parameter is filled in with the event and the routine returns True. Otherwise, the function returns
False and we can return. The event is processed only if it occurred within the WorkingDialog window. Since the
application is busy, events in other windows are not processed. If the user did something in the WorkingDialog, we
process the event because she may have activated the Stop button. If the button is not provided for the dialog, it does
not affect the code here.

You should be aware that XCheckMaskEvent() removes the event from the queue. If you choose not to process an
event, you cannot stick it back in the queue. If you retrieve an event out of the queue and don't want to process it, you
should set an application−defined variable or flag that notifies the application that it must eventually deal with the
event. Another alternative is to save the event by allocating a new XEvent structure and copying the data. Then you
dispatch the event later, when you are prepared to handle it.

We do not check for KeyRelease events in CheckForInterrupt() for a very important reason that concerns
how the X Toolkit Intrinsics handles accelerators. Say your application has a menu item that initiates a long,
complicated process. The callback function for this menu item calls both TimeoutCursors() and
CheckForInterrupt(), just like the get_busy() routine. Let's say that ALT−X is the accelerator for the menu
item. When the user types this key sequence, the callback routine for the menu item is activated by the KeyPress
events. At this time, the KeyRelease events associated with the accelerator are still in the event queue. If we
checked for KeyRelease events in CheckForInterrupt(), the ones for the accelerator would get thrown
away, since they did not occur in the WorkingDialog.

Throwing away these events is a problem because Xt uses an internal state machine to determine whether or not any
particular sequence of keyboard events is an accelerator or a prefix for one. Since Xt would never get the
accompanying KeyRelease events, it would think that the user is still entering a keyboard accelerator. Xt would not
get out of that state until the matching events were given, with the result that no other keyboard events would work in
the application until the user happened to type the same accelerator sequence. This situation is not a bug in Xt; Xt is
simply doing what it must to handle acclerators. However, the situation does demonstrate the intricacies of handling
events in X.

22 Advanced Dialog Programming 22.2.2 Using Timers

618

Getting back to CheckForInterrupt(), if the user presses the Stop in the dialog, the event is processed and the
stop() callback routine is invoked. This routine simply sets the global variable stopped to True. By the time that
CheckForInterrupt() is ready to return, stopped has been set, so the function returns True. If the
WorkingDialog does not have a Stop button, the callback routine is not installed, so stopped is never set to True.

After the get_busy() routine finishes processing, it calls TimeoutCursors() again to unlock the application.
When on is set to False, the routine uses XCheckMaskEvent() to look in the event queue for button and
keyboard events. In this case, the events are thrown away, since the input is no longer useful. The routine also
destroys the WorkingDialog. In one sense, TimeoutCursors() implements a kind of modality, similar to that
discussed in Section #smodaldlg. However, modality alone cannot provide the functionality necessary to handle
long−running tasks.

22.2.4 Updating the Display

As discussed earlier, XmUpdateDisplay() checks the event queue for all Expose events and processes them
immediately. However, there are some circumstances under which the routine does not work as you might expect. For
example, let's say that your application creates and posts a dialog that contains a DrawingArea widget. You call
XSync() and XmUpdateDisplay() to make sure that the dialog is on the screen and fully exposed. After you call
XClearWindow() to make sure the window is clear, you begin drawing. Unfortunately, you may find that nothing
is drawn.

The problem is due to the redirection of events from the window manager and the way events are processed and
queued. When a dialog is posted using XtManageChild() or XtPopup(), the toolkit calls XMapRaised() to
raise the window to the top of the window stack. The call to XSync() sends the MapRequest event to the server,
which redirects it to the window manager (e.g., mwm). A bottleneck can occur if the window manager is swapped out,
which is a side effect of multi−tasking operating systems such as UNIX.

In this case, mwm may not react immediately to the redirection and can take an indeterminate amount of time to
respond. The X server doesn't take this delay into account. It thinks that the event has been delivered properly, so your
application believes that the window has been mapped. As a result, XmUpdateDisplay() doesn't get the Expose
event that you were expecting and drawing does no good because the window still hasn't been mapped. When mwm
gets around to mapping the window to the screen, the server generates the Expose event, but by now your
application is off doing something else.

One solution to this problem is to change the design of your application so that it doesn't start drawing until the server
actually generates the Expose events. In this case, you should post the dialog and immediately return control to the
main event−processing loop (XtAppMainLoop()). If you have installed an event handler or a translation for the
Expose event, the routine is called at the appropriate time. Another advantage to this design is that the drawing
procedure is called anytime an Expose event occurs, which ensures that the window is always up−to−date.

In the source code we show another solution. This solution should be used only if you need to create, pop up, or
manage a dialog and then immediately draw into the window. The ForceUpdate() routine ensures that the
specified widget is visible before it returns.

 /* ForceUpdate() −− a superset of XmUpdateDisplay() that ensures
 * that a window's contents are visible before returning.
 * The monitoring of window states is necessary because an attempt to
 * map a window is subject to the whim of the window manager, which can
 * introduce a significant delay before the window is actually mapped
 * and exposed. This function is intended to be called after XtPopup(),
 * XtManageChild() or XMapRaised(). Don't use it in other situations
 * as it may sit and process other unrelated events until the widget

22 Advanced Dialog Programming 22.2.4 Updating the Display

619

 * becomes visible.
 */
 void
 ForceUpdate(w)
 Widget w; /* This widget must be visible before the function returns */
 {
 Widget diashell, topshell;
 Window diawindow, topwindow;
 XtAppContext cxt = XtWidgetToApplicationContext (w);
 Display *dpy;
 XWindowAttributes xwa;
 XEvent event;

 /* Locate the shell we are interested in */
 for (diashell = w; !XtIsShell (diashell); diashell = XtParent (diashell))
 ;

 /* Locate its primary window's shell (which may be the same) */
 for (topshell = diashell; !XtIsTopLevelShell (topshell);
 topshell = XtParent (topshell))
 ;

 /* If the dialog shell (or its primary shell window) is not realized,
 * don't bother ... nothing can possibly happen.
 */
 if (XtIsRealized (diashell) && XtIsRealized (topshell)) {
 dpy = XtDisplay (topshell);
 diawindow = XtWindow (diashell);
 topwindow = XtWindow (topshell);

 /* Wait for the dialog to be mapped. It's guaranteed to become so */
 while (XGetWindowAttributes (dpy, diawindow, &xwa) &&
 xwa.map_state != IsViewable) {

 /* ...if the primary is (or becomes) unviewable or unmapped,
 * it's probably iconic, and nothing will happen.
 */
 if (XGetWindowAttributes (dpy, topwindow, &xwa) &&
 xwa.map_state != IsViewable)
 break;

 /* we are guaranteed there will be an event of some kind. */
 XtAppNextEvent (cxt, &event);
 XtDispatchEvent (&event);
 }
 }

 /* The next XSync() will get an expose event. */
 XmUpdateDisplay (topshell);
 }

This routine makes sure that a dialog is visible by waiting for the window of the dialog to be mapped to the screen.

22.2.5 Avoiding Forks

Before we close out this section, there is one more method of of executing tasks in the background that we should
discuss. Beginning programmers tend to use library functions and system calls such as system(), popen(),
fork(), and exec() to invoke external commands. Although these functions are perfectly reasonable, they can
backfire quite easily on virtually any error condition. Recovering from these errors is the GUI programmer's

22 Advanced Dialog Programming 22.2.5 Avoiding Forks

620

nightmare, since there are so many different possible conditions to deal with.

The purpose of using these functions, of course, is to call another UNIX program and have it run concurrently with the
main application. The system() and popen() functions fork a new process using the fork() system call. They
also use some form of exec() so the new child process can invoke the external UNIX program. If the new process
cannot fork, if there is something wrong with the external UNIX command, if there is a communications protocol
error, or any one of a dozen other possible error conditions, there is no way for the external program to display an
error message as a part of the main application.

It is unlikely that the external program would display a dialog box or any sort of reasonable user−interface element. It
is illegal for a new process to use any of the widgets or windows in the main application because only one connection
to the server is allowed per process. If the child process wants to post a dialog, it must establish a new connection to
the X server and create an entirely new widget tree, as it is a separate application. Since most system utilities do not
have graphical user interface front ends, this scenario is very unlikely. It is also entirely unreasonable to have any
expectations of the external process, especially since other solutions are much easier.

If a separate process is necessary in order to accomplish a particular task, setting up pipes between the child
application and the parent is usually the best alternative. The popen() function uses this method superficially, but it
is not the most elegant solution. The routine only handles forking the new process and setting up half of a two−way
pipe. The popen() function is used in several places throughout the book; check the index for those uses.

To really handle external processes and pipes properly, an application should do the following:

The parent process calls pipe() to set up entry points for the expected child process' input and output
channels. Two pipes for both input and output are usually needed.

•

The parent process calls fork() to spawn the new child process.•
The child uses dup2() to redirect its own stdin, stdout, and stderr to the other ends of the pipes set
up by the parent. The communication pipeline between the parent and the child is now established.

•

The parent calls XtAppAddInput() to tell Xt to monitor an additional file descriptor while it is waiting for
input events from the X server.

•

The parent can read data (e.g., output, error conditions, etc.) sent by the child using read() on the
appropriate pipe.

•

The parent can display the output from the pipe to a dialog, a ScrolledText object, or some other widget
because it is still in connection with the X server.

•

If the parent calls XtAppAddInput(), Xt can see the data the child sends through the pipe and invoke the callback
routine associated with the file descriptor. XtAppAddInput() takes the following form:

 XtInputId
 XtAppAddInput(app_context, source, mask, proc, client_data)
 XtAppContext app_context;
 int source;
 XtPointer mask;
 XtInputCallbackProc proc;
 XtPointer client_data;

The source parameter should be the side of the pipe that the parent uses to read data sent by the child process. The
proc function is called when there is data to read on the pipe. When the function is called, the client_data is
passed to the callback. For example, you can pass the process ID returned by fork(), so you can see if the process is
still alive and read the data using read().

22 Advanced Dialog Programming 22.2.5 Avoiding Forks

621

This discussion is merely presented as an overview, since the implementation details are beyond the scope of this
book. For example, UNIX signals cause problems in a number of ways. The parent process is sent signals when the
child dies or its process state changes. The child is also sent signals that are delivered to the parent by the user or other
outside forces. Different forms of UNIX require that process groups be set up in different ways to avoid other
problems with signals.

Another problem involves file descriptors that are set up as non−blocking files. If read() returns 0 with one of these
descriptors, you may not know whether there is nothing to read or the end of the file has been reached, which means
that the child process has terminated. Incidentally, popen() does not deal with any of these issues correctly, so
building a new solution is the best thing to do in the long run.

You should really consult the programmer's guide for your UNIX system for more information on the techniques used
to spawn new processes and communicate with them appropriately. Once you have a handle on those issues, it should
be relat ively easy to redirect text from f i le descriptors using the toolkit . For more information on
XtAppAddInput(), including examples of how it can be used, see Volume Four, X Toolkit Intrinsics
Programming Manual.

22.3 Dynamic Message Symbols

The MessageDialog is used to display many different types of messages; the image in the dialog helps the user
identify the purpose of the dialog. The pixmaps used by the standard MessageDialogs are predefined by the Motif
toolkit. When you are using the standard dialogs, you typically change the dialog's type rather than its symbol, since
changing its type effectively changes the symbol that it displays. However, you can change the MessageDialog's
symbol to a customized image using the XmNsymbolPixmap resource.

The resource takes a pixmap value that must be created before the resource is set. When the resource is set, the
pixmap is not copied by the dialog widget. If the dialog is destroyed, you should be sure to free the pixmap unless you
are using it elsewhere. If you are going to destroy the dialog using XtDestroyWidget() directly, you should get
the pixmap by calling XtVaGetValues(), so that you can free it. However, the dialog can also be destroyed
automatically, so you should also specify an XmNdestroyCallback procedure that is called whenever the dialog
is destroyed.

the source code shows an example of using a custom image in a standard MessageDialog. The program also
demonstrates how the dialog should clean up after itself. XtSetLanguageProc() is only available in X11R5;
there is no corresponding function in X11R4. XmStringCreateLocalized() is only available in Motif 1.2;
XmStringCreateSimple() is the corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces
XmSTRING_DEFAULT_CHARSET in Motif 1.2.

 /* warn_msg.c −− display a very urgent warning message.
 * Really catch the user's attention by flashing an urgent−
 * looking pixmap every 250 milliseconds.
 * The program demonstrates how to set the XmNsymbolPixmap
 * resource, how to destroy the pixmap and how to use timers.
 */
 #include <Xm/MessageB.h>
 #include <Xm/PushB.h>

 #include "bang0.symbol"
 #include "bang1.symbol"

 #define TEXT "Alert!0he computer room is ON FIRE!0ll of your e−mail will be lost."

 /* define the data structure we need to implement flashing effect */

22 Advanced Dialog Programming 22.3 Dynamic Message Symbols

622

 typedef struct {
 XtIntervalId id;
 int which;
 Pixmap pix1, pix2;
 Widget dialog;
 XtAppContext app;
 } TimeOutClientData;

 main(argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app;
 Widget toplevel, button;
 XmString label;
 void warning();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Demos",
 NULL, 0, &argc, argv, NULL, NULL);

 label = XmStringCreateLocalized (
 "Don't Even Think About Pressing This Button");
 button = XtVaCreateManagedWidget ("button",
 xmPushButtonWidgetClass, toplevel,
 XmNlabelString, label,
 NULL);
 XmStringFree (label);

 /* set up callback to popup warning */
 XtAddCallback (button, XmNactivateCallback, warning, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* warning() −− callback routine for the button. Create a message
 * dialog and set the message string. Allocate an instance of
 * the TimeOutClientData structure and set a timer to alternate
 * between the two pixmaps. The data is passed to the timeout
 * routine and the callback for when the user presses "OK".
 */
 void
 warning(parent, client_data, call_data)
 Widget parent;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget dialog;
 XtAppContext app = XtWidgetToApplicationContext (parent);
 XmString text;
 extern void done(), destroy_it(), blink();
 Display *dpy = XtDisplay (parent);
 Screen *screen = XtScreen (parent);
 Pixel fg, bg;
 Arg args[5];
 int n, depth;
 TimeOutClientData *data = XtNew (TimeOutClientData);

 /* Create the dialog */

22 Advanced Dialog Programming 22.3 Dynamic Message Symbols

623

 n = 0;
 XtSetArg (args[n], XmNdeleteResponse, XmDESTROY); n++;
 dialog = XmCreateMessageDialog (parent, "danger", args, n);

 XtUnmanageChild (XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));
 XtUnmanageChild (XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));

 XtAddCallback (dialog, XmNokCallback, done, NULL);
 XtAddCallback (dialog, XmNdestroyCallback, destroy_it, data);

 /* now that dialog has been created, it's colors are initialized */
 XtVaGetValues (dialog,
 XmNforeground, &fg,
 XmNbackground, &bg,
 XmNdepth, &depth,
 NULL);

 /* Create pixmaps that are going to be used as symbolPixmaps.
 * Use the foreground and background colors of the dialog.
 */
 data−>pix1 = XCreatePixmapFromBitmapData (dpy, XtWindow (parent),
 bang0_bits, bang0_width, bang0_height, fg, bg, depth);
 data−>pix2 = XCreatePixmapFromBitmapData (dpy, XtWindow (parent),
 bang1_bits, bang1_width, bang1_height, fg, bg, depth);
 /* complete the timeout client data */
 data−>dialog = dialog;
 data−>app = app;

 /* Add the timeout for blinking effect */
 data−>id = XtAppAddTimeOut (app, 1000L, blink, data);

 /* display the help text and the appropriate pixmap */
 text = XmStringCreateLtoR (TEXT, XmFONTLIST_DEFAULT_TAG);
 XtVaSetValues (dialog,
 XmNmessageString, text,
 XmNsymbolPixmap, data−>pix2,
 NULL);
 XmStringFree (text);

 XtManageChild (dialog);
 XtPopup (XtParent (dialog), XtGrabNone);
 }

 /* blink() −− visual blinking effect for dialog's symbol. Displays
 * flashing ! symbol, restarts timer and saves timer id.
 */
 void
 blink(client_data, id)
 XtPointer client_data;
 XtIntervalId *id;
 {
 TimeOutClientData *data = (TimeOutClientData *) client_data;

 data−>id = XtAppAddTimeOut (data−>app, 250L, blink, data);
 XtVaSetValues (data−>dialog,
 XmNsymbolPixmap, (data−>which = !data−>which) ?
 data−>pix1 : data−>pix2,
 NULL);
 }

 /* done() −− called when user presses "OK" in dialog or

22 Advanced Dialog Programming 22.3 Dynamic Message Symbols

624

 * if the user picked the Close button in system menu.
 * Remove the timeout id stored in data, free pixmaps and
 * make sure the widget is destroyed (which is only when
 * the user presses the "OK" button.
 */
 void
 done(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 XtDestroyWidget(dialog);
 }

 /* destroy_it() −− called when dialog is destroyed. Removes
 * timer and frees allocated data.
 */
 void
 destroy_it(dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 TimeOutClientData *data = (TimeOutClientData *) client_data;
 Pixmap symbol;

 XtRemoveTimeOut (data−>id);
 XFreePixmap (XtDisplay (data−>dialog), data−>pix1);
 XFreePixmap (XtDisplay (data−>dialog), data−>pix2);
 XtFree (data);
 }

The dialog is created in warning(), the callback routine for the PushButton in the main window. We create a
simple MessageDialog that does not have a predefined symbol so we can specify a custom image. The dialog actually
uses two symbols that are exchanged every 250 milliseconds by a timer callback routine. The output of this program is
shown in the figure.

Output of warn_msg.c

22 Advanced Dialog Programming 22.3 Dynamic Message Symbols

625

To implement the flashing symbol, we must associate certain information with the dialog. Basically, we need to keep
track of the two pixmaps and the timer routine. All of the information is placed in a single data structure, so we can
pass the structure around as client data. We can also use multiple structure variables to store information about
multiple dialogs. The TimeOutClientData is defined as follows:

 typedef struct {
 XtIntervalId id;
 int which;
 Pixmap pix1, pix2;
 Widget dialog;
 XtAppContext app;
 } TimeOutClientData;

The warning() routine allocates a new instance of the structure using XtNew(), since it is going to create a new
dialog and it needs a unique structure for the dialog. The routine uses XmCreateMessageDialog() to create the
dialog. We unmanage the Cancel and Help buttons and specify a callback for the OK button. The done() callback
simply calls XtDestroyWidget(), which causes the XmNdestroyCallback to be called. We also set the
XmNdeleteResponse resource for the dialog to XmDESTROY. This setting causes the Motif toolkit to destroy the
dialog if the user dismisses it using the Close button on the window menu,

Since we are not reusing the dialog or its data, we must be sure to free the pixmaps, release the timer, and free the
allocated data structure when the dialog is destroyed. To be sure that these tasks take place, we install a callback
function for the XmNdestroyCallback resource. The destroy_it() routine handles all of the cleanup for the
dialog.

Before we create the pixmaps that are used in the dialog, we retrieve the dialog's foreground and background colors
using XtVaGetValues() so that the new pixmaps can use the same colors. Once the colors are known, we can
create the pixmaps and finish initializing the fields in the TimeOutClientData structure. The dialog field of the
structure points to the MessageDialog. We call XtAppAddTimeOut() to start the timer that controls the flashing
effect and set the id field to the timer ID.

We perform a final bit of setup for the dialog by specifying the XmNsymbolPixmap and XmNmessageString
resources. Once everything is set up, the function returns, Xt regains control, and normal event processing resumes.
After the initial one−second interval times out, the blink() function is called. This routine adds another timeout for
250 milliseconds and switches the pixmaps displayed in the dialog. This loop continues until the user dismisses the
dialog, at which time it is destroyed, the pixmaps are freed, the timer is removed, and the TimeOutClientData
structure is freed.

Since we created a simple MessageDialog that does not have a predefined image, we did not have to get a handle to
the XmNsymbolPixmap for the dialog and destroy it. However, if you decide to change the pixmap for one of the
standard dialogs that has a predefined symbol, like the ErrorDialog, you should get its pixmap and free it. In this case,
you should use XmDestroyPixmap() rather than XFreePixmap(). The Motif dialogs use XmGetPixmap() to
create their images, so the pixmaps must be freed with the companion routine XmDestroyPixmap(). See Section
#spixmaps in Chapter 3, Overview of the Motif Toolkit, for a discussion on XmGetPixmap().

Although changing the symbol pixmap in a dialog is quite simple, using the feature effectively requires a careful
design to make sure that all of the pointers and data structures are destroyed appropriately. Being meticulous about
cleaning up after destroyed widgets and other objects is sometimes a difficult task because of the many ways in which
the user can destroy them. However, eliminating these possible memory leaks enables a program to run longer and
more efficiently.

22 Advanced Dialog Programming 22.3 Dynamic Message Symbols

626

22.4 Summary

Developing a real application often involves a lot of work to get the details just right. Some of the most interesting
problems in designing an interface cannot be solved by Motif alone. Motif provides the basic user interface, but you
must make it work with your application. A solid understanding of the fundamentals of the X Window System and the
X Toolkit Intrinsics makes it easier to fine−tune the interface for an application. This chapter has presented some
solutions to common problems that require using both Xlib and Xt routines in conjunction with the Motif toolkit.

22 Advanced Dialog Programming 22.4 Summary

627

23 Introduction to UIL

This chapter provides a basic introduction to the User Interface Language (UIL) and the Motif Resource Manager
(Mrm). The chapter describes UIL and Mrm, talks about how to use them, and discusses the advantages and
disadvantages of using them to create a user interface. It also presents a "Hello, World" application that is meant to
provide you with a basic understanding of how to use both UIL and Mrm to develop an application with Motif.

In this chapter, we introduce the OSF/Motif User Interface Language (UIL) and the Motif Resource Manager (Mrm).
We begin by explaining the purpose and capabilities of UIL and Mrm. Then we describe the structure of both a UIL
module and a program that uses Mrm by walking through the traditional "Hello World" application. The example
gives you an overview of how a user interface is described with UIL and created with Mrm. For the most part we
concentrate on the big picture and leave the discussion of low−level details until Chapter 24, Creating a User
Interface With UIL.

In all of these chapters on UIL, we assume that you are familiar with the basics of the X Toolkit (Xt) and the concepts
of Motif programming discussed earlier in this book. At the very least, you must understand the process of widget
creation and the concept of widget resources. (Xt programming is covered in Volume Four, X Toolkit Intrinsics
Programming Manual, and you can find references for Xt and Motif in Volume Five, X Toolkit Intrinsics Reference
Manual; and Volume Six B, Motif Reference Manual respectively.)

23.1 Overview of UIL and Mrm

UIL is a text−based language used to describe a user interface that consists of Motif (and other) widgets. Like a C
program, a UIL description is a plain text file that you can edit with a standard editor. However, unlike a structured
programming language, which supports dynamic constructs like loops and conditional statements, UIL is strictly a
static description language. It is designed to work with the Motif widget set and data types, although you can
incorporate other Xt−based widgets as well. UIL files look vaguely C−like, as curly braces are used extensively for
grouping.

Mrm is a library of C routines that reads compiled UIL files to create a user interface at run−time. Mrm consists of
functions for opening and closing compiled UIL files, creating widgets, retrieving values (such as strings and icons),
and declaring callbacks. Loosely speaking, the UIL description is a "resource" that Mrm "manages," hence the name.

23.1.1 Using UIL and Mrm

An application that uses UIL consists of one or more UIL source modules and the application source code. A UIL
module contains widget declarations that describe the application's user interface. The application source code, which
is usually written in C or another high−level language, creates the user interface and implements the application's
behavior. Depending on its needs, an application may also use other types of files.

The process of using UIL and Mrm consists of three main steps:

Describe a user interface in one or more UIL files. The description is written using a text editor. Writing the
description involves defining the widget hierarchy of the interface and specifying resources and callback
settings. (Some user interface builder tools also generate interface descriptions in UIL, but their operation is
beyond the scope of this book.)

•

Compile the files with the UIL compiler. The compiler parses and validates the files. If there are no errors, the•

628

compiler writes out a user interface description (UID) file for each UIL source file. A UID file is analogous to
an object file in a programming language; it contains a binary description of the interface which is read by
Mrm.
Create the user interface at run−time with Mrm. After making the standard Xt initialization calls, an
application only needs to make a few calls to Mrm to create and display the interface. Mrm handles nearly all
of the work of creating an interface by calling routines in the Xm, Xt, and X libraries.

•

the figure illustrates how UIL and Mrm fit in with your application and the Xm, Xt, and X libraries.

User interface creation with UIL and Mrm

23.1.2 Advantages and Disadvantages of UIL

Before you decide whether or not to use UIL in an application, consider the advantages and disadvantages of the
language. The next two sections discuss the arguments for and against using UIL. UIL provides a relatively simple
syntax for specifying a user interface in terms of a widget hierarchy. Both novice and experienced Motif programmers
can quickly learn the UIL syntax. In contrast, it is more difficult and time consuming to learn all of the Motif and Xt
function calls needed to create an interface in code. In addition, since a UIL module is only a static interface
description, it is not subject to the ordering constraints of widget creation that typically affect the layout of
programmatically−created widgets.

The extensive error checking provided by the UIL compiler can also speed up development and help ensure a more
robust application. The compiler knows the resources and callbacks supported by each widget, the type of value each
resource can be set to, and the children, if any, that are allowed for each widget. Any mistakes you make are caught
prior to run−time. Much of this error checking is not available for interfaces created in C code. Although an ANSI C
compiler checks the syntax of each function call, you can set an unsupported widget resource or create a child under a
widget parent that doesn't support that child (or any children). Some of these errors are caught at run−time, but in most
cases, it is up to you to notice when the interface doesn't look or act correctly.

UIL is considerably less complex than a dynamic language like C. As a result, you can compile an interface
description in UIL in a fraction of the time it would take to compile and link a comparable interface created strictly in

23 Introduction to UIL23.1.2 Advantages and Disadvantages of UIL

629

code. The time needed for the design−compile−test cycle is greatly reduced. By using UIL as a prototyping tool, you
can try out several alternative interfaces without wasting too much time on those you don't use.

Many of the graphical user interface builders (UIBs) available today can read and write UIL files, which can be an
advantage if you're currently using such a builder or might use one in the future. The syntax of UIL is simple enough
that these products can read any UIL file, including one written without the builder. However, there are currently no
tools that can read an interface created with arbitrary C code. Most builders can generate application code, but unlike
UIL files, you cannot make changes to the generated C code and have a UIB import it.

Internationalizing applications with UIL is often easier than internationalizing applications written only in C because
nearly all the strings used in an interface are stored in the application's associated UIL modules. Internationalizing the
application is simply a matter of isolating language−dependent strings in a single module and writing separate
versions of that module for each language supported by the application. (An example of this technique is presented in
Section #suili18n in Chapter 26.) If you decide to work with UIL, you must spend some time learning how to use it.
This is mainly a problem for experienced Motif and Xt programers who already know how to create an interface in C.
People entirely new to Motif can usually get started faster with UIL, as there is less to learn than with the
corresponding C language interface. While UIL attempts to be C−like, working with the UIL syntax can be difficult
because in some instances it is overly verbose and requires unnecessary keywords and delimiters. For example, C
programmers who begin using UIL often forget the required semicolon after a closed curly brace. The syntax is
apparently designed to make UIL easy for the compiler to parse, rather than easy for a person to use.

In exchange for its simplicity, UIL lacks many of the advantages of a dynamic programming language. As a result, the
more dynamic an interface, the less useful UIL is for describing it. Dynamic aspects of the interface, such as changing
the sensitivity of widgets, performing drag and drop operations, or creating and destroying parts of the interface "on
the fly" must be dealt with in application code. In these situations, it may not be possible to completely externalize an
interface description. Therefore, you can expect more dependencies between the code and the interface description.
Changing either one may require changing the other as well. These limitations can make dynamic interfaces more
complicated to work with when UIL is involved.

Until Motif 1.2, the biggest disadvantage of using UIL was instability, which was caused by a number of bugs. While
most of these bugs have now been fixed, UIL still has a bad reputation. As of Motif 1.2, UIL continues to have
problems with some of the more complicated features, but with each new Motif release more of these outstanding
bugs are resolved. To help you along, we point out many of these bugs, and whenever possible, explain how to work
around them. If you are using an earlier version of UIL, you may encounter additional bugs that are not mentioned
here.

23.2 The

A good way to gain an understanding of the basic UIL and Mrm programming model is to examine a simple
application. The one we present here is a version of the classic "Hello, World" program, which illustrates the three
steps we listed earlier. We'll concentrate on the first and third steps: describing the interface in UIL and creating it at
run−time using Mrm. We'll also take a quick look at how to compile the UIL module, but we'll leave the detailed
discussion of the UIL compiler for Chapter 23, Using the UIL Compiler.

The "Hello, World" application requires only a few of the basic UIL constructs to describe the interface and a few
Mrm function calls to create it. The application consists of a single UIL module that contains the interface description
and a C program that initializes Xt, creates the interface with Mrm, and implements one callback. The output of the
application is shown in the figure. It consists of an earth icon Label and a PushButton that contains the string Hello,
World!.

23 Introduction to UIL 23.2 The

630

The Hello, World user interface

The icon Label and the PushButton are contained in a Form, which manages their positions. As in a typical Motif
program, an ApplicationShell at the root of the hierarchy contains the Form. A diagram of the hierarchy appears in the
figure.

The Hello, World widget hierarchy

23.3 Describing an Interface With UIL

An interface description in a UIL module consists of three things:

The widget hierarchy•
The initial resource settings of the individual widgets, which define the "look" of the interface•
The callbacks invoked in response to user actions, which define the "feel" of the application•

The UIL module for the "Hello, World" application is shown in the source code This module defines the widget
hierarchy starting at the Form. Its parent ApplicationShell is created by the C program, which we'll examine later. This
division is typical for an application that creates its interface with UIL because at least one widget must be created by
the program to be used as a parent for the UIL−defined widgets.

 /* hello_world.uil −− Illustrate basic UIL programming concepts */

 module hello_world
 objects = { XmPushButton = gadget; }

23 Introduction to UIL 23.3 Describing an Interface With UIL

631

 value
 form_margin : 3; ! Value for all−around form margins.

 object hello_main : XmForm {
 controls {
 XmLabel world;
 XmPushButton hello;
 };
 arguments {
 XmNshadowThickness = 0;
 XmNresizePolicy = XmRESIZE_GROW;
 XmNmarginHeight = form_margin;
 XmNmarginWidth = form_margin;
 };
 };

 value
 hello_string : "Hello, World!";
 hello_font : font ('−adobe−helvetica−medium−r−*−*−*−140−*');
 world_icon : icon (
 ' ****** ',
 ' ** *** ** ',
 ' *** ** * * ',
 ' **** *** * ',
 ' * ********* ** ',
 '* ****** *** ***',
 '* ********* **',
 '* ********* **',
 '* ******** **',
 '* **** * *',
 '* ** * *',
 ' * ** * ',
 ' * ***** * ',
 ' * ******* * ',
 ' ********** ',
 ' ****** ');

 procedure
 quit (string);

 object world : XmLabel {
 arguments {
 XmNlabelType = XmPIXMAP;
 XmNlabelPixmap = world_icon;

 ! Form constraint resources
 XmNleftAttachment = XmATTACH_FORM;
 XmNtopAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_FORM;
 };
 };

 object hello : XmPushButton {
 arguments {
 XmNlabelString = hello_string;
 XmNfontList = hello_font;
 XmNmarginHeight = 2;
 XmNmarginWidth = 3;

 ! Form constraint resources
 XmNleftAttachment = XmATTACH_WIDGET;

23 Introduction to UIL 23.3 Describing an Interface With UIL

632

 XmNleftWidget = world;
 XmNtopAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_FORM;
 XmNrightAttachment = XmATTACH_FORM;
 };
 callbacks {
 XmNactivateCallback = procedure quit ("Goodbye!");
 };
 };

 end module;

The overall structure of a UIL module is fairly simple. A module begins with a name, which is followed immediately
by a number of optional settings. The bulk of a module typically consists of one or more sections that describe the
user interface. This structure is depicted in the figure.

23.3.1 Starting and Ending a Module

Excluding blank lines and comments, every UIL module must begin with a module statement that names the module.
Essentially, the statement is a syntactic formality required by the UIL compiler. It consists of the string module
followed by a name of your choosing. The name has no special significance, but it must be a UIL identifier. (The
syntax of UIL identifiers is explained in Section #suilsyntax.) Our example begins with the following module
statement:

 module hello_world

The name is usually the same as the module's filename without the .uil suffix. When choosing the name for a module,
keep in mind that the name cannot be reused to name anything else in the module, such as a variable or a widget. If
you should accidentally reuse the module name, the UIL compiler generates an error message.

Likewise, you must explicitly indicate the end of every UIL module with the following statement:

 end module;

Like the module statement at the start of the module, this statement is required for the sake of the UIL compiler. In
early versions of Motif 1.2 and previous releases, the compiler generates an error if you do not place a newline after
the end module statement. Although this problem has been fixed, you should try to include the final newline to
keep all versions of the compiler happy.

23 Introduction to UIL 23.3.1 Starting and Ending a Module

633

Structure of the hello_world.uil module

23 Introduction to UIL 23.3.1 Starting and Ending a Module

634

23.3.2 Specifying Module−wide Options

Options for the module, if present, immediately follow the module name. The options allow you to tell the UIL
compiler how it should deal with certain information it encounters in the module. The Motif 1.2 compiler supports the
following three options: names for setting case sensitivity, character_set for setting the default character set,
and object for indicating whether the widget or gadget variants of certain objects are used by default. You may see
the version option in older UIL modules. This option is supported in Motif 1.2 for backwards compatibility but
may be dropped from future versions. Unlike the other options, the version setting does not affect the interpretation
of the module. It is used to associate a version string with the module. Instead of using the version option, you
should place version information in a comment or in a variable in a value section. The names option can be set to
case_sensitive or case_insensitive. As these settings imply, the option determines how the UIL compiler
interprets both programmer−defined names (like widget names) and built−in keywords. If you don't set this option, it
defaults to case_sensitive. For example, with the case_sensitive setting in effect, the names snowball,
SnowBall, and SNOWBALL are considered different by the compiler. However, the same names are considered to be
equal when case_insensitive is specified. When names are case_sensitive, built−in keywords must
appear in lowercase, but when names are case_insensitive they may appear in lowercase, uppercase, or mixed
case. Note, however, that the module, names, case_sensitive, and case_insensitive keywords must
always appear in lowercase.

We suggest that you stick with the default case_sensitive setting for a couple of reasons. First, case insensitivity
can easily lead to confusion for C programmers who are accustomed to case sensitivity. Second, when
case_insensitive is set, all programmer−defined names are converted to and saved in uppercase, which in turn
requires the inconvenient use of uppercase references in an application program. If you decide to use the
case_sensitive setting, it must be the first option set after the module name, as this example illustrates:

 module bookmark_dialog
 names = case_insensitive
 ...

Keeping with our suggestion, the hello_world.uil module does not set the names option, so it uses the default
case_sensitive setting. The character_set option allows you to set the default character set of compound
strings, fonts, and font sets that appear in a UIL module. (We talk about defining these values and how the default
character set affects them in Section #suiltext.) This option is normally used when you are developing an interface for
a language that uses a character set different from the one used by your native language.

Our example application uses the English language. Since this is the same language as our computing environment, it
isn't necessary to specify the character_set option in our module. If we were building the application in a
non−English environment, but wanted it to run in an English environment, the module would begin:

 module hello_world
 character_set = iso_latin1
 ...

When the character_set option is not set, the character set defaults to the codeset portion of the LANG
environment variable if it is set, or to the vendor−specific XmFALLBACK_CHARSET otherwise. Because the default
character set is dependent on the environment and on vendor settings, you should ensure that the proper character set
is chosen for modules that may be compiled in a different environment.

On the surface, it would appear that you can always set the default character set using the character_set option
and not worry about the setting of LANG. Unfortunately, setting this option has the side−effect of disabling
locale−specific parsing of compound strings, which is important for modules containing strings with multi−byte
characters. Currently, the only way to avoid this problem is to specify the character set in the LANG environment

23 Introduction to UIL 23.3.2 Specifying Module−wide Options

635

variable. In this example, we can safely set the character set in the module because we haven't used any multi−byte
strings. (For more information about multi−byte string parsing see Sections #suilcomps and #suiltext.) The objects
option allows you to choose whether the gadget or widget version of the Label, PushButton, ToggleButton,
CascadeButton, and Separator objects is used by default. The widget or gadget variant is specified independently for
each type of object. In our example, we use the following setting to get the gadget version PushButton:

 module paint
 objects = { XmPushButton = gadget; }

The default value for each object is widget, so you need to specify the objects option only if you want to create
gadgets by default instead. Setting this option does not prevent you from explicitly using the widget or gadget variant
of a control in an object definition. We recommend setting the objects option when you know that you are going
to be using gadgets for all or most of a certain type of object.

23.3.3 Include Files

As in C, it is possible to include other files in a UIL module. However, the syntax of an include directive in UIL is
different. Our example application isn't large enough to make it worth using include files, but to include a file named
procedures.uih we would use the following line in a module:

 include file "procedures.uih";

The .uih suffix is not required; it is a convention that we've chosen to distinguish a UIL module from a UIL include
file. Nested include files are supported, so an include file may itself contain include directives. Unlike a module, an
include file must not begin with the module name statement or end with the endmodule statement. In addition, an
include file may contain only one or more complete UIL sections. You cannot start a section in one UIL file and
continue it in an include file.

Since you've probably used C include files before, you should already have a good idea of how to use UIL include
files. You can avoid repetitive and time−consuming declarations of variables, procedures, and widgets that are
referenced in multiple modules by placing them in a single include file. Then you simply include the appropriate file if
you need to reference any of its declarations. Include files can also be used to obtain definitions of commonly used
user interface components. (Chapter 26, Advanced UIL Programming, discusses using include files in more detail
and contains several examples of their use.)

23.3.4 Adding Comments

There are two different types of comments that you can add to a UIL module. The first type of comment can span one
or more lines; it begins with the character sequence /* and ends with */. This style is the same as a C comment. The
second type of comment begins with an exclamation mark and ends at the end of the line. Both comment styles appear
in the source code

You can place comments anywhere in a UIL module except, of course, within a quoted string. Comments are the only
text that can occur before the module name statement or after the end module statement. For example, the first line of
the hello_world.uil module is a C−style comment.

23.3.5 Overview of UIL Language Syntax

UIL, like C, is a free−form language, which means that the compiler doesn't care about the spacing and positioning of
symbols within a UIL module. The only requirements are that one or more whitespace characters (space, newline,
etc.) must appear between successive symbols, and lines cannot exceed 132 characters in length.

23 Introduction to UIL 23.3.3 Include Files

636

A symbol is a string of characters, like module or age. Single character operators and separators, such as +, =, and
:, are not considered symbols. Most UIL modules contain both predefined and programmer−defined symbols.

Predefined symbols, or keywords, are built into the UIL compiler. The built−in symbols are categorized as either
reserved or unreserved keywords. The difference between the two is that you can redefine unreserved keywords, while
the meaning of reserved keywords is fixed. The complete list of UIL reserved keywords appears in and the complete
list of unreserved keywords is shown in We suggest you avoid redefining unreserved keywords, as this practice can
easily lead to confusion and programming errors. lp9w(1.4i) | lp9w(3.25i) lp9w(1.4i) | lp9w(3.25i). Type Reserved
Keywords
_
General T{ module, end, widget, gadget T}
Section and list names T{
arguments, callbacks, controls, identifier,
include, list, object, procedure,
procedures, value
T}
Storage classes T{
exported, private
T}
Boolean constants T{
on, off, true, false
T}
_
lp9w(1.4i) | lp9w(3.25i)
lp9w(1.4i) | lp9w(3.25i).
Type Unreserved Keywords
_
Resource names T{
XmNaccelerators, XmNactivateCallback, et al.
T}
Character set names T{
iso_latin1, iso_greek, et al.
T}
Enumerated values T{
XmATTACH_FORM, XmSHADOW_ETCHED_IN, et al.
T}
Widget class names T{
XmPushButton, XmSeparator, et al.
T}
Option names and values T{
background, case_insensitive, case_sensitive,
file, foreground, imported, managed,
names, objects, right_to_left, unmanaged,
user_defined
T}
Type names T{
any, argument, asciz_table, asciz_string_table,
boolean, character_set, color, color_table,
compound_string, compound_string_table, float,
font, font_table, fontset, icon,
integer, integer_table, keysym, reason,

23 Introduction to UIL 23.3.3 Include Files

637

rgb, single_float, string, string_table,
translation_table, wide_character, xbitmapfile
T}
_ Programmer−defined symbols, also called identifiers, are used to name the variables, procedures, lists, and widgets
that you define in a UIL module. For the most part, you can choose any name that you like for these items, although
the UIL compiler imposes three rules:

A name must be unique within a module.•

A name must begin with one of the characters A−Z, a−z, $, or _ and may contain these characters as well as
the digits 0−9.

•

A name must be no longer than 32 characters.•

Based on these rules, you can see that Alpha, $money, _tab, and moon44 are legal identifiers, while the following
symbols are not: 1993, 3DogNight, next−char, and ask_the_user_to_save_her_work_callback.

23.3.6 Sections of a UIL Module

The main body of a UIL module is divided into several sections that group the different types of definitions and
declarations. Each section begins with the section name and ends at the start of the next section. The list below gives a
brief overview of the five sections supported by UIL: object, value, identifier, procedure, and list.

An object section defines the widget hierarchy and widgets in a user interface. The widget definitions may
include initial resource and callback settings. The other four sections are used to define named items that you
use for these settings. The object section is covered in detail in Section #suilobject.

•

A value section contains definitions of variables used as resource settings in an object section or as the
client_data argument to callbacks specified in the module. You can also retrieve most values directly
from an application. UIL supports value types for almost every type of resource that can be specified in a
widget definition. The value section is described in Section #suilvalue.

•

An identifier section contains declarations of variables defined in the application program. Identifiers
can represent values that do not have a corresponding UIL type or cannot be determined until run−time. The
identifier section is explained in Section #suilident.

•

A procedure section contains declarations of callback procedures that are used in the application program.
Any routine specified as a callback in an object section must be declared in a procedure section. The
procedure section is covered in Section #suilproc.

•

A list section defines lists of resource settings, callback settings (for different callbacks), callback
procedures (for a single callback), and widget children. It is often convenient to define lists of commonly used
settings. The list section is described in Section #suillist.

•

These different sections help to organize a UIL module and make it easier for the UIL compiler to parse a module.
Unlike larger applications, the source code only contains value, procedure, and object sections. Without
describing the syntax of these sections in detail, we'll look at how they are used in this module. The first section in the
source code is a value section that defines a symbolic constant:

 value
 form_margin : 3;

This section defines form_margin, whose value is the integer 3. You can place more than one definition in a
value section. As you can see in the module, the second value section defines three more constants: the string
hello_string, the font hello_font, and the pixmap world_icon. Although we've only defined integer,
string, font, and pixmap values, UIL supports a number of additional data types. The complete set is described in

23 Introduction to UIL 23.3.6 Sections of a UIL Module

638

Section #suiltypes.

You gain a couple of benefits by defining symbolic constants instead of always using literal values. First, the name of
a value helps document your UIL module by making its purpose more clear. Second, you can easily change values
that are used in more than one place, which is useful for changing strings or adjusting the layout of your interface. In
UIL, a callback procedure is just a specialized type of value used to set a widget's callback resource. Like other
constant values, you need to declare callbacks in a UIL module, but these declarations go in a procedure section
instead. We say that callbacks are declared instead of defined (like values) because the callback definitions really
occur in the application's source code. The following procedure section appears in our example:

 procedure
 quit (string);

This section declares a callback named quit that takes a string argument. The actual callback is defined in the
hello_world.c program. The argument in a procedure declaration specifies the type of the expected argument, similar
to a function prototype in C. In some cases, the UIL compiler can convert a compatible value to the expected type.
This capability is explained in Section #suilarg. As with value sections, single procedure sections may contain
multiple declarations. Section #suilproc describes the syntax of a procedure section in further detail. Although
constants and procedures are important, widget definitions usually constitute the majority of a UIL module. In UIL,
you can define almost the entire widget hierarchy of your application, including top−level windows, dialog boxes, and
menu systems. As we mentioned earlier, only the ApplicationShell widget of an application must be created with
application code.

A widget definition occurs in an object section of a UIL module. While an object section can contain more than
one widget definition, we have adopted the style of putting each widget definition in its own object section. This
practice causes widget definitions to stand out, making UIL modules easier to read and modify. The widget hierarchy
of our example application starts with the following definition:

 object hello_main : XmForm
 {
 controls {
 XmLabel world;
 XmPushButton hello;
 };
 arguments {
 XmNshadowThickness = 0;
 XmNresizePolicy = XmRESIZE_GROW;
 XmNmarginHeight = form_margin;
 XmNmarginWidth = form_margin;
 };
 };

This object section defines the Form widget hello_main, which is the parent of the other widgets in the module.
A definition consists of a name, which is just a UIL identifier, and a widget type. You can use the name of any Motif
widget or widget variant as a type name. For example, both XmRowColumn and XmPulldownMenu are legal
widget types. (For a complete list of UIL widget types see Volume Six B, Motif Reference Manual.)

Widget definitions can contain three optional subsections that specify different widget attributes: controls, which
specify a widget's children; arguments, which set the widget's initial resource settings; and callbacks, which
specify the widget's callback procedures. Each subsection can occur only once per widget definition.

Our definition of the hello_main Form contains two of these subsections. The controls subsection indicates
that the Form has two children: a Label and a PushButton. These two widgets are defined later in the module. The UIL

23 Introduction to UIL 23.3.6 Sections of a UIL Module

639

compiler knows if a widget allows children, and for those that do, which widget types can be created as their children.
If you try to include a child widget where it isn't allowed or supported, the UIL compiler generates an error message
and the compilation fails, which is one of the advantages of describing a user interface in UIL rather than with a
programming language like C.

You set widget resources, with the exception of callbacks, in a widget's argument subsection. This subsection in the
hello_main widget illustrates several typical resource settings. We used a symbolic constant to set the last two
resources so that it is easy to adjust the Form margins by changing the constant definition.

Callback resource settings are specified separately from other resources in the callbacks subsection of a widget
definition. The hello_main widget does not have any callbacks, but the PushButton does. Here's the relevant part
of its definition:

 object hello : XmPushButton
 {
 ! ... arguments ...
 callbacks {
 XmNactivateCallback = procedure quit ("Goodbye!");
 };
 };

This subsection sets the PushButton's activate callback to the quit() procedure declared earlier in the module. The
string argument "Goodbye!" is passed as client_data to the procedure when the callback is invoked. You'll see
how this value is used later when we explain registering callback procedures with Mrm.

The widget definitions, along with the value definitions and procedure declaration, are all there is to the "Hello,
World" module. As a whole, they form the interface description, which is the first step in developing an application
with UIL. Our interface is quite simple; the interface for a real application would obviously be much more complex.
The UIL modules for a real application are presented in Chapter 25, Building an Application With UIL.

23.4 Compiling the UIL Module

The UIL module must be compiled to produce a user interface description (UID) file. This compiled file is read at
run−time by Mrm to obtain the interface description and create the widgets. The UID file is generated only if the
source module is free of errors. On a UNIX system, we use the following command to compile our module:

 uil −o hello_world.uid hello_world.uil

The −o option specifies the name of the output file. (This option, along with the rest of the compiler options, is
explained in Chapter 23, Using the UIL Compiler). The name of the module to compile, in this case hello_world.uil,
always follows the options. If the compilation is successful, the compiler generates a UID file. But if the compilation
fails, the compiler prints one or more error messages and does not generate a UID file. Warning and informational
messages can also be printed in either situation. The hello_world.uil module is free of errors and warnings, so this
compilation does not print anything.

23.5 Structure of an Mrm Application

The structure of an application that uses Mrm and UIL is similar in most respects to that of an application that uses
only Xt. The main difference is that you create the user interface with calls to Mrm procedures that encapsulate the Xt
widget creation routines. Mrm also takes care of setting up any callbacks for your widgets. Other aspects of an Xt
application, including toolkit initialization and event processing, are the same for both types of applications. the figure

23 Introduction to UIL 23.4 Compiling the UIL Module

640

illustrates the structure of an Mrm application.

Structure of the hello_world.c Mrm application

In the remainder of this section, we take a closer look at each of these steps by examining the hello_world.c program
shown in the source code In our explanation of this program, we concentrate only on how it differs from a standard
Motif application. If you are unfamiliar with the details of a particular function call, see Chapter 2, The Motif
Programming Model, in this book or see Volume Four, X Toolkit Intrinsics Programming Manual, and
Volume Five, X Toolkit Intrinsics Reference Manual.

 /* hello_world.c −−
 * Initialize X Toolkit creating ApplicationShell widget, then create
 * the user interface described in the hello_world.uid file.
 */

 #include <Xm/Xm.h>
 #include <Mrm/MrmPublic.h>

23 Introduction to UIL 23.4 Compiling the UIL Module

641

 #include <stdio.h>

 /* Global declarations. */
 static void quit();

 /* Global definitions. */
 /* Callback list looks like an action list: */
 static MrmRegisterArg callback_list[] = {
 { "quit", (XtPointer) quit },
 };

 /* error − Print an error message and exit. */
 static void
 error (message)
 char *message;
 {
 fprintf (stderr, "hello_world: %s0, message);
 exit (1);
 }

 /* quit − The quit callback procedure. Exits the program. */
 static void
 quit (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 puts ((char *) client_data);
 exit (0);
 }

 main (argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app_context;
 Widget toplevel, hello_main;
 Cardinal status;
 static String uid_file_list[] = { "hello_world" };
 MrmHierarchy hierarchy;
 MrmType class_code;

 XtSetLanguageProc (NULL, NULL, NULL);

 MrmInitialize();

 toplevel =
 XtVaAppInitialize (&app_context, /* application context */
 "Demos", /* application class name */
 NULL, 0, /* command line options */
 &argc, argv, /* argc and argv */
 NULL, /* fallback resources */
 NULL); /* arg list */

 status =
 MrmOpenHierarchyPerDisplay (XtDisplay (toplevel), /* display */
 XtNumber (uid_file_list), /* num files */
 uid_file_list, /* file list */
 NULL, /* OS data */
 &hierarchy); /* hierarchy */

23 Introduction to UIL 23.4 Compiling the UIL Module

642

 if (status != MrmSUCCESS)
 error ("Unable to open hello_world.uid file.");

 status = MrmRegisterNames (callback_list, XtNumber (callback_list));

 if (status != MrmSUCCESS)
 error ("Unable to register callback functions with Mrm.");

 status = MrmFetchWidget (hierarchy, /* hierarchy to search */
 "hello_main", /* object name */
 toplevel, /* parent */
 &hello_main, /* widget created */
 &class_code); /* widget's class code */

 if (status != MrmSUCCESS)
 error ("Unable to create interface from UID file");

 MrmCloseHierarchy (hierarchy);

 XtManageChild (hello_main);
 XtRealizeWidget (toplevel);

 XtAppMainLoop (app_context);
 }

Compiling this program is similar to any other Motif application−−we just need to add the Mrm library to the link
line. Because the program consists of a single file, we can use the following command to compile it on most UNIX
systems:

 cc −o hello_world hello_world.c −lMrm −lXm −lXt −lX11

You should note that this program, like any program that uses Mrm, includes the file <Mrm/MrmAppl.h>. This file
contains the function prototypes and constant definitions necessary to use Mrm. It also includes the <Xm/Xm.h> file,
which contains the necessary declarations and definitions for the Motif library. When you use Mrm, there's no need to
include a header file for each type of widget in the interface because the interface is not created directly in C.
However, if your application uses any widget convenience functions, you do need to include the appropriate widget
header file(s).

23.5.1 Initializing the Application

The first step for any Motif application is the initialization of the library components. The addition of Mrm doesn't
change this−−the initialization process is just a little more involved. As you can see in the figure, initialization is the
most involved step in an Mrm application. Before initializing any of the libraries, the hello_world.c program calls
XtSetLanguageProc(). This function sets the default procedure used to establish the run−time language
environment. In X11R5 you should be sure to include this call before any other X−related initialization since other
libraries depend on the language setting.

Next, we initialize the Mrm library by calling MrmInitialize(). This routine sets up internal data structures that
Mrm needs to create widgets and should be called prior to initializing Xt. You should call this function only once,
preferably when your application is starting up. Unlike the other Mrm functions, MrmInitialize() does not
return a status value.

You may run across some code that initializes Mrm after Xt. While the order doesn't matter currently, the OSF
documentation specifically states that you should initialize Mrm before Xt, so you should probably follow their
advice. After initializing Mrm, we're ready to initialize Xt with the following call:

23 Introduction to UIL 23.5.1 Initializing the Application

643

 toplevel =
 XtVaAppInitialize (&app_context, /* application context */
 "Hello", /* application class name */
 NULL, 0, /* command line options */
 &argc, argv, /* argc and argv */
 NULL, /* fallback resources */
 NULL); /* arg list */

This convenience function initializes the toolkit, creates an application context, opens the display, and creates the
top−level ApplicationShell. This call is used by most Xt and Motif applications. Once both Mrm and Xt are
initialized, we must open the UID files. We use the MrmOpenHierarchyPerDisplay() function to do this. The
form of this function is: The Motif 1.2 MrmOpenHierarchyPerDisplay() function supersedes the Motif 1.1
MrmOpenHierarchy() function that you may encounter in older applications. Motif 1.2 still supports the older
version to remain backwards compatible, but you shouldn't use it.

 Cardinal
 MrmOpenHierarchyPerDisplay(display, num_files, file_list, os_data,

hierarchy)
 Display *display;
 MrmCount num_files;
 String file_list[];
 MrmOsOpenParmPtr os_data[];
 MrmHierarchy hierarchy;

The first argument is the Display; the second and third are the number of UID files and an array of filenames to
open; the fourth is an operating system−dependent structure that should always be NULL (it is used internally by the
UIL compiler); and the fifth is the address of an MrmHierarchy value that is filled in by the routine. Here's the call
used by the "Hello, World" application to open its UID file:

 String uid_file_list[] = { "hello_world" };
 ...
 status =
 MrmOpenHierarchyPerDisplay (XtDisplay (toplevel), /* display */
 XtNumber (uid_file_list), /* num files */
 uid_file_list, /* file list */
 NULL, /* OS data */
 &hierarchy); /* hierarchy */

Although we need to open only one UID file in this situation, we use the XtNumber() macro so that we can easily
add filenames to the uid_file_list array. While the "Hello World" interface is described in a single UID file, the
interface of a more complex application is often broken into multiple UID files for organizational and
internationalization purposes. (See Section #suilorg for a discussion on UIL module organization.)

Note that the hello_world filename is missing the .uid extension. We don't need to add it because Mrm supplies the
extension by default. The filenames you pass to this function may be either full pathnames that begins with a slash or
partial pathnames. Full pathnames are opened directly, while partial names like hello_world are located using a search
path. Mrm gets the path from the UIDPATH environment variable if it is set. Otherwise, the following default path is
used: /usr/lib/X11 and /usr/include/X11 are vendor specific and may therefore differ in some implementations.

%U%S
$XAPPLRESDIR/%L/uid/%N/%U%S
$XAPPLRESDIR/%l/uid/%N/%U%S
$XAPPLRESDIR/uid/%N/%U%S
$XAPPLRESDIR/%L/uid/%U%S
$XAPPLRESDIR/%l/uid/%U%S

23 Introduction to UIL 23.5.1 Initializing the Application

644

$XAPPLRESDIR/uid/%U%S
$HOME/uid/%U%S
$HOME/%U%S
/usr/lib/X11/%L/uid/%N/%U%S
/usr/lib/X11/%l/uid/%N/%U%S
/usr/lib/X11/uid/%N/%U%S
/usr/lib/X11/%L/uid/%U%S
/usr/lib/X11/%l/uid/%U%S
/usr/lib/X11/uid/%U%S
/usr/include/X11/uid/%U%S

If XAPPLRESDIR is not set, Mrm uses HOME instead in the default search path. You might recognize some of the
substitution characters in the default path, as they are also used in Xt resource file paths like XFILESEARCHPATH.
In the path above, %L represents the LANG environment variable, %N represents the application class name, %U
represents the UID filename in question, %S represents the filename suffix .uid, and %l represents the language part
LANG. You can find a complete listing of substitutions in the XtResolvePathname() reference in Volume Five,
X Toolkit Intrinsics Reference Manual.

Mrm may actually search the UID path twice for each partial pathname that you specify in the file_list. If Mrm
cannot find the file with the suffix (%S) set to .uid, it tries again with no suffix, which is why we did not need to use
the .uid suffix in our file list.

If MrmOpenHierarchyPerDisplay() successfully opens the specified files, it returns an MrmHierarchy
value in the hierarchy argument and returns the status MrmSUCCESS. The hierarchy value, which is
analogous to a FILE pointer, is used as an argument to other Mrm routines that read information from UID files. If
Mrm fails to open a UID file, it prints an error message with XtAppWarning() and returns one of the following:

MrmNOT_FOUND, if the file cannot be opened•
MrmNOT_VALID, if the file version is incorrect•
MrmDISPLAY_NOT_OPENED, if the display argument is NULL and the display has not been opened•
MrmFAILED, for any other failure•

When a failure occurs, none of the UID files remain open and a valid hierarchy is not returned. If our example
application detects an error, it simply prints an error message and exits.

We suggest that you always check the status value returned by MrmOpenHierarchyPerDisplay() and the other
Mrm functions against MrmSUCCESS, as opposed to checking against one or more error values. By using this
approach, you avoid the possibility of accidentally forgetting to check for one or more errors. If necessary, you can
check for a specif ic error status value after checking against MrmSUCCESS . Recall that we set the
XmNactivateCallback of the PushButton to quit() in the UIL module. The UIL compiler stores the name
quit in the compiled UID file, but Mrm needs the address of the quit() procedure to add the callback to the
widget at run−time. This raises the question, "Why not store the procedure's address in the UID file, instead of its
name?" While this sounds like a reasonable solution, it would impose two undesirable restrictions. First, the UIL
module would need to be recompiled any time we relink the application, and second, the compiled UID file would be
usable only with that specific application on that particular host architecture.

By calling MrmRegisterNames(), the application provides Mrm with the information it needs to map the
procedure names stored in the UID files to procedure addresses. Here is the call and associated data from the source
code

 static MrmRegisterArg callback_list[] = {

23 Introduction to UIL 23.5.1 Initializing the Application

645

 { "quit", (XtPointer) quit },
 };
 ...
 MrmRegisterNames (callback_list, XtNumber (callback_list));

MrmRegisterNames() has two arguments: an array of callbacks and the number of elements in that array. The
callback_list is an array of mappings from procedure names to procedure addresses. The list is of type
MrmRegisterArg, which takes the following form:

 typedef struct {
 String name;
 XtPointer value;
 } MrmRegisterArg, *MrmRegisterArglist;

When the button is created and Mrm encounters the quit procedure, Mrm can find the address associated with the
name and add the callback in the usual Xt fashion as long as MrmRegisterNames() has been called. If the
mappings are successfully registered, the routine returns MrmSUCCESS A value of MrmFAILURE is returned
otherwise. This function only fails if it cannot allocate memory.

You can also register callbacks using MrmRegisterNamesInHierarchy(). This function is similar to
MrmRegisterNames() and takes the following form:

 Cardinal
 MrmRegisterNamesInHierarchy(hierarchy, callback_list, num_callbacks)
 MrmHierarchy hierarchy;
 MrmRegisterArglist callback_list;
 MrmCount num_callbacks;

The difference between the two routines is that this function takes an MrmHierarchy as an additional argument. An
application may open more than one set of UID files; MrmRegisterNamesInHierarchy() allows you to limit
the availability of callbacks to a particular set of UID files. In contrast, callbacks registered with
MrmRegisterNames() can be referenced from any open hierarchy. As most applications open only a single
hierarchy, MrmRegisterNamesInHierarchy() is rarely used. Even if you are working with an application that
opens multiple hierarchies, you only need to use this function if two different callbacks are referenced by the same
name in two separate hierarchies.

23.5.2 Creating the Interface

After the initialization is complete, it is time to create the user interface. Unlike a plain Motif application in which we
need to create each widget individually, with Mrm we only need to make a single call to MrmFetchWidget(). The
form of this function is:

 Cardinal
 MrmFetchWidget(hierarchy, widget_name, parent, widget_return,

class_return)
 MrmHierarchy hierarchy;
 String widget_name;
 Widget parent;
 Widget *widget_return;
 MrmType *class_return;

Mrm looks in the UID files specified by hierarchy for a widget named widget_name and creates it as a child of
parent. The parent argument required in this call is the reason that we had to create the top−level
ApplicationShell in our program before fetching any widgets. Mrm also recursively creates and manages all of the

23 Introduction to UIL 23.5.2 Creating the Interface

646

descendents of the specified widget, which is why only a single call is needed to create the entire widget hierarchy.

If all goes well, the routine puts the ID of the newly created widget in widget_return and returns a status of
MrmSUCCESS. The other return parameter, class_return, holds the internal UIL class code of the widget. Note
that the class_return value is not a pointer to the widget's class record. As of Motif 1.2, the class_return
value is useless because the possible return values are not publicly defined in the Mrm header files. If you need to
determine the type of the returned widget, you can use the appropriate XtIs*() or XmIs*() macro. For example,
to verify that --hello_main is really a Form, you would use XmIsForm -(-hello_main). If
MrmFetchWidget() fails, it returns the following: MrmBAD_HIERARCHY, if the hierarchy argument is
invalid; MrmNOT_FOUND, if the widget description cannot be found in the UID files; or Mrm_FAILURE for any
other type of failure. To avoid crashing your application, you should always check the return status against
MrmSUCCESS after fetching a widget hierarchy, as illustrated in the source code Although our example simply exits
when an error occurs, a more robust application should attempt to recover from the problem.

The MrmFetchWidget() routine takes the place of all the widget calls needed in an application that doesn't use
UIL and Mrm. As it creates widgets, Mrm automatically sets the resources and callbacks that are specified in the UIL
module. Without Mrm, the interface would require many more function calls to create the individual widgets and
resource values, set the resources, and add the callbacks. We fetch a Form named hello_main and create it as a
child of the ApplicationShell with the following call:

 status =
 MrmFetchWidget (hierarchy, /* hierarchy to search */
 "hello_main", /* object name */
 toplevel, /* parent */
 &hello_main, /* widget created */
 &class_code); /* widget's class */

To keep this introduction easy to understand, we've only touched on the basics of the Mrm widget creation process. If
you plan on doing any serious application development with UIL and Mrm, you need to understand the details of the
entire process, which are discussed in Section #suilcreate.

Once an appl icat ion has f in ished creat ing i ts in ter face, i t should c lose the UID f i les by cal l ing
MrmCloseHierarchy(). This routine frees memory and closes the files that are associated with the Mrm
hierarchy. Once you close a hierarchy, it cannot be used again. The function takes the MrmHierarchy to close as its
only argument. The call from hello_world.c is simply:

 MrmCloseHierarchy (hierarchy);

Although the function returns a status code like most of the other Mrm routines, failure to close the hierarchy usually
doesn't have a negative impact on an application, so you can generally ignore the return status. Interestingly,
MrmCloseHierarchy() unconditionally returns MrmSUCCESS in Motif 1.2. Technically, closing the hierarchy
doesn't have much to do with creating the user interface, but it makes sense to free up some resources before entering
the event loop. Larger applications that do not create the entire user interface at the start of the program should not
close the hierarchy until the program exits. By using this technique, your program can avoid the extra time it would
take to reopen the hierarchy when creating additional user interface components on demand.

23.5.3 Displaying the Interface

Now that the interface has been created, the remaining steps are the same as any other Motif application. When Mrm
is creating the hierarchy with MrmFetchWidget(), it manages all of the widgets except the widget at the top of the
hierarchy. To make the hierarchy visible, you must manage the widget that you fetch. The following line from the
source code takes care of managing the widget:

23 Introduction to UIL 23.5.3 Displaying the Interface

647

 XtManageChild (hello_main);

The widget management process in an Mrm application is different from the one used in a C code interface, where
you must use the widget creation convenience routines that create and manage the widgets, or explicitly call
XtManageChild() on each widget. However, Mrm makes one exception−−it does not manage shell widgets in
order to prevent menus and dialogs from popping up unexpectedly.

After managing the top−level widget, all that's left to do is realize the widgets and hand off control to Xt's event
processing loop. The following two calls make these steps happen:

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app_context);

Again, these calls are part of any Xt application, whether or not you use UIL and Mrm to create the interface. The call
to XtRealizeWidget() creates windows for the widgets, initiates geometry management, and maps the windows.
The call to XtAppMainLoop() causes the application to begin processing events from the X server.

23.6 Summary

The basic purpose of UIL and Mrm is to provide a way to describe and create a Motif user interface. UIL is a static
user interface description language that allows you to define widget hierarchies and specify the resource and callback
settings of those widgets. Mrm is a run−time library that provides the application interface for creating the widgets
described in a UIL module. We considered some of the advantages and disadvantages of programming with UIL and
Mrm. Understanding these tradeoffs can help you decide when UIL and Mrm are worth using.

Using UIL and Mrm involves writing the interface description, compiling the UIL module, and creating the interface
with Mrm. Using a simple "Hello World" application, we looked at the process of writing an interface description in
UIL to help you understand the structure and content of a UIL module. Likewise, we looked at the C code of the
application to illustrate how a program that uses Mrm differs from a typical Motif application.

23 Introduction to UIL 23.6 Summary

648

24 Using the UIL Compiler

This chapter explains how to use the UIL compiler. The chapter describes all of the different compiler options and
looks at the different types of messages that the compiler can generate.

The job of the UIL compiler is to turn a UIL module (or UIL source file) into a user interface description (UID) file,
which contains a compact, Mrm−readable form of your UIL source module. The compiler checks the module for
coding errors and potential problems and reports what it finds. As with any compilation process, the source module
must be free of errors before the compiler can successfully generate a UID file.

The UIL compiler is invoked with the uil command, followed by the name of the file to be compiled. You may also
provide a number of options. A typical compilation command looks like this:

 uil interface.uil

In this simple invocation, the compiler outputs a file named a.uid, assuming there are no errors in interface.uil. (This
default output name is similar to the a.out file generated by most C compilers.) For obvious reasons, the standard
suffix for a UIL source module is .uil and the suffix for UID files is .uid. In addition, we use the suffix .uih for UIL
include files. The OSF/Motif documentation uses .uil for both main modules and include files, but we feel that using
.uil and .uih is easier to work with, as well as being more C−like.

24.1 Compiler Options

The UIL compiler supports a number of options that affect the compilation process. These options are summarized in
tab(@),linesize(2); l | l l | l. Option@Description
_
−o filename@Name the UID output file −I path@Specify an include file directory name −v filename@Generate a
listing file −s@Set the locale when parsing strings −w@Suppress warning and informational messages

−m@Generate machine (UID) code in the listing −wmd filename@Use the widget descriptions from filename

24.1.1 Output File

The −o option names the UID output file. The format of this option is −o filename. As we just mentioned, the default
output filename is a.uid. You probably don't want a file named a.uid, just like you usually don't want an executable
named a.out. The following command line shows the use of this option:

 uil −o interface.uid interface.uil

Under Motif 1.2.x and earlier releases, the generated UID file is platform dependent. This means that you must
recompile your UIL modules under each operating system that your application runs under. For OSF/Motif release 2.0
and later, UID files are platform independent, so you can use one instance of a UID file under any operating system
that supports Motif 2.0.

24.1.2 Include Path

The −I option tells the UIL compiler where to look for include files. By default, the compiler looks in the same

649

directory as the UIL source module and then in /usr/include. You can use this option repeatedly to specify more than
one include directory. Any directories you specify with the −I option are searched after the directory that contains the
source module and before /usr/include. Consider the following command:

 uil −o menus.uid −I../uil_headers −I/global/uil menus.uil

The search path is . (the current directory), ../uil_headers, /global/uil, and /usr/include. This path applies to all
included files, even nested includes. The current directory always refers to the directory in which the compiler was
invoked and does not change to the directory of include files.

24.1.3 Generate Listing

The −v option tells the compiler to generate a printable listing from the compiled module. The syntax for the option is
−v filename. On UNIX systems, a filename of /dev/tty can be used to send the listing to the terminal. The output
contains a listing of the source module and all included files. A header with the compiler version, the date, the page
number, and the module name appear on the top of each page. Here's an example of a listing generated using the −v
option with a small module:

 Motif Uil Compiler V2.0−000 Sat Apr 17 12:12:22 1993 Page 1
 Module: listme
 1 (0) /* listme.uil −− Test module for the −v option. */
 2 (0)
 3 (0) module listme
 4 (0)
 5 (0) include file 'listme.uih';
 1 (1) procedure
 2 (1) exit();
 6 (0)
 7 (0) object lister : XmList { };
 8 (0)
 9 (0) end module;

 File (0) listme.uil
 File (1) listme.uih

The first column of the listing is the line number, and the second column is a number representing the file that
contains the line. There is a key of file names and numbers at the end of the listing. If the compiler detects any errors
or warnings, the messages appear interspersed with the lines in the listing, and a summary of the number of each type
of message is printed at the end.

24.1.4 Set Locale

The −s option causes the compiler to set the locale based on the LANG environment variable. The setting affects how
the compiler parses multibyte string values. On ANSI−C systems, the locale is set with a call to setlocale
(LC_ALL, ""). Note, however, that if the module−wide character_set option is set, then the −s option has
no effect. (The character_set option is described in Chapter 22, Introduction to UIL.) If you are going to use the
−s option, you should specify the character set in the codeset portion of the LANG environment variable. In early
releases of Motif 1.2, the UIL compiler may crash if you use the −s option when LANG is set to a value that is not
supported by the operating system. This problem is fixed as of release 1.2.3.

24 Using the UIL Compiler 24.1.3 Generate Listing

650

24.1.5 Suppress Warnings

The −w option suppresses the printing of warning and informational messages. Normally the compiler prints errors,
warnings, and informational messages. Error messages are always printed and cannot be suppressed. This option can
be useful if your module has a lot of errors and warnings and you want to concentrate the on errors only. Section
#suilmsgs describes the different types of messages in more detail.

24.1.6 Machine Listing

The −m option tells the compiler to print the information written to the UID file along with the module listing. This
option has no effect unless the −v option is also used. The option was probably intended to help debug the compiler. It
is useful for determining exactly how the compiler interprets a particular statement and approximately how much
storage is used for each definition in the module. If a module contains errors, the compiler cannot generate a machine
listing because it doesn't generate a UID file.

24.1.7 Use WML Description

The −wmd option directs the compiler to load an alternate widget set description from a compiled Widget
Meta−Language (WML) description file. The format of this option is −wmd filename. By default, the compiler uses a
set of built−in tables that describe the OSF/Motif widget set. This option is rarely used because few people write
widget set descriptions in WML. Recently, however, some companies have started to ship Widget Meta−Language
Database (WMD) files with their custom widget sets, so use of this option will probably increase.

24.2 Errors, Warnings, and Informational Messages

As we mentioned, the UIL compiler can generate several different types of messages: severe errors, regular errors,
warnings, and informational messages. The type of each message is indicated by a prefix of either Severe, Error,
Warning, or Info. When a message is generated as a result of a problem in the module (as opposed to, say, a
system error), the message is printed with the line number and source line that triggered the problem. When a
compilation results in one or more of these messages, a summary of the nomber of occurrences of each type is output
at the end of the compilation.

24.2.1 Severe Error Messages

Severe errors occur when something prevents the UIL compiler from continuing. Severe errors commonly occur when
an input or output file cannot be opened or an internal compiler error is detected. Severe errors can also occur after too
many regular errors are encountered. Unlike the other types of problems, severe errors never contain an associated line
number, even when the error occurs because an include file cannot be found. For example, if you attempt to compile a
nonexistent file or write a listing to a non−writable directory, UIL generates the following errors:

 % uil bogus.uil
 Severe: error opening source file: bogus.uil

 % uil −v /cant−write listme.uil
 Severe: error opening listing file: /cant−write

24.2.2 Regular Error Messages

The most common causes of other errors are syntax mistakes, type mismatch problems, and identifier redefinitions.
Regular errors are almost always associated with a specific source line. the source code shows a UIL module with one

24 Using the UIL Compiler 24.1.5 Suppress Warnings

651

of each of these types of errors.

 module buggy

 object button : XmPushButton { };;

 value
 duplicate : 10;
 duplicate : "whoops!";

 object label : XmLabel {
 arguments {
 XmNlabelString = button;
 };
 };

 end module;

An attempt to compile this module results in the following output:

 object button : XmPushButton { };;
 *
 Error: unexpected SEMICOLON token seen − parsing resumes after ";"
 line: 3 file: buggy.uil
 duplicate : "whoops!";
 *
 Error: name duplicate previously defined as integer
 line: 7 file: buggy.uil
 XmNlabelString = button;
 *
 Error: found widget_ref widget when expecting compound_string value
 line: 11 file: buggy.uil
 Info: no UID file was produced
 Info: errors: 3 warnings: 0 informationals: 1

The compiler prints an asterisk (*) under the offending line to show you exactly where the error occurred. Note that
because errors were detected, the compiler did not produce a UID file.

24.2.3 Warning Messages

Warning messages turn up most often when part of a widget definition does not make sense to the compiler. Since
warnings are not critical problems, a UID file is still produced when they occur. You shouldn't ignore warnings, as
they typically indicate a misunderstanding of some kind. For example, in the source code we incorrectly try to create a
List gadget and use the XmNset resource in a Label widget.

 module mistakes

 object files : XmList gadget { };

 object label : XmLabel {
 arguments {
 XmNset = true;
 };
 };

 end module;

24 Using the UIL Compiler 24.2.3 Warning Messages

652

Running this module through the compiler produces the following warnings:

 object files : XmList gadget { };
 *
 Warning: XmList gadget is not supported − XmList widget will be used instead
 line: 3 file: warn.uil
 XmNset = true;
 *
 Warning: the XmNset argument is not supported for the XmLabel object
 line: 7 file: warn.uil
 Info: errors: 0 warnings: 2 informationals: 0

Warning messages are usually associated with a line in the source module. Warnings are also generated if you specify
an unknown option to the uil command or when the compiler cannot close a file.

24.2.4 Informational Messages

The UIL compiler uses informational messages to let you know about the state of the compilation. The compiler also
generates an informational message if you set the same resource or callback more than once. You've already seen two
of the three possible informational messages in the example output from above. The module in the source code
demonstrates the third situation.

 module infos

 list base : arguments {
 XmNlabelString = "original";
 };

 object main_widget : XmLabel {
 arguments {
 arguments base;
 XmNlabelString = "actual";
 };
 };

 end module;

The compiler output for this module is as follows: These informational messages were generated by an early version
of the Motif 1.2 compiler, which incorrectly outputs the line of the original resource rather than the line that
superseded it.

 XmNlabelString = "original";
 *
 Info: this XmNlabelString argument supersedes a previous definition in this
 argument list
 line: 4 file: info.uil
 Info: errors: 0 warnings: 0 informationals: 1

Although you may set the same resource twice by mistake, you may want to do it intentionally. This technique can be
used (as above) to override the value of a resource obtained from a reusable list of resources, as described in Section
#suillist.

24 Using the UIL Compiler 24.2.4 Informational Messages

653

24.3 Summary

The UIL compiler is needed to convert a UIL source module into a UID file that can be read at run−time by Mrm. The
uil command invokes the compiler; it is typically used with the −o filename option to specify the output UID file
name. The compiler also supports a number of other options that affect the output of the compilation. A compilation
can result in messages that report severe errors, regular errors, warnings, and informational messages. A UID file is
never produced when one or more errors occur, but can still be generated when only warnings or informational
messages occur.

24 Using the UIL Compiler 24.3 Summary

654

25 Creating a User Interface With UIL

This chapter expands upon the overview of UIL and Mrm presented earlier. The syntax and usage of UIL are
described in detail, along with the Mrm functions associated with the various UIL constructs.

Now that you have a basic understanding of how UIL and Mrm are used to define and create a user interface, we can
turn to the details of using UIL and Mrm. Recall that a UIL module can contain five different types of sections: the
object section for defining widgets; the value section for defining resource values and callback arguments; the
identifier section for declaring application variables exported to UIL; the procedure section for declaring
callbacks; and the list section for defining lists of widgets, resource settings, callback settings, and callback
routines.

An application accesses UIL definitions using the Mrm library. Mrm functions serve three basic purposes: file
handling, importing information from UIL, and exporting information to UIL. Examples of each of these types of
functionality appear in the hello_world.c program in Chapter 22, Introduction to UIL. The functions that import
information create widgets that are defined in object sections and retrieve data that is defined in value sections.
The functions that export information register callbacks that are declared in procedure sections and application
data that is declared in identifier sections. There are no Mrm functions that work with UIL lists, because unlike
other UIL entities, lists are strictly internal to a module.

In this chapter, we describe the role of UIL in each major step of creating an application:

Defining and creating the widgets that make up an interface•
Defining and fetching values (resources)•
Working with widget callbacks•

We also talk about two other related topics:

Using lists of widgets, resources, and callbacks•
Exporting application−created data to UIL•

The vast amount of information that is covered in this chapter makes it impractical to illustrate all of the UIL and Mrm
concepts with a single UIL module or application. Such an application would be quite large and unrealistic. Therefore,
we demonstrate the features of UIL and Mrm with many small, self−contained examples. To facilitate this approach,
we've put together a small C program that you can use to try out the various UIL modules and callback functions we
discuss.

25.1 Viewing UIL Examples

The showuid.c program is designed to display a portion of a user interface that is defined in a UID file. The idea is to
allow you to examine the output of different UIL modules without needing a separate program for every module. The
complete source code of this program appears in the source code

 /* showuid.c −−
 * Program to show the interface defined in a UID file.
 */

 #include <stdio.h>
 #include <Mrm/MrmAppl.h>

655

 void quit();
 void print();

 static MrmRegisterArg callback_list[] = {
 { "quit", (XtPointer) quit },
 { "print", (XtPointer) print },
 /* Add additional callback procedures here... */
 };

 typedef struct {
 String root_widget_name;
 } app_data_t;

 static app_data_t app_data;

 static XtResource resources[] = {
 { "root", "Root", XmRString, sizeof(String),
 XtOffsetOf (app_data_t,root_widget_name), XmRString,
 (XtPointer) "root" },
 };

 static XrmOptionDescRec options[] = {
 { "−root", "root", XrmoptionSepArg, NULL },
 };

 void
 quit (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 exit (0);
 }

 void
 print (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *message = (char *) client_data;
 puts (message);
 }

 main (argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app_context;
 Widget toplevel;
 Widget root_widget;
 Cardinal status;
 MrmHierarchy hierarchy;
 MrmType class_code;

 XtSetLanguageProc (NULL, NULL, NULL);

 MrmInitialize();

 toplevel = XtVaAppInitialize (&app_context, "Demos", options,

25 Creating a User Interface With UIL25 Creating a User Interface With UIL

656

 XtNumber(options), &argc, argv, NULL, NULL);

 XtGetApplicationResources (toplevel, &app_data, resources,
 XtNumber(resources), NULL, 0);

 /* Check number of args after Xt and App have removed their options. */
 if (argc < 2) {
 fprintf (stderr,
 "usage: showuid [Xt options] [−root name] uidfiles ...0);
 exit (1);
 }

 /* Use argc and arv to obtain UID file names from the command line.
 (Most applications use an internal static array of names.) */
 status = MrmOpenHierarchyPerDisplay (XtDisplay (toplevel), argc − 1,
 argv + 1, NULL, &hierarchy);

 if (status != MrmSUCCESS) {
 XtAppError (app_context, "MrmOpenHierarchyPerDisplay failed");
 exit (1);
 }

 MrmRegisterNames (callback_list, XtNumber (callback_list));

 status = MrmFetchWidget (hierarchy, app_data.root_widget_name,
 toplevel, &root_widget, &class_code);

 if (status != MrmSUCCESS) {
 XtAppError (app_context, "MrmFetchWidget failed");
 exit (1);
 }

 MrmCloseHierarchy (hierarchy);

 XtManageChild (root_widget);
 XtRealizeWidget (toplevel);

 XtAppMainLoop (app_context);
 }

This program is similar to the hello_world.c program in Chapter 22, Introduction to UIL. However, we've made a few
small changes to make the program flexible enough to accommodate our needs in this chapter. The main()
procedure follows the steps required of any Mrm program except that the UID files containing the interface
description and the name of the widget to be created are not hard−coded in the program. This information is now
specified on the command line, so the program can be used to display different UID files and widget trees.

The list of UID files passed to MrmOpenHierarchyPerDisplay() is taken directly from the command line.
Since argv is in the format expected by the routine, we pass it directly to the routine, after adding 1 to skip the name
o f p r o g r a m i n a r g v [0] ; W e t h e n s u b t r a c t 1 f r o m a r g c t o a c c o u n t f o r t h e d i f f e r e n c e .
MrmOpenHierarchyPerDisplay() is called after the other command−line arguments have been removed by
XtVaAppInitialize() and XtGetApplicationResources().

You can specify the name of the widget hierarchy created by the program with the −root option. Xt takes care of
parsing the command−line switch and putting the value into the app_data structure. (See Volume Four, X Toolkit
Intrinsics Programming Manual, for detailed information on this process.) If you do not specify the −root option,
the application uses root as the default name. In most of the modules in this chapter, we use the default name root
for the top−level widget.

25 Creating a User Interface With UIL25 Creating a User Interface With UIL

657

The following command compiles the showuid program:

 cc −o showuid showuid.c −lMrm −lXm −lXt −lX11

To display a UID file, use the following command:

 showuid −root form hello_world.uid

The command−line options tell the command to open a description file named hello_ world.uid and create the widget
hierarchy rooted at the widget named form. Mrm searches for the UID files specified on the command line using the
UIDPATH environment variable if it is set, or the default path described in Chapter 22. It is easy to run the command
on a file in the current directory, since the current directory is included in the default search path. Remember that you
can also specify an absolute path to a UID file.

We recommend that you use the showuid program for trying out our examples as well as experimenting on your own.
In addition, the program is an excellent starting point for your own Mrm programs. The basic Mrm framework is
already in place. You only need to add the callbacks that implement your application's functionality and provide an
array of UID files, instead of taking them from the command line.

25.2 Defining and Creating Widgets

As you know, the main purpose of a UIL module is to define the widgets of a user interface. We mentioned earlier
that widget definitions always occur in an object section of a UIL module, which begins with the keyword object
followed by one or more widget definitions. The complete form of a widget definition is shown in the figure.

Structure of a widget definition

The figure may seem a little imposing at first, but if we ignore all the optional parts of the definition, it is really quite
simple. the source code defines a PushButton widget named root using only the required parts of a definition. This
module, along with the showuid.c program, comprise all the source necessary for a complete application.

25 Creating a User Interface With UIL25.2 Defining and Creating Widgets

658

 /* trivial.uil −− Illustrate a minimal widget declaration. */

 module trivial

 object root : XmPushButton { };

 end module;

The widget definition in the source code consists of three parts, not including the object keyword. The definition
begins with the widget name, which is a programmer−defined identifier. The name of the widget in this example is
root. The type of widget follows the name; a colon separates the name and the type. Legal widget types include all
of the standard Motif widgets as well as the names of specific instances of Motif widgets, such as XmMenuBar (a
RowColumn) or XmQuestionDialog (a MessageBox). You can find a complete list of widget type names in
Appendix D, Table of UIL Objects, of Volume Six B, Motif Reference Manual. UIL also supports non−Motif
widgets with the user_defined type, which we explain later in Chapter 26, Advanced UIL Programming. The
last, and usually largest, part of a widget definition is made up of the widget attributes. In our simple definition, we do
not specify any attributes, but even so, we must include the curly braces that would surround them. Widget definitions
always end with a semicolon.

After compiling the module, we can display its output with the showuid program. The following two commands
accomplish these steps:

 uil −o trivial.uid trivial.uil
 showuid trivial

You don't need to use the −root option because the PushButton uses the default widget name root. The output of
the program appears in the figure.

User interface of trivial.uil

25.2.1 Specifying Widget Attributes

A bare−bones widget definition like the one in the previous example is rare in even the simplest Motif applications.
To create a useful interface, you need a hierarchy of customized widgets, which is where widget attributes enter the
picture. When you define a widget in UIL, you can specify children and resources in subsections of its attribute
section. The controls subsection contains a list of a manager widget's children, and the arguments and
callbacks subsections contain lists of the widget's resource and callback settings. Each subsection begins with the
subsection name followed by a list of children, resources, or callback settings. Each subsection can occur only once in
a single widget definition, but they can occur in any order. The controls subsection of a widget definition is where
you specify the children of the widget. The name of this subsection was chosen because the parent widget manages, or
controls, the child widgets. The module in the source code shows a typical usage of the controls subsection.

25 Creating a User Interface With UIL25.2.1 Specifying Widget Attributes

659

 /* kids.uil −− Simple demonstration of the controls subsection. */

 module kids

 object top : XmTextField { };

 object bottom : XmPushButton { };

 object root : XmPanedWindow {
 controls {
 XmTextField top;
 XmPushButton bottom;
 };
 };

 end module;

In this example, we define three widgets: a TextField, a PushButton, and a PanedWindow. The controls subsection
of the PanedWindow specifies that the TextField and the PushButton are its children. The example illustrates the form
of an entry in a controls subsection, where the widget type is followed by the name of a widget and a semicolon.
Even though the type of the widget has already been specified in a separate widget definition, you must specify it
again here. In this example, we define the children before their parent, but widgets referenced in a controls
subsection can be defined anywhere in the UIL module because UIL allows forward references. The output of the
module is shown in the figure, where we typed some text in the TextField.

User interface of kids.uil

Each of the three widget definitions begins with object, which means that each of them is in a separate object
section. Technically, you only need the object keyword before the first widget in consecutive definitions. Although
the convention of placing an object keyword before each definition requires a bit more typing, it makes definitions
easier to recognize and move around in a module.

One advantage of defining your interface with UIL is that the compiler always makes sure that the children listed in a
controls subsection are allowed for that parent. If you try to use an unsupported widget, the UIL compiler issues
an error message, and the compilation fails. Appendix D, Table of UIL Objects, in Volume Six B, Motif Reference
Manual, contains a complete listing of the Motif widgets and the children that they support. In contrast, when you
create widgets directly with Xt, there is no compile−time checking that makes sure the widget hierarchy is valid.
Many of the Motif manager widgets provide some form of run−time checking, but we don't recommend relying on
this behavior.

The presence of a widget definition in a UIL module does not necessarily mean that the widget is created at run−time.
A widget is not created until you fetch it directly with MrmFetchWidget() or MrmFetchWidgetOverride(),
or it appears in a widget hierarchy fetched with one of these routines. By referencing a widget in a controls
subsection, you make it part of a widget hierarchy. When the hierarchy is fetched, all of the widgets in the hierarchy

25 Creating a User Interface With UIL25.2.1 Specifying Widget Attributes

660

are created. (The widget creation process is described in Section #suilcreate.) If a widget is defined, but never
referenced or fetched from an application, it is never created.

When a widget is created based on a UIL definition, you are not limited to creating a single instance of it. Every call
to MrmFetchWidget() or MrmFetchWidgetOverride() results in the creation of a new widget, assuming a
definition is found. In addition, each widget reference in a controls subsection results in the creation of an instance
of that widget when the enclosing hierarchy is fetched. This behavior lets you reuse a widget as often as necessary.
You can reuse widgets at any level, from a single widget to an entire hierarchy. You can place a complete widget
definition inside a controls subsection, instead of referencing a widget defined elsewhere. For example, we can
move the child widget definitions from the source code into the body of the PanedWindow definition, as shown in the
following fragment:

 object root : XmPanedWindow {
 controls {
 top : XmText { };
 bottom : XmPushButton { };
 };
 };

The form of an in−line widget definition is the same as a widget definition in an object section. In−line definitions
are most useful for specifying widget children that have few or no attributes. While larger definitions are allowed,
they tend to clutter up the parent definition, which makes both reading and editing the module more difficult.

Unlike widgets defined in an object section, the name of an in−line widget is optional. This feature is most frequently
used in menu definitions, as the following fragment illustrates:

 object file_menu : XmPulldownMenu {
 controls {
 XmPushButton open;
 XmPushButton print;
 XmSeparator { };
 XmPushButton quit;
 };
 };

This definition contains an unnamed Separator, along with references to three PushButtons that are defined elsewhere.
In this situation, it is worthwhile to create a stand−alone definition for the Separator because it doesn't have any
attributes. The UIL compiler automatically generates a name when you don't provide one. The format of these names
is not documented and can vary from one compilation to the next. If a widget does not have a well−defined name,
neither you nor the users of your application can customize it using X resource files. If you want to allow such
customizations, you must explicitly name the widget. When you define an object of a class that has both a widget and
a gadget variant, you can specify in the definition which type is created. Motif supports widget and gadget variants of
the Label, PushButton, ToggleButton, ArrowButton, CascadeButton, and Separator objects. As we explained in
Section #suiloptions, you can specify the default type for each class in the objects option setting at the top of a
module. If you do not set this option, widgets are used by default. The following code fragment demonstrates how to
define a PushButtonGadget, regardless of the default PushButton type setting:

 object push_me : XmPushButton gadget { };

UIL also supports the type names with Gadget appended, so the following definition is also legal:

 object toggle_me : XmToggleButtonGadget { };

25 Creating a User Interface With UIL25.2.1 Specifying Widget Attributes

661

You can use the widget keyword to ensure that the widget version of an object is created, as shown in the following
fragment:

 object this_way : XmArrowButton widget { };

This syntax is the only way to specify a widget variant; the UIL compiler does not recognize type names such as
XmArrowButtonWidget. Several Motif widgets are compound objects, which means that they are composed of
one or more simpler widgets. For example, the FileSelectionBox is a complete dialog box packaged as a widget; it
contains Lists, TextFields, Labels and PushButtons. As of Motif 1.2, UIL lets you access and customize the
automatically−created children of a compound object. Like other child widgets, you reference automatically−created
children in the controls subsection of their parent, although the syntax is slightly different. The following code
fragment illustrates this syntax:

 object yes_or_no : XmQuestionDialog {
 controls {
 Xm_OK {
 arguments {
 XmNlabelType = XmPIXMAP;
 XmNlabelPixmap = xbitmapfile ('thumb_up.xbm');
 };
 };
 };
 };

This fragment shows how to make the OK PushButtons in a QuestionDialog display an icon instead of the usual text
string. The name of this button is Xm_OK. The name is followed by attribute settings, just like any other widget
definition. lists the names of all the automatically−created children of each of the Motif composite widgets. tab(@),
linesize(2); lp9 | lp9 lp9 | lp9.
Widget@Child Names
_
XmScale@Xm_Title XmScrolledWindow@Xm_VertScrollBar, Xm_HorScrollBar
XmOptionMenu@Xm_OptionLabel, Xm_OptionButton XmPopupMenu@Xm_TearOffControl
XmPulldownMenu@Xm_TearOffControl XmMainWindow@Xm_Separator1, Xm_Separator2, Xm_Separator3
XmMessageBox@T{ Xm_Symbol, Xm_Separator, Xm_Message, Xm_OK, Xm_Cancel, Xm_Help T}
XmSelectionBox@T{ Xm_Items, Xm_ItemsList, Xm_Selection, Xm_Text, Xm_Separator, Xm_OK, Xm_Apply,
Xm_Cancel, Xm_Help T} XmFileSelectionBox@T{ Xm_Items, Xm_ItemsList, Xm_Separator, Xm_OK,
Xm_Cancel, Xm_Help, -Xm_FilterLabel, Xm_Filter, Xm_FilterText, Xm_DirList, Xm_Dir T}
_ Remember that the Motif compound objects provide resources that allow you to set the commonly−used resources
of their children. For example, the XmNmessageString resource of the QuestionDialog is the same as the
XmNlabelString resource of its Xm_Message child. It is better to set the resource on the compound object rather
than on the child, so we suggest that before you set a resource on an automatically−created child, you make sure that
the resource cannnot be set in the arguments subsection of the parent. Mrm automatically manages all of the
widgets that you fetch with the exception of dialogs, menus, and the widget at the top of the fetched hierarchy. You
can prevent Mrm from managing individual widgets by preceding their controls subsection entry with the
unmanaged keyword, as shown in the following fragments:

 object panel : XmRowColumn {
 controls {
 XmPushButton visible;
 unmanaged XmPushButton invisible;
 };
 };

 object error : XmErrorDialog {

25 Creating a User Interface With UIL25.2.1 Specifying Widget Attributes

662

 controls {
 Xm_Help unmanaged { };
 };
 };

When the panel RowColumn widget is created, both PushButtons are created, but only the first one is managed.
When you want to manage the other button, your application code must handle it, just like it must manage dialogs and
popup menus. You can also unmanage automatically−created children as shown in the second object definition above.
In this case, the unmanaged keyword follows the name of the automatically−created widget instead of preceding it.
In UIL, you specify resources (with the exception of callbacks) in the arguments subsection of a widget definition.
The UIL module in the source code shows several examples of resource settings.

 /* resource.uil − Basic example of setting widget resources. */

 module resource

 object root : XmPushButton {
 arguments {
 XmNlabelString = "Candy−Gram!";
 XmNmarginWidth = 350;
 XmNmarginHeight = 350;
 XmNunitType = Xm100TH_MILLIMETERS;
 XmNforeground = color ('SlateGrey');
 XmNbackground = color ('LemonChiffon');
 XmNfontList = font ('*times−bold−r−normal*180−100−100*');
 };
 };

 end module;

In this example, we set several PushButton resources. These settings demonstrate the use of a number of UIL data
types. However, we're not going to discuss the data types right now, as they are covered later in Section #suiltypes.
The basic format of each setting is the same. Each consists of a resource name, an equal sign (=), a value, and a
semicolon. the figure shows the output of this example, which is quite different from the simple PushButtons in our
earlier examples.

User interface of resource.uil

Creating a PushButton with the same resource settings in application code requires a lot more work. You need to
declare variables for the XmString, Color, and XmFontList values and then you must create or allocate each of
these values by calling various Xm, Xt, and X routines. After the values are created, you can create the widget. Any
values copied by the widget should be freed. When you use UIL and Mrm, all of this work boils down to the much
simpler widget definition shown above and a single call to MrmFetchWidget().

25 Creating a User Interface With UIL25.2.1 Specifying Widget Attributes

663

The UIL compiler checks resource names, so if you specify a resource that is not supported by a widget, the compiler
generates an error message. In contrast, if you try to set an unsupported resource with XtSetValues(), Xt ignores
the resource and does not generate an error. By using UIL, you can also avoid setting a resource to the wrong type of
value because the UIL compiler ensures that the type of resource matches the type of the value you assign to it.
(Appendix C, Table of Motif Resources, in Volume Six B, Motif Reference Manual, contains a complete list of Motif
widget resources and their associated types.) Once again, this type of error is not caught in C code when you use
XtSetValues() or XtVaSetValues(). Unrecognized resource names are also ignored in X resource files.

The disadvantages of specifying resource values in code and in resource files may give you the impression that you
should always set resources from a UIL module. However, there are also disadvantages to setting resources in UIL.
The main disadvantage is that users of your application cannot override UIL settings with their own resource settings.
In Section #suilres we take a closer look at the issues involved in deciding whether to set a resource in UIL,
application code, or an X resource file. The type of a value you assign to a resource must match the type of the
resource. However, there are a few cases in which the UIL compiler automatically converts a value to the appropriate
type. The supported conversions are shown in lp9 | lp9 lp9 | lp9. Value Type Automatically Converted To
_
string compound_string asciz_string_table compound_string_table font font_list
fontset font_list icon pixmap xbitmapfile pixmap rgb color _ This feature is most useful when
you are working with string and font values. the source code relies on the string to compound_string
(XmString) conversion for setting the -XmN-labelString resource. Several of the Motif widgets have array
resources for which there is an associated count resource that indicates the size of the table. These resource pairs are
given special treatment by the UIL compiler. Whenever you set one of the resources listed in UIL automatically sets
the corresponding count resource for you. lp9 | lp9 | lp9 lp9 | lp9 | lp9. Widget Table Resource Coupled Count
Resource
_
XmList XmNitems XmNitemCount XmList XmNselectedItems XmNselectedItemCount
XmSelec t ionBox XmNl is t I tems XmNl is t I temCount XmCommand XmNhis tory I tems
XmNhistoryItemCount XmFileSelectionBox XmNdirListI tems XmNdirListI temCount
XmFileSelectionBox XmNfileListItems XmNfileListItemCount XmText XmNselectionArray
XmNselectionArrayCount XmTextField XmNselectionArray XmNselectionArrayCount _ The
following code fragment illustrates this feature:

 object toppings : XmScrolledList {
 arguments {
 XmNitems = string_table ("Anchovies", "Extra Cheese", "Ham",
 "Mushroom", "Pepperoni", "Peppers", "Pineapple", "Sausage");
 XmNselectedItems = string_table ("Ham", "Pineapple");
 XmNvisibleItemCount = 6;
 };
 };

This fragment sets two XmStringTable resources in a List widget. We do not have to set the XmNitemCount or
XmNselectedItemCount resources because the UIL compiler sets them automatically. Although callbacks are
really just another type of resource, you specify them separately in the callbacks subsection of a widget definition.
Since callback functions are implemented in application code, the process of setting up callbacks involves a few more
steps than the specification of other attributes. We explained the basics of this process in Chapter 22, Introduction to
UIL. In this section, we describe how to add a callback procedure to a widget. In Section #suilproc, we discuss
declaring callbacks, specifying callback arguments, and registering callbacks with Mrm.

Setting a callback in a UIL module requires two steps. First, you declare the callback in a procedure section, and
then you specify the callback in a widget definition. The module in the source code illustrates this process.

25 Creating a User Interface With UIL25.2.1 Specifying Widget Attributes

664

 /* cb.uil − Plain and simple callback setting example. */

 module cb

 procedure
 print (string);
 quit();

 object Hello : XmPushButton {
 callbacks {
 XmNactivateCallback = procedure print ("hello!");
 };
 };

 object Goodbye : XmPushButton {
 callbacks {
 XmNactivateCallback = procedures {
 print ("goodbye!");
 quit();
 };
 };
 };

 object root : XmRowColumn {
 controls {
 XmPushButton Hello;
 XmPushButton Goodbye;
 };
 };

 end module;

The callback declarations in the procedure section tell the UIL compiler that the procedures are defined externally
in the application program. A callback setting looks similar to a resource setting; it always begins with the name of a
callback, such as XmNactivateCallback, and is followed by an equal sign. The right−hand side of the setting
varies depending on the number of callback procedures you are specifying. A single callback is specified with the
keyword procedure followed by the callback invocation. Multiple callbacks are specified with the keyword
procedures followed by a list of callback invocations.

In the source code the XmNactivateCallback of the Hello PushButton is set to the single callback procedure
print(), while the XmNactivateCallback of the Goodbye PushButton is set to the two callbacks print()
and quit(). You cannot specify multiple callbacks by setting the same callback more than once because when you
set the same resource or callback multiple times, only the last setting is used. The Xt specification doesn't guarantee
the order in which callbacks are called, as widgets can reorder callback lists internally. In nearly all cases, however,
callbacks are called in the order that they are listed.

As with resource settings in an arguments section, the UIL compiler makes sure that the callbacks you set in a
callbacks subsection exist and are supported by the widget. When you add callbacks in application code, there is
nothing to prevent you from setting a callback on a widget that does not support it. This problem is not caught at
compile−time or run−time by Xt.

25.2.2 Sharing Widgets Among Modules

When the source code for an application grows beyond a certain size, you normally split it into multiple source files.
You can use the same technique to divide an interface description among multiple UIL modules. When you use this
technique, one module must often reference a widget that is defined in another module. UIL supports this technique

25 Creating a User Interface With UIL25.2.2 Sharing Widgets Among Modules

665

by allowing you to export a widget definition from one module and import, or reference, the definition in another
module. A widget definition is exported by using the optional exported storage specifier before the widget type
name in the definition, as shown in the source code

 /* first.uil − First half of a two−module interface description. */

 module first

 object top : exported XmText { };

 end module;

An exported definition looks and acts just like a regular definition. The difference is that you can access an
exported widget in another module by declaring it with the imported storage class specifier. This technique is
illustrated in the source code which imports the top widget from the source code

 /* second.uil − Second half of a two−module interface description. */

 module second

 object top : imported XmText;

 object bottom : XmPushButton { };

 object root : XmPanedWindow {
 controls {
 XmText top;
 XmPushButton bottom;
 };
 };

 end module;

Since the imported declaration refers to a widget defined elsewhere, you cannot specify attributes for the widget
and must end the declaration immediately after the type name, as shown in this example. You can think of an
imported widget declaration as having the same meaning as an extern variable declaration in C. Collectively, the
two modules describe the same interface as the source code After compiling these two modules, you can view the
interface with the following command:

 showuid first second

Placing a single widget in a separate file, as we've done in this example, is clearly a trivial example of sharing
widgets. This technique makes more sense when you are creating a larger interface for a real application. You can see
a more realistic example of sharing widgets in Chapter 25, Building an Application With UIL.

Widget definitions, like top−level variable definitions in C, are global by default, which means that you really don't
need to use the exported storage specifier. However, we recommend using it when you plan to reference a widget
in another module because it clearly indicates which widget definitions you expect to use elsewhere. When you import
a widget, UIL assumes that the widget class in the imported declaration matches the class of the widget definition.
If you make a mistake and import a widget that is different from its declared class, you defeat the compiler's
type−checking of the imported widget and may run into problems at run−time. Although some of the Motif managers
can detect an attempt to create an unsupported child, you should ensure that your widget definitions and declarations
match rather than relying on possible run−time detection.

25 Creating a User Interface With UIL25.2.2 Sharing Widgets Among Modules

666

UIL also supports the private storage specifier. This specifier allows you to restrict the use of a widget definition to
the module in which it occurs. The static storage class specifier in C has the same effect on C functions and
variables. As of Motif 1.2, however, widgets defined as private can still be accessed from other modules. Although
the private storage specifier is rarely used, you can specify it if you want to protect access to private widgets
(assuming the problem will be fixed), or if you want to explicitly indicate that a widget should not be referenced
elsewhere.

25.2.3 The Widget Creation Process

Now that you know how to define widgets in a UIL module, we can take a closer look at how to create widgets at
run−time using MrmFetchWidget(). In Chapter 22, Introduction to UIL, we showed you the basics of using
MrmFetchWidget() to create a widget or a widget hierarchy. As a reminder, this function takes the following
form:

 Cardinal
 MrmFetchWidget(hierarchy, widget_name, parent, widget_return,

class_return)
 MrmHierarchy hierarchy;
 String widget_name;
 Widget parent;
 Widget *widget_return;
 MrmType *class_return;

The hierarchy argument is an MrmHierarchy that has been opened with
MrmOpenHierarchyPerDisplay(). The widget_name parameter is the name of the widget to fetch. The
parent argument is the parent of the widget that is to be created. On success, widget_return contains the
widget ID of the widget and class_return contains the internal UIL class code for the widget.

You can also fetch a widget by calling MrmFetchWidgetOverride(), which lets you override resource settings
in the application. This routine takes the following form:

 Cardinal
 MrmFetchWidgetOverride(hierarchy, widget_name, parent, override_name,

arg_list, num_args, widget_return, class_return)
 MrmHierarchy hierarchy;
 String widget_name;
 Widget parent;
 String override_name;
 ArgList arg_list;
 Cardinal num_args;
 Widget *widget_return;
 MrmType *class_return;

The override_name argument lets you specify a name for the widget that differs from widget_name.
widget_name is used only to look up the widget definition. If override_name is NULL, widget_name is used
for the name. The arg_list and num_arg parameters specify a standard array of Xt resource name−value pairs.
Any resources specified in this list override those specified in the widget definition from the UIL module. The rest of
the parameters are the same as for MrmFetchWidget().

For each of these functions, Mrm first makes sure that the hierarchy specified is valid and open. If you supply an
invalid hierarchy to a function, it immediately fails and returns MrmBAD_HIERARCHY. Assuming the
hierarchy is valid, the two routines use the widget creation algorithm illustrated in the figure and described in the
following sections.

25 Creating a User Interface With UIL25.2.3 The Widget Creation Process

667

Widget creation algorithm

Mrm begins the widget creation process by searching for the widget definition in the UID files associated with the
h i e r a r c h y . T h e f i l e s a r e s e a r c h e d i n t h e s a m e o r d e r a s t h e y a p p e a r i n t h e a r r a y p a s s e d t o
MrmOpenHierarchyPerDisplay(). The search order matters when two widgets with the same name are
defined in different files, as Mrm uses the first definition that it finds. Once Mrm locates the widget definition, it reads
it from the UID file and moves on to the next step. If Mrm cannot find the widget after looking in each file, it prints a
warning message by calling XtAppWarning().

If the missing widget is at the root of the hierarchy that the application is fetching, MrmFetchWidget() returns a
status of MrmNOT_FOUND. But if the missing widget is one of its descendents, the widget hierarchy creation process
continues, minus one widget. While a failure to create a child widget is bound to cause problems for your application,
MrmFetchWidget() unfortunately returns MrmSUCCESS as long as the top−level widget is created. Before Mrm
creates a widget, any resource or callback settings are put into an ArgList. Many resource settings, such as colors
and fonts, are created and maintained by the X server, which means that they cannot be stored in a UID file. Instead,
descriptions of these values are stored in the UID file. Mrm creates the actual values at run−time based on these
descriptions. Other values, such as integers, strings, and XmStrings, are read from the UID file and placed directly
into the ArgList. Mrm also converts callback names stored in the UID file to function pointers that the application
registered by calling MrmRegisterNames() or MrmRegisterNamesInHierarchy().

If for any reason Mrm cannot create a resource value or cannot find a the specific resource or callback and prints a
warning message using XtAppWarning(). This type of failure does not prevent Mrm from creating the widget, and
the status returned by MrmFetchWidget() or MrmFetchWidgetOverride() does not indicate that a problem
occurred.

If you are fetching a widget with MrmFetchWidgetOverride(), callback function pointer to match a callback
name, it does not set the ArgList you pass to this function is appended to the internally generated ArgList of the
top−level widget. Override arguments do not affect any widgets further down in the hierarchy. Since Xt uses the last

25 Creating a User Interface With UIL25.2.3 The Widget Creation Process

668

occurrence of a resource or callback setting in an ArgList to set the value, the settings from the application program
override any settings specified in the widget definition. You can also override widget resource settings after a widget
is created by using MrmFetchSetValues(), which is described in Section #suilfetch. Now Mrm calls the widget
creation function corresponding to the class of the widget. For the built−in Motif widgets, Mrm uses the Motif
convenience functions, such as XmCreatePushButton(). Some widgets, like the FileSelectionBox, create their
own children at the time they themselves are created. Mrm is aware of these children, but is not responsible for their
creation. For user_defined widgets, Mrm calls the creation procedure that you specified when registering the
widget. (User−defined widgets are described in Section #suiluserdef.) Mrm does not manage the widget at this point
in the procoess. In addition to the callbacks that are part of each widget, Mrm and UIL support a special creation
callback, MrmNcreateCallback, which is invoked by Mrm immediately after the widget is created. In the case of
an automatically−created child, the callback is invoked after its resources are set. The widgets are not aware of the
callback, since it is handled directly by Mrm. The MrmNcreateCallback takes the same form as any other
callback and is specified in the callbacks subsection of a widget definition. The client_data argument is an
XmAnyCallbackStruct, which is defined in <Xm/Xm.h> as follows:

 typedef struct {
 int reason;
 XEvent *event;
 } XmAnyCallbackStruct;

The reason field is always set to MrmCR_CREATE, and the event pointer is always NULL. You can use this
callback to handle almost anything you would normally do in a standard Xt program after creating a widget. At this
point, the widget creation process becomes recursive. If the newly−created widget has any children specified in its
controls subsection, Mrm creates them now. Mrm uses the process just described to create each of the children.
Automatically−created children are also processed recursively so that Mrm can handle any resources or callbacks
specified in the UIL file. Instead of creating an automatically−created child in the widget creation step, Mrm just sets
the resources and callbacks using the XtArgList for the child.

The recursive nature of the widget creation process allows you to create, with a single function call, a user interface
that consists of an arbitrarily large widget hierarchy. This behavior is what makes MrmFetchWidget() and
MrmFetchWidgetOverride() so powerful. As we mentioned earlier, if Mrm cannot create a child widget, it
prints a warning message using XtAppWarning() and continues with the next child. In general, both fetch
functions continue working through just about any type of failure, short of not finding the definition of the top−level
widget in the hierarchy. If any children have been created, Mrm now manages them. Mrm manages all non−Shell
children that are part of the controls subsection of the parent widget, unless they are declared as unmanaged.
Since the creation process is recursive, any children of the widgets that are being managed have been managed
previously. The top−level widget that is being fetched is not managed by Mrm because the management step only
applies to the children of a widget. After all of the widgets in the hierarchy have been created, there may still be some
resources that Mrm needs to set because UIL allows you to make forward references to widgets. As a result, you can
specify widgets in resource settings and as callback arguments without worrying about the creation order of the
widgets involved. If you reference a widget before it is defined, Mrm cannot resolve the reference when it is
encountered. To handle this situation, Mrm remembers the reference and resolves it once all of the widgets in the
hierarchy have been created.

The ability to use forward references makes UIL quite flexible. One situation where this feature is useful is when you
create an interface that uses the Form widget. With UIL, you can specify complex Form attachments without having
to worry about the creation order of the widgets. The one limitation to this feature is that it only works within a single
call to MrmFetchWidget(). During a call to MrmFetchWidget(), Mrm maintains a list of the widgets that have
been created, which means that you can only reference a widget that is part of the hierarchy created by the current call.
If you need to set a resource to a widget in another hierarchy, you can set it using the MrmNcreateCallback or set
it after the hierarchy has been created. After the entire hierarchy has been created, Mrm returns the widget ID of the

25 Creating a User Interface With UIL25.2.3 The Widget Creation Process

669

top−level widget to the application. The top−level widget is the one that you name in the MrmFetchWidget() or
MrmFetchWidgetOverride() function call. Remember that Mrm does not manage this widget, so an application
must explicitly call XtManageChild() on the widget. Although the widget creation process is rather involved, all
you really need is a general understanding of the process. If you encounter problems with Mrm widget creation, you
can return to this section to brush up on the details.

25.3 Defining and Fetching Values

UIL supports over 20 different data types, which gives you the ability to specify values for nearly every Motif
resource. In addition, most types of values can be passed as the client_data argument to your callbacks or
retrieved on demand from a UID file by Mrm. Each of the types has its own syntax so that the UIL compiler can
distinguish between them. But before we describe the syntax of each value, we need to look at defining symbolic
variables and retrieving variables at run−time using Mrm.

Variables provide a convenient and descriptive way to refer to values. Variables are defined in a value section of a
UIL module. This section begins with the keyword value and consists of one or more variable definitions. Most
value sections define variables for familiar values like integers and strings, as shown in the following fragment:

 value
 spacing : 10;
 warning : "Aviso";

A value definition consists of an identifier followed by a colon, the value assigned to the identifier, and a semicolon.

UIL supports forward references to variables, so you don't need to declare or define a variable before you reference it.
However, we recommend that you avoid forward references for a couple of reasons. The first reason is purely stylistic.
Programmers expect to see a definition or declaration before a reference, since it is required by many programming
languages. A module is also easier to read if variables are defined or declared before they are used. Another reason has
to do with the UIL compiler. While forward references tend to work most of the time, problems with the compiler
may cause unexpected errors depending on the context in which you use a forward−referenced variable.

25.3.1 Sharing Values Between Modules

Like widgets, you can share most values between modules by defining an exported value in one module and
declaring it imported in another module. This feature is commonly used to maintain strings in a separate module
from the interface definition for internationalization purposes. (This style of internationalization is illustrated in
Section #suili18n.) You can specify a storage class of private (the default) or exported just before the value in a
declaration, as shown in the following fragment:

 value
 ducks : private 7;
 swans : 3;
 geese : exported 5;

The variables ducks and swans are accessible only in the module in which they are defined, while the variable
geese is accessible from any module. Unlike private widget definitions, private variables really are private, so
you cannot access them from another module. You can also retrieve exported values from an application, as you'll
see shortly. You can use a variable from another module by declaring it as an imported variable. The syntax is
similar to an imported widget declaration, as shown below:

 value
 geese : imported integer;

25 Creating a User Interface With UIL25.3 Defining and Fetching Values

670

Like imported widgets, you need to make sure that the type of an imported variable matches the type in its
definition. If they do not match, there's a good chance you'll run into problems when you create a widget that
references the imported value.

25.3.2 Fetching Values

As we mentioned earlier, an application can read all types of exported variables from a UIL module, with the
exception of character_set and color_table values. You retrieve most exported variables using
MrmFetchLiteral(). However, pixmap and color are retrieved with special routines that we'll describe later.
Fetching values from a UIL module is useful for obtaining internationalized strings or widget resource values that
change dynamically based on the state of the program. MrmFetchLiteral() takes the following form:

 Cardinal
 MrmFetchLiteral(hierarchy, name, display, value_return, type_return)
 MrmHierarchy hierarchy;
 String name;
 Display *display;
 XtPointer *value_return;
 MrmCode *type_return)

Mrm looks for the variable specified by name in the UID files associated with the hierarchy parameter. The files
are searched in the same order as they appeared in the array of files passed to
MrmOpenHierarchyPerDisplay(), so if two variables with the same name occur in separate files, you'll get
the value from the first file in the list. When a value is fetched successfully, the function returns MrmSUCCESS, fills
in value_return with a pointer to the value, and fills in type_return with a constant from
<Mrm/MrmPublic.h> indicating the type of value. If MrmFetchLiteral() cannot find the variable in any of the
UID files, it returns MrmNOT_FOUND.

The value_return parameter usually contains a pointer to the value that you fetched, even for types such as
integer and boolean. You can check the type by examining type_return. lists each UIL data type, the type
of the value placed in value_return, and the associated type identifier placed in type_return.

tab(@), linesize(2); lp9 | lp9 | lp9 | lp9 lp8w(1i) | lp8 | lp8 | lp8.
Type@Mrm Return Type@C Return Type@Free Routine
_
a s c i z _ t a b l e @ M r m R t y p e C h a r 8 V e c t o r @ S t r i n g * @ X t F r e e ()
b o o l e a n @ M r m R t y p e B o o l e a n @ i n t * @ X t F r e e ()
c l a s s _ r e c _ n a m e @ M r m R t y p e C l a s s R e c N a m e @ W i d g e t C l a s s @ N / A
c o l o r @ N / A @ P i x e l @ X F r e e C o l o r s ()
compound_string@MrmRtypeCString@XmString@XmStringFree() T{ compound_
s t r i n g _ t a b l e T } @ M r m R t y p e C S t r i n g V e c t o r @ X m S t r i n g T a b l e @ X t F r e e ()
float@MrmRtypeFloat@double*@XtFree() font@MrmRtypeFont@XFontStruct*@N/A
f o n t s e t @ M r m R t y p e F o n t S e t @ X F o n t S e t @ N / A
f o n t _ t a b l e @ M r m R t y p e F o n t L i s t @ X m F o n t L i s t @ X m F o n y L i s t F r e e ()
icon@N/A@Pixmap@XFreePixmap() integer@MrmRtypeInteger@ int*@XtFree()
i n t e g e r _ t a b l e @ M r m R t y p e I n t e g e r V e c t o r @ i n t * @ X t F r e e ()
k e y s y m @ M r m R t y p e K e y s y m @ c h a r @ N / A r g b @ N / A @ P i x e l @ X F r e e C o l o r s ()
s i n g l e _ f l o a t @ M r m R t y p e S i n g l e F l o a t @ f l o a t * @ X t F r e e ()
s t r i n g @ M r m R t y p e C h a r 8 @ S t r i n g @ X t F r e e ()
t r a n s l a t i o n _ t a b l e @ M r m R t y p e T r a n s T a b l e @ X t T r a n s l a t i o n s @ N / A
w i d e _ c h a r a c t e r @ M r m R t y p e W i d e C h a r a c t e r @ w c h a r _ t * @ X t F r e e ()
xbitmapfile@N/A@Pixmap@XFreePixmap() _ Mrm allocates an int for boolean values, so you cannot

25 Creating a User Interface With UIL 25.3.2 Fetching Values

671

use the Xt Boolean type because on some machines it is defined as a char. However, you can still assign the int
t ha t i s r e tu rned t o a Boo lean . The spec ia l i zed rou t i nes MrmFe tchB i tmapL i t e ra l () ,
MrmFetchColorLiteral(), and MrmFetchIconLiteral() do not have an MrmType argument. If the
named value is not the right type, a status of MrmWRONG_TYPE is returned. Mrm allocates storage for most of the
values returned by MrmFetchLiteral(). The application is responsible for freeing the storage; it uses the routine
indicated in However, note that you should not free font or fontset values because they are cached by Mrm and
are reused as needed. There is no need to free class_rec_name or keysym values because they are returned by
value, and you cannot free translation_table -values because Xt does not provide a way to free them. In
addition, Mrm allocates asciz_string_table, compound_string_table, and integer_table values in
a single chunk of memory, which means you should free them with a single call, rather than freeing the individual
elements.

The following code fragment illustrates using MrmFetchLiteral() to fetch a string and an integer:

 extern MrmHierarchy hierarchy;
 extern Widget toplevel;
 Cardinal status;
 MrmCode type;
 String animal;
 int *count;

 status = MrmFetchLiteral (hierarchy, "animal", XtDisplay(toplevel),
 (XtPointer) &animal, &type);
 if (status != MrmSUCCESS || type != MrmRtypeChar8)
 error ();

 status = MrmFetchLiteral (hierarchy, "count", XtDisplay(toplevel),
 (XtPointer) &count, &type);
 if (status != MrmSUCCESS || type != MrmRtypeInteger)
 error ();

 printf ("There are %d %s0, *count, animal);

 XtFree (count);
 XtFree (animal);

Mrm fills in the string pointer and the integer pointer with the values from the UID file. The integer value is
returned as a pointer to an integer. We check the types of the values returned just in case the values are not a string
and an integer as expected. The two values can be defined in a UIL module as follows:

 value
 animal : exported "frogs";
 count : 7;

With MrmFetchLiteral(), you can retrieve values from a UIL module that are not necessarily part of the user
interface, such as printed error messages and program configuration values.

Since values fetched from a UIL module are often used to set resources of existing widgets, Mrm provides a function
that handles this situation. If you use MrmFetchLiteral(), you still have to call XtVaSetValues() to set the
values. MrmFetchSetValues() handles both fetching the values and setting the resources. This routine takes the
following form:

 Cardinal
 MrmFetchSetValues(hierarchy, widget, args, num_args)
 MrmHierarchy hierarchy;

25 Creating a User Interface With UIL 25.3.2 Fetching Values

672

 Widget widget;
 ArgList args;
 Cardinal num_args;

The hierarchy argument specifies the Mrm hierarchy, and widget specifies the widget on which to set the
values. The args parameter is an array of resource settings, and num_args specifies the size of the array. Each
array element is an Arg structure, which is defined as follows:

 typedef struct {
 String name;
 XtArgVal value;
 } Arg, *ArgList;

This structure is the same one used with XtSetValues(), but it is used in a slightly different way. When you call
MrmFetchSetValues(), the name field still specifies the name of a resource, but the value field names a UIL
variable that contains the value instead of specifying the value directly. The function and its structure are
demonstrated in the Message() routine shown in the source code

 extern Widget message_dialog;
 ...
 void
 Message(hierarchy, name)
 MrmHierarchy hierarchy;
 String name;
 {
 char msg_buf[33], type_buf[3];
 Arg args[2];

 sprintf (type_buf, "%s_type", name);
 sprintf (msg_buf, "%s_msg", name);

 args[0].name = XmNdialogType;
 args[0].value = (XtArgVal) type_buf;

 args[1].name = XmNmessageString;
 args[1].value = (XtArgVal) msg_buf;

 MrmFetchSetValues (hierarchy, message_dialog, args, XtNumber (args));
 XtManageChild (message_dialog);
 }

This function uses its name argument to form two UIL variable names and calls MrmFetchSetValues() to fetch
the values and set the resources of a MessageDialog. The string buffers are only 33 characters long because a UIL
variable name can be at most 32 characters long. The corresponding variable definitions in a UIL module might look
like the following:

 value
 fnf_msg : exported compound_string ("File not found!");
 fnf_type : exported XmDIALOG_ERROR;
 dsl_msg : exported compound_string ("Almost out of disk space.");
 dsl_type : exported XmDIALOG_WARNING;

An application could use the following function calls to display the MessageDialog with these messages:

 Message (hierarchy, "fnf");
 Message (hierarchy, "dsl");

25 Creating a User Interface With UIL 25.3.2 Fetching Values

673

Each message string is explicitly defined as a compound_string in the UIL module. The UIL compiler only
converts a NULL−terminated string to a compound_string when it is assigned to an XmString resource.

25.3.3 Numeric Values

UIL supports several numeric value types, specifically integers, booleans, floating point values, and integer arrays. In
addition, UIL understands C−like numeric expressions and lets you explicitly convert numeric values from one type to
another. Let's begin by looking at UIL integer values. The following fragment illustrates how you can define integer
variables and set widget resources to integer values:

 value
 spacing : 5;
 font_size : exported −2;

 object rc : XmRowColumn {
 arguments {
 XmNmarginWidth = 3;
 XmNspacing = spacing;
 };
 };

Unlike in C, the boolean type is built into UIL. You represent boolean values with the the reserved keywords
true, false, on and off, as shown in the following code fragment:

 value
 alive : true;
 debug : exported true;

 object button : XmPushButton {
 arguments {
 XmNwidth = 100;
 XmNrecomputeSize = false;
 XmNsensitive = alive;
 XmNtraversalOn = off;
 };
 };

The keywords true and on both represent true values, while false and off are both false values.

Although none of the Motif widgets use floating point resources, UIL provides support for floating point values.
Floating point values must contain a decimal point so that the UIL compiler can distinguish them from integers. The
following code fragment shows a value section that defines several floating point variables:

 value
 pi : 3.14159;
 Avogadro: exported 6.023e23;
 slope : −3.3337;
 millisecond: 1e−3;

Floating point values can be defined both with and without exponents. A floating point value defined in UIL is stored
as a C double. Although you probably won't use floats very often, some potential uses include setting resources of
user−defined widgets, exporting them back to the application, and passing them as callback arguments. Even though
UIL is a static description language, you can use numeric expressions that are very similar to C expressions.
Expressions in UIL are evaluated at compile−time, not at run−time. UIL supports the standard operators for use with
integer, floating point, and boolean values. summarizes these operators and their precedence order. As with C, you can

25 Creating a User Interface With UIL 25.3.3 Numeric Values

674

add parentheses to change the order of evaluation.

lp9 | lp9 | lp9 | lp9 | lp9 lp9 | lp9 | lp9 | lp9 | lp9. Operator Type Operand Types Operation Precedence
_
~ unary boolean NOT 1 (highest) integer One's complement 1 − unary integer Negation 1 float Negation 1 + unary
integer None 1 float None 1 * binary integer Multiplication 2 float Multiplication 2 / binary integer Division 2 float
Division 2 + binary integer Addition 3 float Addition 3 − binary integer Subtraction 3 float Subtraction 3 >> binary
integer Shift right 4 << binary integer Shift left 4 & binary boolean AND 5 integer Bitwise AND 5 | binary boolean
OR 6 integer Bitwise OR 6 ^ binary boolean XOR 6 integer Bitwise XOR 6 (lowest)
_

You can use a numeric expression just about anywhere that a numeric value is expected. In early releases of Motif 1.2,
if you use an expression in an rgb definition, the result is always zero. However, the UIL compiler does place some
restrictions on expressions. An expression must evaluate to a known value when you compile a module, which means
that you cannot use imported numeric values in an expression since the unknown value prevents the compiler from
evaluating the expression.

Like C, UIL lets you mix values of different types in an expression. In this situation, the result of the expression is the
type of the most complex type in the expression. The order of complexity, from lowest to highest, is boolean,
integer, and float. For example, the result of the expression 2 * 2.71828 is the float value 5.43656, and
the result of the expression 15& true is the integer value 1.

You can explicitly cast any numeric value or numeric expression to a specific type. UIL allows casts to integer,
float, and single_float values, but not to boolean values. The UIL float type is a C double, while the
UIL single_float type is a C float. Here are several examples of casting:

 value
 one : integer (true);
 zero : integer (false);
 result : integer (2 * 2.71828);
 five_oh : float (5);
 g : single_float (9.8);
 round : float (integer (2.71828 + 0.5));

When you cast a float value to an integer, the fractional part is always truncated, so the value of result is 5.
A cast to float simply converts an integer or a boolean into a C double. A cast to a single_float is the
only way you can define a C float value, since a floating point literal is always stored as a C double. You must
use a single_float to set a user−defined resource that is a C float. In addition to individual integer values, UIL
supports integer arrays. The compiler does not currently support boolean or floating point arrays, however. The
following code fragment illustrates an array definition:

 value
 primes : exported integer_table (2, 3, 5, 7, 11, 13);

An integer array consists of the keyword integer_table followed by a list of integer values. Like most other UIL
values, you can export integer arrays from a UIL module or pass them as callback arguments. UIL does not provide a
way to indicate the end of an integer array, so an application must know the length or obtain it somehow. You can
define integer arrays as exported values and fetch them from your application or use them to set the Text and
TextField XmNselectionArray resource. Unfortunately, setting this resource does not work in early releases of
Motif 1.2 because the possible values for the array elements are not defined. Even if you define the values yourself,
based on the definitions in <Xm/Xm.h>, an incompatibility between the two widgets and Mrm prevents an
XmN-selectionArray setting from working properly. This problem has been fixed as of Motif Release 1.2.3.

25 Creating a User Interface With UIL 25.3.3 Numeric Values

675

25.3.4 Text−related Values

Text is almost always an important part of a graphical user interface. UIL supports string, character set, and font
values, all of which are related to the display of text in your interface. A string consists of displayable text. A string
only makes sense in the context of a character set, which defines the supported characters in a string and the encoding
(or mapping from values to glyphs) of the string. A font contains the actual glyphs that visually represent a character
on the screen or on paper. These three elements are closely related as all are necessary to display text. the figure
illustrates the relationships among these types under UIL.

Relationships among strings, character sets, and fonts in UIL

This figure may look complicated, but UIL and Motif provide default values for character sets and fonts. You don't
have to worry about these values unless you are customizing or internationalizing an application. Of course, you must
always provide the strings, but that's the easy part. Before we can explain strings or fonts, you need to understand
character sets, because both strings and fonts depend on them. The character set of a string determines the string's
parsing direction, writing direction, and the number of bytes per character. For example, character sets for
Latin−based languages like English are read from left to right, are written from left to right, and are typically encoded
using one byte per character.

25 Creating a User Interface With UIL 25.3.4 Text−related Values

676

When a string is displayed, it must be drawn with a font that uses the same character set as the string because a
character set defines a mapping from character codes to character glyphs. For example, in the ISO 8859−1 character
set (ISO Latin−1), the value 65 represent an A, the value 66 represents a B, etc. In a font for ISO 8859−1, the symbol
A occupies position 65, B occupies position 66, and so on. If the character set of a string doesn't match the character
set of the font with which it is drawn, there's a good chance that the rendered text will be gibberish.

UIL provides a number of built−in character sets that should meet the needs of most applications. lists the built−in
UIL character sets and specifies the UIL name, the official name, and the attributes of each. lp9 | lp9 | lp9 | lp9 | lp9
lp9 | lp9 | lp9 | lp9 | lp9. UIL Name Character Set Parse Direction Writing Direction 16 Bit
_
iso_latin1 ISO8859−1 L to R L to R No iso_latin2 ISO8859−2 L to R L to R No iso_latin3 ISO8859−3
L to R L to R No iso_latin4 ISO8859−4 L to R L to R No iso_latin5 ISO8859−5 L to R L to R No
iso_cyrillic ISO8859−5 L to R L to R No iso_arabic ISO8859−6 L to R L to R No iso_greek
ISO8859−7 L to R L to R No iso_latin8 ISO8859−8 R to L R to L No iso_latin8_lr ISO8859−8 L to R R
to L No iso_hebrew ISO8859−8 R to L R to L No iso_hebrew_lr ISO8859−8 L to R R to L No gb_hanzi
GB2313.1980−0 L to R L to R Yes gb_hanzi_gr GB2313.1980−1 L to R L to R Yes j is_kanji
JISX0208.1983−0 L to R L to R Yes jis_kanji_gr JISX0208.1983−1 L to R L to R Yes jis_katakana
JISX0201.1976−0 L to R L to R No ksc_hangul KSC5601.1987−0 L to R L to R Yes ksc_hangul_gr
KSC5601.1987−1 L to R L to R Yes _ If you need to use a character set that is not built into UIL, you can define your
own character set. UIL allows user−defined character sets anywhere a built−in is expected, except in the
character_set option at the beginning of a module. The specification of a user−defined character set takes the
following form:

 character_set ('string_expression'
 [, right_to_left = boolean_expression]
 [, sixteen_bit = boolean_expression])

The string_expression that is used to name a user−defined character set is the key that links a string to a font, as you'll
see shortly. The name is followed by two optional character set properties that only affect string values. When the
right_to_left property is set to false, strings that use the character set are parsed and written from left to right.
When the property is set to true, strings are parsed and written from right to left. When the sixteen_bit property
is set to false, each character in a string that uses the character set is one byte long, but when it is set to true, each
character is two bytes long. Since both properties default to false, you do not need to specify them in most cases.
Here are a few specifications of user−defined character sets:

 character_set ('bold');
 character_set ('italic');
 character_set ('hieroglyphic', sixteen_bit = true);
 character_set ('xnaye, right_to_left = true);

UIL does not allow the definition of character set variables. You can only specify a character set by using the
character_set option in the module header or by explicitly specifying the character set of a string. We describe
how to specify the character set for a string in the next section. While a character set traditionally represents the
characters of a language, you can also represent different font styles with user−defined character sets. UIL supports
several different types of strings so that it can represent the various string values used for Motif widget resources. The
asciz_string_table type is the only type that is not associated with a widget resource. lists all of the UIL string
types and their corresponding C types. lp9 | lp9 lp9 | lp9. UIL Type Name C/Xt/Motif Type Name
_
string char *, String compound_string XmString wide_character char_t *
asciz_string_table char **, String * asciz_table char **, String *
compound_string_table XmString *, XmStringTable string_table XmString *,
XmStringTable

25 Creating a User Interface With UIL 25.3.4 Text−related Values

677

_ The basic representation of all strings in UIL is a sequence of zero or more characters within single or double
quotes. In Motif 1.1, quoted strings are limited to 2000 characters, but later releases allow greater lengths. The exact
type of a string can be determined implicitly by the context in which it appears or explicitly when it is used in a
named−string definition. All of the string types except string have an explicit form.

Both single and double−quoted strings can contain any of the printable single−byte characters. These are the
characters with decimal values in the ranges 32 to 126 and 160 to 255. Characters with values outside of the ranges
can only be entered using the \value\ escape sequence, where value represents the character code desired. In
addition, you must escape a single quote (') in a single−quoted string and a double quote (") in a double−quoted
string. To allow the easy specification of commonly used nonprinting characters, UIL recognizes the escape sequences
shown in l | l c | l.
Escape Sequence Meaning
_
\b Backspace \f Formfeed \n Newline \r Carriage return \t Horizontal tab \v Vertical tab \\ Backslash \'
Single quote \" Double quote
_ The following code fragment shows some examples of quoted string variable definitions that include escape
sequences:

 value
 bell : 'Beep\7\';
 quote : "\"You don't believe me?\" asked the lawyer.";

The first string includes some normal text and an escaped control character, decimal 7, which is the bell character on
most terminals. The second string contains a couple of double quotes that must be escaped because the string itself is
double−quoted. Alternatively, we could have made it a single−quoted string, thereby eliminating the need for escaping
the double quotes within it. In general, non−printable escape characters only make sense in the context of
NULL−terminated strings and may produce strange results if you use them within compound strings (which we'll
discuss shortly).

You can continue a single−quoted string over multiple lines by adding the backslash character as the last character on
a continued line. The string continues with the first character on the following line and does not include a newline. If
you want a newline in a string, you must use the \n escape sequence. Double−quoted strings cannot span multiple
lines. The following definition shows an example of a multi−line single−quoted string:

 value
 sentence : 'TRUE! −− NERVOUS −− VERY, very dreadfully nervous \
 I had been and am; but why will you say that I am mad?';

UIL NULL−terminated strings are the same as C strings. While most Motif text resources are XmString values, there
are a few strings that are NULL−terminated. The most common is the XmNvalue resource of the Text and TextField
widgets. You also use NULL−terminated strings in the literal syntax of many UIL variable definitions, and you can use
a NULL−terminated string as the argument to a callback. The following fragment demonstrates the use of
NULL−terminated strings:

 procedure
 verify (string);

 object phone : XmTextField {
 arguments {
 XmNvalue = '(512) 555−1212';
 XmNbackground = color ('wheat');
 };
 callbacks {

25 Creating a User Interface With UIL 25.3.4 Text−related Values

678

 XmNmodifyVerifyCallback = procedure verify ('(###) ###−####');
 };
 };

In this widget definition, we assign a NULL−terminated string to the XmNvalue resource, we use one in the definition
of a UIL color value, and we pass one as a callback argument. The callback is declared as taking a string value,
which is the UIL type for NULL−terminated strings. We recommend using the convention of writing
NULL−terminated strings as single−quoted strings. This distinguishes them from compound strings, which we
recommend writing as double−quoted strings.

You can concatenate two or more NULL−terminated strings with the ampersand (&), which is the UIL string
concatenation operator. It is a binary operator that creates a new string consisting of the left operand followed by the
right operand. You can use this operand with NULL−terminated strings that are used for resource settings, callback
arguments, and variable definitions. However, using string concatenation in the literal syntax of a UIL value definition
may crash the UIL compiler or result in an incorrect definition. The following fragment shows an example of string
concatenation:

 value
 first : 'Bilbo';
 last : 'Baggins';
 full : first & ' ' & last;

The full variable is defined as the concatenation of the variables first and last, separated by a space. The
resulting string is 'Bilbo Baggins'. You can use both variables and NULL−terminated string literals as the
operands for string concatenation. Most text values in the Motif widget set are handled as XmString values, or
compound strings. Compound strings differ from NULL−terminated strings in that they contain information about the
character set and writing direction of the string along with the textual information. This additional information is
necessary for displaying text in different languages and fonts. Essentially, a compound string is a string that comes
with all of the information that is needed to render it. In most situations, you can simply specify the text, and the UIL
compiler provides the character set, as in the following familiar example:

 object hello : XmLabel
 {
 arguments {
 XmNlabelString = "Hello, World!";
 };
 };

XmNlabelString is an XmString resource, but in this definition we only specify the text portion of the
compound string. This specification works because there is a default character set associated with every UIL module.
As we explained in Chapter 22, Introduction to UIL, you can specify the default character set by setting the LANG
environment variable or by setting the character_set option at the beginning of the module. If you do not specify
the default character set, the UIL compiler uses a built−in default which is vendor specific. In any event, you can use a
single or double−quoted string wherever a compound string is expected, and the UIL compiler will automatically
convert it to a compound string. the figure illustrates how the UIL compiler determines the character set for compound
strings.

25 Creating a User Interface With UIL 25.3.4 Text−related Values

679

Character set determination for compound strings

The character set of an individual string can also be specified explicitly. You do so by preceding a string with the
pound sign (#) and specifying the name of a built−in or user−defined character set. This syntax only works with
double−quoted strings, however, which is why we recommend using double−quoted strings to represent compound
strings. In early releases of Motif 1.2, the UIL compiler does not generate an error if you specify a character set for a
single−quoted string. The compiler silently ignores the specification, so you should be careful to always use
double−quoted strings when specifying a character set. The following code fragment demonstrates how to set the
character set of a string explicitly:

 object hello : XmLabel {
 arguments {
 XmNlabelString = #iso_greek"[[chi]][[alpha]][[iota]][[rho]][[epsilon]]";
 };
 };

In this example, we explicitly set the character set to iso_greek, which is one of the built−in UIL character sets. At
run−time, the string is displayed in Greek as long as the font list of the Label is set correctly. (We explain font lists
later in this section.) It is rare for an application to specify a character set explicitly, as most applications only display
text using one language for a given invocation, although the language may vary between invocations.

You can also specify different font styles using character sets, although that is not their primary purpose. You can
define your own character set to represent a different style, as shown in the following fragment:

 object title : XmLabel {
 arguments {
 XmNlabelString = #character_set('italic')"Elsinore";
 };
 };

The XmNlabelString resource is set to a compound string that contains the text "Elsinore" and uses the character
set named italic. Displaying the string in italics requires that the font list of the Label contain an italic
character set.

Unlike other UIL values, you cannot define a character set variable, which means that you must always specify a
user−defined character set explicitly, as shown in this example. Specifying font styles with character sets is most

25 Creating a User Interface With UIL 25.3.4 Text−related Values

680

useful when you want to display a compound string that contains text in several different styles, as we'll show you in
an example later in this section.

Although automatic string conversion can handle the creation of most compound strings, there are still a few
situations when you need to define compound strings explicitly. If you want to declare an exported compound string
variable or override one of the properties of a compound string, you need to use the compound string literal syntax.
An explicit compound string definition takes the following form:

 compound_string (string_expression,
 [, right_to_left = boolean_expression]
 [, separate = boolean_expression])

A compound_string literal begins with the compound_string keyword and is followed by a single or
double−quoted string and the optional properties. You can set the writing direction of the compound string with the
right_to_left property; the default value of this property is taken from the writing direction string's character
set. The separate property specifies whether or not a separator component is added to the end of the compound
string. The default value is false, which means that a separator is not added.

Unlike with NULL−terminated strings, placing a newline character in a compound string does not produce a
multi−line string. A line break in a compound string is indicated by a separator component, which you add by setting
the separate property to true in an explicit compound string definition. You can create a multi−line compound
string by concatenating compound strings with the & operator, as shown in the source code

 module multiline

 value
 file : compound_string ("/vmunix", separate=true);
 owner : compound_string ("root", separate=true);
 desc : compound_string ("The UNIX kernel.");
 all : "File: " & file & "Owner: " & owner & "Desc: " & desc;

 object root : XmLabel {
 arguments {
 XmNlabelString = all;
 };
 };

 end module;

Both file and owner are defined as compound string values that contain a compound string separator. The
concatenation of the strings in this example produces a three−line compound string, which is shown in the figure.

User interface of multiline.uil

25 Creating a User Interface With UIL 25.3.4 Text−related Values

681

As the source code shows, you can mix NULL−terminated strings and compound strings with the & concatenation
operator. When you concatenate two strings, the result is a compound string if either one of the strings is a compound
string, or if the character sets of the two strings are different. The wide_character string type was added in Motif
1.2 to support the definition of user interfaces that contain Asian language text. Unfortunately, the UIL compiler flags
a wide−character definition as an error in early releases of Motif 1.2. The form of a wide−character definition is:

 wide_character (string_expression)

The string_expression contains a multibyte string. Asian language text must be represented with multibyte or
wide−character strings because the number of different characters in these languages cannot be encoded in single
bytes. In a multibyte character string, the length in bytes of each individual character varies, but in a wide−character
string, the length of each character is the same. Most programs, including the Motif widgets, work with
wide−character strings internally because the fixed character size makes them easier to use than multibyte characters.

The wide_character type converts a multibyte character string into an equivalent wide−character string. The
conversion is based on the locale that is set when you run the UIL compiler. When compiling a module that contains
wide−character strings, you must use the −s compiler option or multibyte string conversions may be incorrect. See
Section #suilcomps for more information about this option.

The only wide−character resource in the Motif widget set is the XmNvalueWcs resource of the Text and TextField
widgets. In addition to setting this resource, you can also fetch exported wide−character strings from an application
program and use them as callback arguments. In addition to single, NULL−terminated strings and compound strings,
UIL supports arrays of both types. The XmNitems and XmNselectedItems resources of the List widget are both
XmStringTable values, or compound string arrays. Even though there are no NULL−terminated string array
resources in the Motif widget set, you can still pass these arrays as callback arguments and fetch exported arrays with
MrmFetchLiteral(), just as you can with compound string arrays. The form of each type of array is similar, as
shown in the following fragment:

 value
 seasons : asciz_string_table ('winter', 'spring', 'summer', 'autumn');
 fruits : compound_string_table ("apple", "banana", "grape", "cherry");

You can also use the keywords asciz_table and string_table when defining NULL−terminated and
compound string tables, respectively. The UIL compiler terminates both types of arrays with a NULL pointer. Quoted
strings in the compound_string_table are converted automatically to compound strings by the UIL compiler.
However, unlike with individual string values, the UIL compiler does not convert an asciz_string_table to a
compound_string_table. Remember that when you set a Motif XmStringTable resource, the UIL compiler
sets the associated count resource automatically. Fonts are the last piece of the textual information picture that we
need to examine. As we explained earlier, you cannot display a compound string without an associated font; a
character set links a string to a particular font. You specify the fonts used by Motif widgets with font list resources.
The simplest case involves setting the XmNfontList resource of a widget to a single font. A font list can also
specify a list of fonts or font sets and their associated character sets. For more information on Motif font lists, see
Chapter 19, Compound Strings.

UIL provides support for font, font set, and font list values. These types correspond to the XFontStruct,
XFontSet, and XmFontList types in C. The UIL font set type was added in Motif 1.2 to support the XFontSet
type that was added in X11R5. A font list can contain both fonts and font sets, so we'll look at these two types first.
The following code fragment shows a value of each type:

 value
 menu_font : font
 ('−adobe−times−bold−r−normal−−12−120−75−75−p−67−iso8859−1');

25 Creating a User Interface With UIL 25.3.4 Text−related Values

682

 label_font : fontset ('−*−fixed−medium−r−normal−*−*−130−*');

As these definitions illustrate, fonts and font sets are defined using X Logical Font Description (XLFD) names and
patterns. Xlib may load one or more fonts in a font set, which is why you must always specify a pattern instead of a
single font name. Xlib determines the exact fonts that are needed based on the locale setting. For example, drawing
Japanese text typically requires a Kanji font, a Kana font, and a Latin font. For additional information about fonts and
font sets, see Volume One, Xlib Programming Manual, and Volume Two, Xlib Reference Manual.

Fonts and font sets are loaded at run−time because they are resources maintained by the X server. UIL simply stores
the font names or patterns that you specify in the UID output file without checking to see if the fonts exist. The font
and fontset types are typically used to set a Motif font list resource. Mrm also creates a XFontStruct or
XFontSet value for you when you pass a font or fontset value as a callback argument or when you fetch one of
the values from an application program.

Each Motif widget that displays text has a XmFontList resource associated with it. UIL provides the font_table
type so you can define font lists directly in UIL. A font list is simply an array of font and/or font set values, each of
which has an associated character set. The following fragment illustrates the definition of a font list:

 value
 latin1 : font ('*−iso8859−1', character_set = iso_latin1);
 hebrew : font ('*−iso8859−8')
 fonts : font_table (latin1, iso_hebrew = font ('*−iso8859−8'));

You define a font list using the font_table keyword followed by a list of fonts. This example demonstrates the
two ways of associating a character set with a font or font set. You can specify the character set in the font or font set
definition by adding a character_set property setting, or you can specify the character set directly in the
font_table definition. The character set specified in a font table definition takes precedence over a character set
specified in a font or font set definition.

If you do not specify a character set for a font or a font set, it defaults to the codeset portion of the LANG environment
variable if it is set, or to XmFALLBACK_CHARSET otherwise. Unlike with string definitions, the default character set
of the module has no effect on the character set used for font and font set definitions. If a font list contains only a
single font or font set, you can set the XmNfontList resource to the font or font set directly, and the UIL compiler
creates a font list that contains the entry automatically. Motif obtains the font or font set needed to render a compound
string by matching the character set of the string with a font or font set in a font list that has the same character set.
Now we can take a look at an example that uses strings, character sets, fonts, and font lists. The module in the source
code shows how these values work together. In early releases of Motif 1.2, the user−defined character set in this
module may cause a compilation error or it may crash the UIL compiler.

 /* joel.uil − Example of strings, character sets, and fonts, and font sets. */

 module joel

 value
 artist : #iso_latin1 "Billy Joel";
 title : #iso_cyrillic "186\222\221\230\213\224\226
 album : #character_set('latin1−bold') "Album";

 value
 normal : font ('*fixed−medium−r−normal−*−*−140−*−iso8859−1');
 bold : font ('*fixed−medium−r−bold−*−*−140−*−iso8859−1');
 russian : font ('*fixed−medium−r−normal−*−*−140−*−iso8859−5');

 value

25 Creating a User Interface With UIL 25.3.4 Text−related Values

683

 styles : font_table (iso_latin1 = normal,
 iso_cyrillic = russian,
 character_set('latin1−bold') = bold);

 object root : XmLabel {
 arguments {
 XmNlabelString = album & " : " & artist & " − " & title;
 XmNfontList = styles;
 };
 };

 end module;

The module begins with the definition of three strings, each with a different character set. Two of the character sets
are built−in and one is user−defined. The built−in ones represent two different languages, while the user−defined
character set represents both a language and a font style. The characters in the second string are shown in their
decimal form, as we are unable to print the corresponding characters in this book. You could enter the actual
characters directly with a Cyrillic editor, as they are not control characters. We've specified the character sets
explicitly because we are using more than one language and don't want to worry about the setting of the LANG
environment variable.

The font definitions for the text come next. We define three fonts, one for each string. Each font is defined using an
XLFD font name. We combine the fonts in the styles font list definition, which is where we establish the
connection between the character sets used by the strings and the fonts. The character set names in the compound
string definitions must match the character set names used in the font_table. Finally, we define a Label that
displays the concatenated string. The output of this module is shown in the figure.

User interface of joel.uil

In early releases of Motif 1.2, the user−defined character set in the font list definition may cause a compilation error,
or it may cause the UIL compiler to crash. You can work around this problem by specifying the font list in an X
resource file. In this case, you must specify the character set names of the built−in character sets using the names
shown in the second column of The proper resource specification for this module is:

 Demos*XmLabel.fontList: *fixed−medium−r−normal−*−*−140−*−iso8859−1=ISO8859−1, *fixed−medium−r−normal−*−*−140−*−iso8859−5=ISO8859−5, *fixed−bold−r−normal−*−*−140−*−iso8859−1=latin1−bold

The name of the user−defined character set is the same as the name we used in the module. In general, placing font list
definitions in an app−defaults file is a good idea anyway, since it lets the users of an application customize the font
settings.

25.3.5 Colors

The UIL compiler supports color values, which means that you can set all of the different Motif color resources in a
UIL module. In addition, UIL color values play an important role in the specification of color pixmaps in UIL. Color

25 Creating a User Interface With UIL 25.3.5 Colors

684

values in UIL can be specified by the name of the color or by the amount of red, green, and blue (RGB) that compose
the color. Both types of color values are easy to define, as shown in the following fragment:

 object button : XmPushButton {
 arguments {
 XmNbackground = color ('wheat');

XmNforeground = rgb (500, 0, 65535); }; }; A named color value is specified with the keyword color followed by a
color name. Mrm converts the color name to the corresponding RGB value at run−time using Xlib. On most UNIX
systems, Xlib converts colors from names to values using the mappings defined in the file /usr/lib/X11/rgb.txt. You
can find more details on this process in Volume Two, Xlib Reference Manual. You specify RGB values with the
keyword rgb and the amount of red, green, and blue present in the color. Each amount can range from 0 to 65535,
which represents 0 to 100 percent of a color.

Like other values, you can assign both color and rgb values to UIL variables, pass them as arguments to callback
functions, and use them to specify resources. If Mrm cannot allocate a color at run−time for setting a resource, the
resource is simply not set, and Mrm prints a warning message by calling XtAppWarning(). If Mrm cannot allocate
a color that you use as a callback argument, your application may crash when the callback is invoked. As a result, you
should avoid passing color arguments from UIL and allocate or fetch colors directly in application code instead.

For the most part, we recommend that you avoid setting color resources in a UIL module because users cannot
override UIL resource settings using a resource file. Color is one of the most frequently customized aspects of an
application, so you should not hard−code color values. However, colors do have their place in UIL. They are still
useful for defining color pixmaps, where you don't have to worry about allowing users to change the colors. Color
values are one of the types that cannot be fetched with MrmFetchLiteral() because Mrm requires a colormap in
which to allocate the color. The MrmFetchColorLiteral() function exists to allow the retrieval of color values.
This function takes the following form:

 Cardinal
 MrmFetchColorLiteral(hierarchy, name, display, colormap, pixel_return)
 MrmHierarchy hierarchy;
 String name;
 Display *display;
 Colormap colormap;
 Pixel *pixel_return;

As with MrmFetchLiteral(), the hierarchy and name arguments specify the Mrm hierarchy to search and
the exported color variable to fetch. Mrm allocates the color in the colormap specified by the colormap parameter.
If this argument is NULL, Mrm allocates the color in the colormap returned by the DefaultColormap() macro.

When Mrm successfully fetches the color, the pixel_return argument contains the allocated color, and the
function returns MrmSUCCESS. If Mrm cannot find a variable by the specified name, the routine returns
MrmNOT_FOUND. If Mrm finds a variable with the specified name, but it isn't a color value, the function returns
MrmWRONG_TYPE. The routine can also return MrmBAD_HIERARCHY if the hierarchy argument is invalid or
MrmFAILURE if anything else goes wrong. As usual, you should check the return value against MrmSUCCESS before
testing for a specific failure. If MrmFetchColorLiteral() fails to allocate a color, Mrm should substitute black
or white and print a warning message by calling XtAppWarning(). However, in early releases of Motif 1.2 this
fallback mechanism does not take place, and the function returns MrmNOT_FOUND instead. When you are finished
using a color retrieved with this function, you must free it with a call to XFreeColors().

25 Creating a User Interface With UIL 25.3.5 Colors

685

25.3.6 Pixmaps

The UIL compiler supports pixmap values so that the various pixmap resources can be set in a UIL module. These
resources include icon−type resources such as XmNsymbolPixmap and shading−type resources such as
XmNbackgroundPixmap. There are two different forms of pixmap values that you can use in a UIL module. The
first type is an xbitmapfile, which is a reference to a bitmap defined in a separate file. For details on the X bitmap
file format, see Volume One, Xlib Programming Manual. The second type is an icon, which is defined entirely
within a UIL module. The xbitmapfile type is used to specify a bitmap file. The contents of the file are used to
create the actual bitmap. The module in the source code shows the use of this type.

 /* bomb.uil −− Example using xbitmapfile type */

 module bomb

 procedure quit;

 object root : XmMessageDialog {
 arguments {
 XmNmessageString = compound_string ("Segmentation Fault", separate=true) &
 compound_string ("(Dumping Core)");
 XmNsymbolPixmap = xbitmapfile ('bomb.xbm');
 XmNdialogTitle = "Fatal Error";
 };
 };

 end module;

This example creates a MessageDialog that uses a customized icon instead of one of the standard Motif symbols. The
output of the module is shown in the figure.

User interface of bomb.uil

The xbitmapfile value is a bitmap whose contents are defined in the file bomb.xbm. X bitmaps are a convenient
format since they can be edited and created with the standard bitmap client. Bitmaps are monochrome images, which
means that each pixel is either on or off. When you use a bitmap in a Motif widget, the "on" pixels are set to the
foreground color of the widget, and the "off" pixels are set to the background color. You can only adjust the colors of
a bitmap by changing the foreground and background color of a widget.

When you compile a module that contains an xbitmapfile value, the UIL compiler does not verify the contents or
existence of the file. The file name is saved in the UID file, and Mrm handles loading the bitmap at run−time by

25 Creating a User Interface With UIL 25.3.6 Pixmaps

686

calling XmGetPixmap(). (For details on this routine, see Section #spixmaps in Chapter 3, Overview of the Motif
Toolkit.) If Mrm cannot find or load a bitmap file, it prints a warning message by calling XtAppWarning(). If the
bitmap file is used as a resource setting, the resource is not set. When an xbitmapfile is used as a callback
argument in early releases of Motif 1.2, the application crashes when the callback is invoked. We recommend that you
only use xbitmapfile values for resource settings. You can also represent pixmaps with the UIL icon type,
which supports full color images. You define icon values entirely within a UIL module, instead of referencing an
external file. The UIL icon type is a useful feature, as neither Motif, Xt, or Xlib provides any support for defining
color pixmaps. The only drawback is that you may have to edit the icon manually using a text editor. Several
third−party vendors sell color pixmap editors that can save images using the UIL icon format; many of these editors
are part of a user interface builder (UIB) tool. The Hello, World example in Chapter 22, Introduction to UIL, used an
icon value to create the earth image. We've taken the image from that example and colorized it to illustrate the
complete syntax of an icon, as shown in the source code

 /* globe.uil −− colorize the world icon */

 module globe

 value
 world_colors : color_table (background color = ' ',
 color ('black') = '*',
 color ('blue') = '.',
 color ('green') = 'x',
 color ('white') = '=');

 world_icon : icon (color_table = world_colors,
 ' ****** ',
 ' **.===..** ',
 ' *xx.==..x..* ',
 ' *xxx....xxx..* ',
 ' *.xxxxxxxxx.x* ',
 '*.xxxxxx.xxx.xx*',
 '*.xxxxxxxxx...x*',
 '*.xxxxxxxxx...x*',
 '*..xxxxxxxx...x*',
 '*...xxxx..x....*',
 '*....xx.....x..*',
 ' *....xx......* ',
 ' *....xxxxx...* ',
 ' *..xxxxxxx.* ',
 ' **xxxxxx** ',
 ' ****** ');

 object root : XmLabel {
 arguments {
 XmNlabelType = XmPIXMAP;
 XmNlabelPixmap = world_icon;
 XmNmarginWidth = 10;
 XmNmarginHeight = 10;
 };
 };

 end module;

An icon definition specifies a UIL color_table, which maps characters to color values, and a number of strings,
where each character represents an individual pixel in the resulting pixmap. The output of this module is shown in the
figure. Obviously, the output is not in color, but you can tell from the different degrees of shading that the pixels are
different colors.

25 Creating a User Interface With UIL 25.3.6 Pixmaps

687

User interface of globe.uil

Although color_table is a distinct UIL type, a color_table value is only useful in the context of an icon
definition. A color_table value consists of the keyword color_table followed by a parenthesized list of color
mappings. The form of each mapping is a color or rgb value followed by an equal sign and a single character,
which is used to represent that color in an icon definition. You can also use the special colors foreground color
and background color. These colors are taken from the widget in which an icon appears. We use the
background color around the earth so that it blends in smoothly with the Label.

When you use a color value in a color_table, you can specify how the color appears on a monochrome display,
or when Mrm cannot allocate color, you can specify either foreground or background after the color name. For
example, we can ensure that our earth icon looks reasonable on a monochrome display by using the following
color_table definition:

 world_colors : color_table (background color = ' ',
 color ('black', foreground) = '*',
 color ('blue', background) = '.',
 color ('green', foreground) = 'x',
 color ('white', foreground) = '=');

Without these attributes, each color is mapped to white on a monochrome display. We recommend specifying the
foreground and background attributes in a color_table, as they ensure that an icon looks reasonable. These
attributes only affect colors that are allocated as part of a color_table; if you specify the attribute in a color that is
used as a resource or a callback argument, the UIL compiler quietly ignores the attribute.

The UIL compiler does not support the foreground and background attributes with rgb values. However,
unlike a color value, an rgb value maps predictably to black or white based on its intensity. The mapping of a
monochrome color value depends on the X server's color database, which varies from server to server. If you must
use rgb values in a color_table, you should use rgb values for all of the mappings and be sure to view the
resulting icon on a monochrome screen. Avoid mixing color and rgb values in the same color_table, since the
mapping of a color value depends on the foreground and background colors of a widget, while the mapping of an
rgb value is always the same.

An icon definition consists of the keyword icon followed by an optional color_table setting and a list of
equal−length strings that define the rows of the pixmap. If you leave out the color_table setting, as we did in the
original world_icon definition, the following default color_table is used:

 color_table (background color = ' ',
 foreground color = '*');

If you specify a color_table, it must be the first entry in the icon definition, as in the source code The pixmap
definition consists of an arbitrary number of comma−separated strings that correspond to the rows of the pixmap.

25 Creating a User Interface With UIL 25.3.6 Pixmaps

688

Each pixel in the pixmap is defined using one of the characters from the color_table. Any other characters are
illegal and are flagged as such by the UIL compiler. The compiler also verifies that all of the strings in an icon
definition are the same length. Pixmap values are another one of the types that cannot be fetched with
MrmFetchLiteral() because Mrm needs a Screen pointer, as well as background and foreground colors, in
order to create a pixmap. Mrm provides two specialized functions for fetching pixmap values:
MrmFetchBitmapLiteral() and MrmFetchIconLiteral(). MrmFetchBitmapLiteral() is new in
Motif 1.2; it takes the following form:

 Cardinal
 MrmFetchBitmapLiteral(hierarchy, name, screen, display, pixmap_return,

width_return, height_return)
 MrmHierarchy hierarchy;
 String name;
 Screen *screen;
 Display *display;
 Pixmap *pixmap_return;
 Dimension *width_return;
 Dimension *height_return;

This routine fetches an icon value in the form of a Bitmap, which is a Pixmap with a depth of 1. The
hierarchy argument specifies the Mrm hierarchy that contains the exported icon value specified by the name
argument. If Mrm finds the icon, it creates the bitmap on the screen of the display and returns it in
pixmap_return. The width and height of the pixmap are returned in width_return and height_return. A
return value of MrmSUCCESS indicates that the pixmap has been fetched and created successfully. In this case, the
application is responsible for freeing the pixmap with XFreePixmap().

The icon that is specified can only use the colors foregroundcolor and background color. These colors
represent the values of 1 and 0, respectively, in the resulting bitmap. If you use any other colors, the function fails and
returns MrmNOT_VALID. The function can also return MrmBAD_HIERARCHY if the hierarchy argument is not a
valid Mrm hierarchy, MrmNOT_FOUND if Mrm cannot find the icon in the hierarchy, MrmWRONG_TYPE if Mrm
finds a value but it is not an icon, or MrmFAILURE if anything else goes wrong.

You can use the bitmap returned by MrmFetchBitmapLiteral() anywhere that a bitmap or a bit mask is
needed. Common uses include setting the window manager icon of an application or defining a cursor by calling
XCreatePixmapCursor().

You can also fetch pixmaps with MrmFetchIconLiteral(). This function can retrieve both icon and
xbitmapfile values. The routine returns a Pixmap whose depth is the default depth of the screen as returned by
the DefaultDepthOfScreen() macro. It takes the following form:

 Cardinal
 MrmFetchIconLiteral(hierarchy, name, screen, display, foreground,

background, pixmap_return);
 MrmHierarchy hierarchy;
 String name;
 Screen *screen;
 Display *display;
 Pixel foreground;
 Pixel background;
 Pixmap *pixmap_return;

The first four arguments are the same as for MrmFetchBitmapLiteral(). The foreground and
background arguments specify the colors of the pixmap. When you fetch an xbitmapfile, "on" pixels are set to
the foreground color and "off" pixels are set to the background color. When you fetch a UIL icon, it specifies the

25 Creating a User Interface With UIL 25.3.6 Pixmaps

689

colors for foreground color and background color pixels. Mrm allocates the other colors that are used in
the default colormap of the display. For this reason, you should not use this function to fetch icons for a visual
class other than the default.

On success, MrmFetchIconLiteral() fills in pixmap_return with the pixmap and returns MrmSUCCESS.
An application is responsible for freeing the pixmap using XFreePixmap(). The routine can also return
MrmBAD_HIERARCHY if the specified hierarchy is not valid, MrmNOT_FOUND if Mrm cannot find the icon or
xbitmapfile in the hierarchy, MrmWRONG_TYPE if Mrm finds a value but it is not an icon or xbitmapfile,
or MrmFAILURE if anything else goes wrong.

When MrmFetchIconLiteral() cannot allocate a color for an icon, it should substitute either black or white.
However, in early releases of Motif 1.2 this substitution does not take place, and the function returns
MrmNOT_FOUND when a color allocation fails. To avoid this problem, you should set pixmap−type widget resources,
such as XmNlabelPixmap, in a UIL module widget definition or by calling MrmFetchSetValues().

25.3.7 Widget Classes

The widget class type, or class_rec_name as it is called in UIL, is new in Motif 1.2. (This feature may have been
present in earlier versions, but was not documented until Motif 1.2) The type mainly supports the XmNentryClass
resource, which restricts the allowable children of a RowColumn widget. You can also use a widget class value as a
callback argument or with a user−defined widget. The XmNentryClass resource is usually set automatically by
RowColumn when you create a MenuBar or RadioBox. You can also set the resource manually, as the following
fragment illustrates:

 object root_widget : XmRowColumn {
 arguments {
 ! Must set isHomogeneous for entryClass to take effect.
 XmNisHomogeneous = true;
 XmNentryClass = class_rec_name ('XmLabel');
 };
 };

You specify a widget class value with the keyword class_rec_name followed by the name of the widget class.
You can use the name of an actual widget class, such as XmPushButtonGadget, or the name of a compound object,
such as XmPulldownMenu. When you use a name that is not really a widget class, the class_rec_name value
represents the name of the actual class. For example, the real class of an XmPulldownMenu object is XmRowColumn.

25.3.8 Keysyms

In UIL, you define key mnemonics with the keysym type. The XmNmnemonic resource is the only keysym
resource in the Motif widget set. The following widget definition illustrates the use of this type:

 object open : XmPushButton {
 arguments {
 XmNlabelString = "Open...";
 XmNmnemonic = keysym ('O');
 };
 };

A keysym definition is specified with the keysym keyword followed by a single character. In early releases of Motif
1.2, the UIL compiler does not report an error if you specify more than one character, but Mrm does catch the mistake
at run−time.

25 Creating a User Interface With UIL 25.3.7 Widget Classes

690

25.3.9 Translation Tables

The UIL translation_table type corresponds to the XtTranslations type. A translation table maps events
to action procedures. The format of a UIL translation table looks like an asciz_table in that it contains a list of
strings, but the individual entries in the table must contain valid translations. (See Volume Four, X Toolkit Intrinsics
Programming Manual, for a description of the Xt translation table syntax.) The following fragment shows the
definition of a translation_table value:

 value
 actions : translation_table ('#override',
 'Ctrl<Key>A: beginning−of−line()',
 'Ctrl<Key>E: end−of−line()',
 'Ctrl<Key>space: set−anchor()');

The first entry of a translation_table can be used to control how the table affects the existing translations of a
widget. If the first entry is not a translation, the string must be one of #augment, #override, or #replace. Each
of the remaining entries in the table must be a NULL−terminated string containing a single translation. If you specify a
translation in a UIL module, a user cannot override it from a resource file. You should consider placing translations in
an app−defaults file so that users can customize them if they wish.

25.4 Working With Callbacks

Setting up a callback with UIL and Mrm involves four steps: writing the callback in application code, registering the
callback with Mrm, declaring the callback in the UIL module, and setting the callback in a UIL widget definition. A
callback that you write for use in an Mrm application is no different from a callback in a plain Xt application.
However, as we explained in Chapter 22, Introduction to UIL, you need to register the routine with Mrm before
creating any widgets that call it. The following code fragment from showuid.c shows how to register callbacks:

 static MrmRegisterArg callback_list[] = {
 { "quit", (XtPointer) quit },
 { "print", (XtPointer) print },
 /* Add additional callback procedures here... */
 };
 ...
 MrmRegisterNames (callback_list, XtNumber (callback_list));
 ...

You're already familiar with the basics of declaring a callback procedure in a UIL module and using it in the
callbacks subsection of a widget definition. Now we are going to look at how you can pass a UIL value as a
callback argument. As you know, callbacks are declared in a procedure section of a UIL module. The purpose of
the declaration is to let the compiler know that the callback exists and to give it enough information to verify that the
callback is being used correctly. A callback declaration consists of the name of the callback followed by an optional
argument type enclosed in parentheses. The parentheses are optional as well, but because the compiler does not
perform argument type−checking when this style of declaration is used, we recommend against using it. Here are the
procedure declarations that correspond to the callback functions from showuid.c:

 procedure
 quit();
 print (string);

When no argument type is specified, as with the quit() declaration, the callback is declared as taking no arguments.
When a UIL type name is present, as with the print() declaration, you must specify a value that matches the type
when you use the callback. You can use any of the built−in UIL types. In addition, you can also specify the name of a

25 Creating a User Interface With UIL 25.3.9 Translation Tables

691

Motif widget class such as XmPushButton or XmForm in a callback declaration. Finally, you can indicate that an
argument is expected, but not restrict its type, by specifying the special type−name any. If you use the any specifier,
you should take extra care to ensure that references to the procedure elsewhere in the UIL module do not pass values
to the callback that might crash your application. This problem has been fixed as of Motif Release 1.2.3.

The UIL compiler makes sure that the use of a callback is consistent with its declaration. If you declare a callback as
taking no arguments, you cannot pass an argument to the callback when you use it. Likewise, when a callback does
take an argument, you must provide one when you use the routine, and the argument must match the type in the
declaration. You can pass an argument whose type does not match the declaration if the UIL automatic type
conversions described earlier provide for it. For example, you can pass a string to a callback that is declared as
taking a compound_string. If the use of a callback does not agree with its declaration, the UIL compiler generates
an error, and the module is not compiled successfully. The following code fragment shows how you might use the
print and quit callbacks:

 object close : XmPushButton {
 callbacks {
 XmNarmCallback = procedure print ("Armed!");
 XmNactivateCallback = procedure quit();
 };
 };

When a callback specified in a UIL module is invoked at run−time, the argument, if any, is passed to the callback as
the client_data parameter. In this example, the string "Armed!" is passed to the print() callback when the
PushButton is armed. The callback simply prints the argument that is passed to it. This routine is shown in the
following code fragment:

 void
 print (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *message = (char *) client_data;
 puts (message);
 }

You should always cast the client_data argument to the appropriate type before using it, as this fragment
illustrates. The argument type depends on the UIL value passed to a callback. contains a complete listing of the UIL
data types and the corresponding C types. In particular, you should note that the integer, float, and boolean
numeric types are passed as pointers to the values, not the values themselves.

25.5 Using Lists

A UIL list is a group of widget children, resource settings, callback settings, or callback procedures. Although we
didn't mention it earlier, the controls, arguments, and callbacks subsections of a widget definition are all
in−line lists. The procedures syntax for specifying multiple callbacks is also an in−line list. You can also define a
list outside of a widget definition and name it, so that you can use the list later in a widget definition or in another list.

You define named lists in a list section of a UIL module, which begins with the list keyword. A list definition
consists of the name of the list, followed by a colon, the type of the list, and its contents. Unlike variable and widget
definitions, list definitions are always private to a module, so you cannot export them. If you want to use a list in more
than one module, you should place its definition in a UIL include file. The list name is a programmer−specified
identifier; the list type is one of controls, arguments, callbacks, or procedures. The content of a list

25 Creating a User Interface With UIL 25.5 Using Lists

692

depends on its type.

Lists of controls, arguments, and callbacks, like the widget subsections by the same name, contain widget
children, resource settings, and callback settings, respectively. The format of each of these lists is the same as the
format of the corresponding subsection of a widget definition. A procedures list is used to specify multiple
callback routines for a particular callback reason, as we explained earlier. Once you define a named list, you can use it
in a widget definition. the source code shows a UIL module that uses all four types of lists.

 /* simple_lst.uil −− simple example of lists */

 module simple_lst

 procedure
 quit();
 print (string);

 list buttons : controls {
 XmPushButton OK;
 XmPushButton Help;
 };

 list size : arguments {
 XmNwidth = 50;
 XmNheight = 50;
 };

 list funcs : callbacks {
 XmNactivateCallback = procedure print ("Help!");
 XmNhelpCallback = procedure print ("Help!");
 };

 list ok_cbs : procedures {
 print ("Okee−dokee");
 quit();
 };

 object OK : XmPushButton {
 arguments size;
 callbacks {
 XmNactivateCallback = procedures ok_cbs;
 };
 };

 object Help : XmPushButton {
 arguments size;
 callbacks funcs;
 };

 object root : XmRowColumn {
 controls buttons;
 };

 end module;

As with the object definition, we use the convention of placing each list definition in its own list section, even
though it is not necessary for consecutive definitions. This example defines the buttons, size, funcs, and
ok_cbs lists, and then uses the lists in defining the widget hierarchy. To use a list in a widget definition, you specify
the subsection followed by the name of a list. The named list replaces the in−line list definition that you have seen

25 Creating a User Interface With UIL 25.5 Using Lists

693

previously. The UIL compiler makes sure that the type of each named list matches the name of the subsection, which
means that you cannot specify a named controls list for an arguments subsection, for example.

A named list definition lets you separate the contents of each list type from a widget definition. One advantage of
this approach is that you can abstract commonly−used settings and define them in one place. However, the ability to
factor out duplicate widget subsections and procedure lists is not that big of an advantage. The feature of lists that
makes them more useful is the ability to reference other lists of the same type. You include one list in another by
including an entry that consists of the type of the included list, followed by the name of the list to include.

Each reference to a list includes a copy of that list, which has different results depending on the type of the list. When
you include a controls or procedures list in another list, the widgets or callbacks in the included list are added
to the existing list, even if the same widget or callback is already there. Therefore, you can create multiple instances of
the same widget or call the same callback multiple times. When you include an arguments or callbacks list in
another list, the resources or callback settings in the included list are added to the existing list, but any duplicate
setting supersedes the earlier setting. The advantage of this behavior is that you can selectively override resource or
callback settings that have already been specified. When you override a resource or callback setting, the UIL compiler
generates an informational message. You can turn off these messages with the −w compiler option, but you should be
careful to do so only if you know that a module does not generate any other warnings. the source code illustrates the
use of nested lists.

 /* station.uil −− Example of using lists in lists */

 module dialog

 list basic_buttons : controls {
 OK : XmPushButton { };
 Cancel : XmPushButton { };
 };

 list extended_buttons : controls {
 controls basic_buttons;
 Help : XmPushButton { };
 };

 list attach_all : arguments {
 XmNtopAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_FORM;
 XmNleftAttachment = XmATTACH_FORM;
 XmNrightAttachment = XmATTACH_FORM;
 };

 object stations : XmRadioBox {
 controls {
 WAQY : XmToggleButton { }; KLBJ : XmToggleButton { };
 WPLR : XmToggleButton { }; KRCK : XmToggleButton { };
 WHCN : XmToggleButton { }; KPEZ : XmToggleButton { };
 };
 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNnumColumns = 3;
 XmNmarginWidth = 20;
 arguments attach_all;
 XmNbottomAttachment = XmATTACH_NONE;
 };
 };

25 Creating a User Interface With UIL 25.5 Using Lists

694

 object panel : XmRowColumn {
 controls extended_buttons;
 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNentryAlignment = XmALIGNMENT_CENTER;
 XmNpacking = XmPACK_COLUMN;
 arguments attach_all;
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopWidget = stations;
 };
 };

 object root : XmFormDialog {
 controls {
 XmRadioBox stations;
 XmRowColumn panel;
 };
 arguments {
 XmNdialogTitle = "Station Chooser";
 };
 };

 end module;

This module describes a simple user interface that uses two different types of lists. The output of the module is shown
in the figure.

The basic_buttons list is a controls list that consists of two PushButtons: OK and Cancel. The
extended_buttons list builds on the first list by adding a Help PushButton. This list is used as part of the dialog
later in the module. The attach_all list is an arguments list that contains several Form attachment resource
settings. We reference this list in the definition of both the RadioBox and the RowColumn, instead of reproducing the
same settings in both widget definitions. In both cases, we override one of the resource settings from the list in the
widget definition. This section only covers the basic use of lists in a UIL module. For more information on using lists,
see Section #suiladvlist in Chapter 26, Advanced UIL Programming.

User interface of station.uil

25 Creating a User Interface With UIL 25.5 Using Lists

695

25.6 Exporting Application Data

A value that is created or defined in an application can be used in a UIL module by declaring the value as a UIL
identifier and registering it with Mrm. In this context, the term identifier means a value that is imported from the
application, not a programmer−defined symbol. You can use an identifier as the value of a resource or as a callback
argument. Unlike other values in a UIL module, identifiers are not typed, which means that the UIL compiler cannot
perform type checking on identifiers. You should be careful to avoid type−mismatch problems in your use of
identifiers.

25.6.1 Declaring Identifiers in UIL

You can use a registered application−defined value in a UIL module by declaring it an identifier section. This
section begins with the keyword identifier and is followed by a list of declarations. Identifiers can be used like
any other values, as illustrated in the following code fragment:

 identifier
 home_directory;
 complex_data;

 procedure
 open (any);

 object fsb : XmFileSelectionBox {
 controls {
 Xm_OK {
 callbacks {
 XmNactivateCallback = procedure open (complex_data);
 };
 };
 };
 arguments {
 XmNdirectory = home_directory;
 XmNpattern = '*.uil';
 };
 };

In this fragment, we use the identifier complex_data as the argument to the open() callback. The identifier
represents a value of type ComplexStructure that is declared in the application program, as you will see shortly.
We declare the callback as taking an argument of type any because there is no UIL type that correspondes to the
ComplexStructure type. The any type indicates that the callback function takes an argument, but that the
argument can be of any type. We recommend that you only use the any type for identifier arguments, since the UIL
compiler cannot perform type−checking when you use a callback that takes an any argument. We also use the
identifier home_directory as the value of a resource setting. This setting is not type−checked either, so it is up to
the application to make sure that home_directory is a string.

25.6.2 Exporting Identifiers From Application Code

When Mrm creates a widget that uses an identifier, it must convert the identifier name to the corresponding
application−defined value. Similar to callback procedures, you must register the names of identifiers and their
associated values with Mrm by calling MrmRegisterNames() or MrmRegisterNamesInHierarchy()
before fetching widgets that reference the exported values. These routines are the same ones that are used to register
callback procedures, as described in Chapter 22, Introduction to UIL. These functions take the following form:

25 Creating a User Interface With UIL 25.6 Exporting Application Data

696

 Cardinal
 MrmRegisterNames(identifier_list, num_identifiers)
 MrmRegisterArglist identifier_list;
 MrmCount num_identifiers;

 Cardinal
 MrmRegisterNamesInHierarchy(hierarchy, identifier_list,

num_identifiers)
 MrmHierarchy hierarchy;
 MrmRegisterArglist identifier_list;
 MrmCount num_identifiers;

A call to MrmRegisterNames() makes the identifiers accessible from any open Mrm hierarchy, while a call to
MrmRegisterNamesInHierarchy() makes the identifiers accessible from the Mrm hierarchy passed to the
function. Identifiers that are registered in a specific Mrm hierarchy take precedence over those that are registered
globally. The identifier_list argument specifies an array of MrmRegisterArg structures, and
num_identifiers indicates the size of the array. The MrmRegisterArg structure indicates the mapping from
an identifier name to an application value and is defined as follows:

 typedef struct {
 String name;
 XtPointer value;
 } MrmRegisterArg, *MrmRegisterArglist;

The name field is the name of the identifier as used in the UIL module. The name is case−sensitive, unless it is being
referenced from a module that has the names option set to case_insensitive, in which case the name must be
upper case. The value field is a pointer to an application variable. Since value is an XtPointer, you should only
register values that are pointers. If you use a value whose size is not the same as an XtPointer, part of the value
may be lost or corrupted. The size of certain C values, such as int and float, are not necessarily the same size as
an XtPointer on all architectures. You can ensure the portability of an application by using the address of
non−pointer types as the value of an identifier.

The following code fragment shows how MrmRegisterNames() can be used to register the identifier values used
in the UIL fragment of the previous section:

 char *home_directory;
 ComplexStructure complex_data;
 static MrmRegisterArg identifiers[] = {
 { "home_directory", (XtPointer) directory },
 { "complex_data", (XtPointer) &complex_data },
 };
 ...
 MrmRegisterNames (identifiers, XtNumber (identifiers));
 ...

This code registers the home_directory and complex_data identifiers globally, so that they are accessible
from any Mrm hierarchy. The home_directory identifier is a string, while complex_data is a value of type
ComplexStructure. Identifiers provide a mechanism for exporting arbitrarily complex data to a UIL module.

25.7 Summary

A UIL module may contain five types of sections, whose usage and syntax we have explained and demonstrated in
detail.

25 Creating a User Interface With UIL 25.7 Summary

697

An object section contains definitions of the widgets in an interface. An application creates these widgets at
run−time by using the MrmFetchWidget() routine in the Mrm library.

A value section consists of declarations and definitions of UIL values that are used as resource settings and callback
arguments in the widget definitions. Values can be fetched from a UIL module using a number of different Mrm
routines.

A procedure section contains the declarations of callback procedures that are defined in the application program.
Any callbacks that are specified in a UIL module must be declared in this section. Callback procedures are registered
with the application program using MrmRegisterNames().

A list section is used to define controls, arguments, or callbacks lists that are used in the corresponding
subsections of widget definitions, and to define procedures lists that specify the functions that are called when a
single callback is invoked. The use of lists is private to a UIL module.

An identifier section contains declarations of application variables that are exported to UIL. The names and
values of identifiers are registered with the application program using MrmRegisterNames().

25 Creating a User Interface With UIL 25.7 Summary

698

26 Building an Application With UIL

This chapter draws on many of the features of UIL in developing a fully functional text editor application. It shows
how the various components of UIL and Mrm come together in a real application.

In this chapter, we examine a real application that uses UIL. Although we have shown you a simple application and a
number of UIL modules in the preceding chapters, we have not put everything together yet. This chapter provides
some examples of common uses of UIL in an application, including the definition of a menu system and some dialogs.

Rather than start from scratch, we are going to use the simple text editor application from Chapter 14, Text Widgets.
This program reads and writes text files, provides the usual cut, copy, and paste operations on the Edit menu, and
performs search and replace operations from the Search menu. The interface of the editor program appears in the
figure.

The editor_uil application

The UIL version of the text editor differs from the non−UIL version in several ways. The most obvious change is that
the user interface must be described in UIL, instead of C. The program code also needs to be modified to create the
interface with Mrm. The application callbacks need to be connected to procedures in UIL, and some global variables
need to be initialized when widgets are created. We have also enhanced the program so that it distinguishes between
status and error messages. Status messages are still displayed in the message area below the Text widget, while error
messages are displayed in an ErrorDialog.

26.1 Defining the User Interface

Since we are going to create the user interface in UIL, we can remove many of the Motif and Xt function calls from
the application code. We can break the interface description into three modules, so that the modules are smaller and
easier to manage. The logical division is to describe the main application in one module, the menu system in another,
and the dialogs in a third module.

699

26.1.1 The Main Application Window

The main application window for the editor consists of a MainWindow widget that contains a MenuBar, the
text−editing area, TextFields for entering search and replace text, and a message area. the source code shows the UIL
module that describes this interface.

 ! editor.uil − editor application main user interface definition

 module editor

 include file 'procedures.uih';
 include file 'identifiers.uih';

 object menubar : imported XmMenuBar;

 object main_window : XmMainWindow {
 controls {
 XmMenuBar menubar;
 XmForm form;
 };
 };

 object form : XmForm {
 controls {
 XmRowColumn search_panel;
 XmTextField text_output;
 XmScrolledText text_edit;
 };
 };

 list attachments : arguments {
 XmNtopAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_FORM;
 XmNleftAttachment = XmATTACH_FORM;
 XmNrightAttachment = XmATTACH_FORM;
 };

 object search_panel : exported XmRowColumn {
 controls {
 search_prompt : XmLabel gadget {
 arguments {
 XmNlabelString = "Search Pattern:";
 };
 };
 search_text : XmTextField {
 callbacks {
 MrmNcreateCallback = procedure register_widget (w_search_text);
 };
 };
 replace_prompt : XmLabel gadget {
 arguments {
 XmNlabelString = " Replace Pattern:";
 };
 };
 replace_text : XmTextField {
 callbacks {
 MrmNcreateCallback = procedure register_widget (w_replace_text);
 };
 };
 };

26 Building an Application With UIL26.1.1 The Main Application Window

700

 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNpacking = XmPACK_TIGHT;
 arguments attachments;
 XmNbottomAttachment = XmATTACH_NONE;
 };
 };

 object text_edit : XmScrolledText {
 arguments {
 XmNrows = 10;
 XmNcolumns = 80;
 XmNeditMode = XmMULTI_LINE_EDIT;
 arguments attachments;
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopWidget = search_panel;
 XmNbottomAttachment = XmATTACH_WIDGET;
 XmNbottomWidget = text_output;
 };
 callbacks {
 MrmNcreateCallback = procedure register_widget (w_text_edit);
 };
 };

 object text_output : XmTextField {
 arguments {
 XmNeditable = false;
 XmNcursorPositionVisible = false;
 XmNshadowThickness = 0;
 arguments attachments;
 XmNtopAttachment = XmATTACH_NONE;
 };
 callbacks {
 MrmNcreateCallback = procedure register_widget (w_text_output);
 };
 };

 end module;

The module begins by including two files: procedures.uih and identifiers.uih. The procedures.uih file contains the
callback declarations for the interface. The file also defines some arguments for the callback routines. This file is
shown in the source code

 ! procedures.uih − declarations of editor callbacks and their arguments

 procedure
 register_widget (any);

 procedure
 file_cb (integer);
 file_select_cb (integer);

 value
 FILE_OPEN : 0;
 FILE_SAVE : 1;
 FILE_EXIT : 2;

 procedure
 edit_cb (integer);

26 Building an Application With UIL26.1.1 The Main Application Window

701

 value
 EDIT_CUT : 0;
 EDIT_COPY : 1;
 EDIT_PASTE : 2;
 EDIT_CLEAR : 3;

 procedure
 search_cb (integer);

 value
 SEARCH_FIND_NEXT : 0;
 SEARCH_SHOW_ALL : 1;
 SEARCH_REPLACE : 2;
 SEARCH_CLEAR : 3;

 procedure
 popdown_cb();

The callback routines for the menu items and the FileSelectionDialog take integer arguments. The file defines the
possible argument values for each of the callback routines. These values correspond to enumeration values in the
application code; they indicate which action the callback should perform when it is invoked. We could write a
separate procedure for each callback, but instead we use a single callback for each menu because the actions are
similar. The callbacks that use these definitions are in the menubar.uil and dialogs.uil modules described later in this
chapter.

The identifiers.uih file contains the declarations for several global widget variables. These variables are set in the UIL
module by MrmNcreateCallback. This file is listed in the source code

 ! identifiers.uih − declarations of application defined data

 identifier
 w_search_text;
 w_replace_text;
 w_text_edit;
 w_text_output;

After the include directives at the top of editor.uil, the module declares the MenuBar, because it is used in this module
but defined in another. You must declare a widget that is defined in another module before you can use it. The
declaration of the MainWindow portion of the interface comes next. The MainWindow is at the top of the hierarchy; it
manages the MenuBar and a Form. The Form is the work area. It contains the other main sections of the window,
which are a RowColumn that contains the search and replace TextFields, the ScrolledText editing area, and the
TextField message area.

We specify the Form attachments using the attachments list, which specifies an attachment for each side of a
widget. In the individual widget definitions, we override the necessary attachments to arrange the components
properly. Since UIL allows forward references, we should be able to list the three children in the Form's controls
subsection in the same order that they appear in the user interface. However, forward references may not always work
correctly in early releases of Motif 1.2 due to an Mrm bug. To work around this problem we need to specify the
children in a particular order. If one child is attached to another, the child that specifies the attachment should be listed
after the widget to which it is attached. For example, in the editor.uil module, the text_edit contains attachments
to both of its siblings, so we list it after the other two widgets in the controls subsection of the form. The actual
widget definitions can occur in any order in the UIL module.

In addition to the Form attachments, each widget definition contains other resource settings that are necessary for the
interface. The search_panel RowColumn contains two Labels and two TextField widgets. Since the definitions of

26 Building an Application With UIL26.1.1 The Main Application Window

702

these widgets are short, they are defined in the body of the search_panel definition instead of in separate object
sections. In contrast, the size of the search_panel itself makes it too large to place in the Form parent without
making the module unreadable.

26.1.2 The Menu System

Even though the MenuBar for this application contains only a few entries, there are still enough widgets to make it
worthwhile to define the menu system in a separate UIL module. This technique makes sense for most applications.
The general widget hierarchy for a MenuBar is basically the same for all applications. The top−level widget is the
MenuBar; it contains a CascadeButton for each menu. The editor application provides File, Edit, and Search menus.
A PulldownMenu is associated with each CascadeButton and contains the individual menu entries. The definition of
the menu system for the editor program is shown in the source code

 ! menubar.uil − editor application main window MenuBar definitions

 module editor_menubar
 objects = {
 XmLabel = gadget;
 XmCascadeButton = gadget;
 XmPushButton = gadget;
 XmToggleButton = gadget;
 XmSeparator = gadget;
 }

 include file 'procedures.uih';

 object menubar : exported XmMenuBar {
 controls {
 XmCascadeButton file;
 XmCascadeButton edit;
 XmCascadeButton search;
 };
 };

 object file : XmCascadeButton {
 controls {
 file_menu : XmPulldownMenu {
 controls {
 XmPushButton open;
 XmPushButton save;
 XmSeparator { };
 XmPushButton exit;
 };
 };
 };
 arguments {
 XmNlabelString = "File";
 XmNmnemonic = keysym ('F');
 };
 };

 object open : XmPushButton {
 arguments {
 XmNlabelString = "Open...";
 XmNmnemonic = keysym ('O');
 };
 callbacks {
 XmNactivateCallback = procedure file_cb (FILE_OPEN);

26 Building an Application With UIL 26.1.2 The Menu System

703

 };
 };

 object save : XmPushButton {
 arguments {
 XmNlabelString = "Save...";
 XmNmnemonic = keysym ('S');
 };
 callbacks {
 XmNactivateCallback = procedure file_cb (FILE_SAVE);
 };
 };

 object exit : XmPushButton {
 arguments {
 XmNlabelString = "Exit";
 XmNmnemonic = keysym ('x');
 XmNaccelerator = 'Ctrl<Key>c';
 XmNacceleratorText = "Ctrl+C";
 };
 callbacks {
 XmNactivateCallback = procedure file_cb (FILE_EXIT);
 };
 };

 object edit : XmCascadeButton {
 controls {
 edit_menu : XmPulldownMenu {
 controls {
 XmPushButton cut;
 XmPushButton copy;
 XmPushButton paste;
 XmSeparator { };
 XmPushButton eclear;
 };
 };
 };
 arguments {
 XmNlabelString = "Edit";
 XmNmnemonic = keysym ('E');
 };
 };

 object cut : XmPushButton {
 arguments {
 XmNlabelString = "Cut";
 XmNmnemonic = keysym ('t');
 XmNaccelerator = 'Shift<Key>Delete';
 XmNacceleratorText = "Shift+Del";
 };
 callbacks {
 XmNactivateCallback = procedure edit_cb (EDIT_CUT);
 };
 };

 object copy : XmPushButton {
 arguments {
 XmNlabelString = "Copy";
 XmNmnemonic = keysym ('C');
 XmNaccelerator = 'Ctrl<Key>Insert';
 XmNacceleratorText = "Ctrl+Ins";

26 Building an Application With UIL 26.1.2 The Menu System

704

 };
 callbacks {
 XmNactivateCallback = procedure edit_cb (EDIT_COPY);
 };
 };

 object paste : XmPushButton {
 arguments {
 XmNlabelString = "Paste";
 XmNmnemonic = keysym ('P');
 XmNaccelerator = 'Shift<Key>Insert';
 XmNacceleratorText = "Shift+Ins";
 };
 callbacks {
 XmNactivateCallback = procedure edit_cb (EDIT_PASTE);
 };
 };

 object eclear : XmPushButton {
 arguments {
 XmNlabelString = "Clear";
 XmNmnemonic = keysym ('l');
 };
 callbacks {
 XmNactivateCallback = procedure edit_cb (EDIT_CLEAR);
 };
 };

 object search : XmCascadeButton {
 controls {
 search_menu : XmPulldownMenu {
 controls {
 XmPushButton find_next;
 XmPushButton show_all;
 XmPushButton replace;
 XmSeparator { };
 XmPushButton sclear;
 };
 };
 };
 arguments {
 XmNlabelString = "Search";
 XmNmnemonic = keysym ('S');
 };
 };

 object find_next : XmPushButton {
 arguments {
 XmNlabelString = "Find Next";
 XmNmnemonic = keysym ('N');
 XmNaccelerator = 'Ctrl<Key>N';
 XmNacceleratorText = "Ctrl+N";
 };
 callbacks {
 XmNactivateCallback = procedure search_cb (SEARCH_FIND_NEXT);
 };
 };

 object show_all : XmPushButton {
 arguments {
 XmNlabelString = "Show All";

26 Building an Application With UIL 26.1.2 The Menu System

705

 XmNmnemonic = keysym ('A');
 XmNaccelerator = 'Ctrl<Key>A';
 XmNacceleratorText = "Ctrl+A";
 };
 callbacks {
 XmNactivateCallback = procedure search_cb (SEARCH_SHOW_ALL);
 };
 };

 object replace : XmPushButton {
 arguments {
 XmNlabelString = "Replace Text";
 XmNmnemonic = keysym ('R');
 };
 callbacks {
 XmNactivateCallback = procedure search_cb (SEARCH_REPLACE);
 };
 };

 object sclear : XmPushButton {
 arguments {
 XmNlabelString = "Clear";
 XmNmnemonic = keysym ('C');
 };
 callbacks {
 XmNactivateCallback = procedure search_cb (SEARCH_CLEAR);
 };
 };

 end module;

We set the objects option at the beginning of this module so that all of the menu entries are created as gadgets.
Setting this option at the top of the module saves you from accidentally forgetting to use the gadget version of one of
the buttons in a widget definition. Even though our menus do not include Labels or ToggleButtons, these objects are
included in the option setting in case we decide to add some later.

Once again, the widget definitions in this module are organized in a top−down manner. The first widget definition is
the MenuBar, which contains a CascadeButton for each menu. In UIL, you declare the PulldownMenu associated with
a CascadeButton as a child of the button, instead of as a child of the MenuBar, like in C code. The UIL method is
more intuitive. At run−time, Mrm creates each menu as a child of the MenuBar and sets the XmNsubMenuId
resource of the appropriate CascadeButton to satisfy the Motif requirements.

For each menu, we define PulldownMenu in−line, since it only contains a list of child widgets. This convention makes
the definitions easier to read and modify. We define the buttons separately, however, since the definitions are longer,
and they would be too large in−line. Since there are no resource settings for the Separators, we define these
components in−line and do not name them, as it is unlikely that users will specify resources for them.

There is a single callback routine associated with each PulldownMenu, so the callback resource for each menu item is
set to the appropriate routine. The action taken by the callback procedure when it is invoked is determined by the
argument passed to the callback. The possible arguments are defined in procedures.uih along with the callback
procedures. The arguments correspond to enumeration values defined in the application source code.

26.1.3 Dialog Boxes

The editor_uil interface uses some predefined Motif dialogs that are defined in the dialogs.uil module. Unlike the
MenuBar definition, these dialogs are not imported by the main editor.uil module. Instead, the dialogs are fetched by

26 Building an Application With UIL 26.1.3 Dialog Boxes

706

the application when they are needed. The application uses two FileSelectionDialogs, one for opening files and one
for saving files. It also uses an ErrorDialog for displaying error messages. The definitions of these widgets are shown
in the source code

 ! dialogs.uil − editor application dialog definitions

 module editor_dialogs

 include file 'procedures.uih';

 object open_dialog : XmFileSelectionDialog {
 arguments {
 XmNdialogTitle = "Open File";
 XmNokLabelString = "Open";
 };
 callbacks {
 XmNcancelCallback = procedure popdown_cb();
 XmNokCallback = procedure file_select_cb (FILE_OPEN);
 };
 };

 object save_dialog : XmFileSelectionDialog {
 arguments {
 XmNdialogTitle = "Save File";
 XmNokLabelString = "Save";
 };
 callbacks {
 XmNcancelCallback = procedure popdown_cb();
 XmNokCallback = procedure file_select_cb (FILE_SAVE);
 };
 };

 object error_dialog : XmErrorDialog {
 controls {
 Xm_Cancel unmanaged { };
 Xm_Help unmanaged { };
 };
 arguments {
 XmNdialogTitle = "Error";
 XmNdialogStyle = XmDIALOG_FULL_APPLICATION_MODAL;
 };
 };

 end module;

Each FileSelectionDialog has the same form. The titles and the labels and callbacks for the OK buttons are set for the
different purposes of each dialog. Both dialogs use the same -Cancel callback, file_select_cb(). This routine
uses the same arguments as the file_cb() callback.

The definition of the ErrorDialog is quite simple, since specifying an ErrorDialog causes most of the necessary
MessageBox resources to be set appropriately. We make the dialog modal, so the user is forced to acknowledge an
error before continuing, and we unmanage the Cancel and Help buttons so the user can only acknowledge an error
message. The dialog needs a few other changes, but they cannot be made in UIL. The XmNmessageString must be
set each time an error is displayed. This change is handled in the application code, which we explain in the next
section.

26 Building an Application With UIL 26.1.3 Dialog Boxes

707

26.2 Creating the Application

The original editor.c program needs several changes before it can work with the UIL user interface we have defined.
Like any application that uses UIL, the widget creation is now handled by Mrm. The callbacks also need a few minor
changes that are related to the use of Mrm. We have added a new callback that lets the application obtain the widget
IDs of Mrm−created widgets. The new version of the application is shown in the source code Compared to the
original version, the editor_uil.c program is about 50 lines shorter. Most of the shrinkage comes from main(), in
which the Motif widget creation calls are replaced by Mrm calls.

 /* editor_uil.c −− create a full−blown Motif editor application complete
 * with a menubar, facilities to read and write files, text search
 * and replace, clipboard support and so forth.
 */

 #include <Mrm/MrmAppl.h>
 #include <Xm/Text.h>
 #include <Xm/MessageB.h>

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/stat.h>

 MrmHierarchy hierarchy;
 Cardinal status;
 MrmType class_code;
 static char buf[256];

 static String uid_files[] = { "editor", "menubar", "dialogs" };

 XtAppContext app_context;
 Widget toplevel, text_edit, search_text, replace_text, text_output;

 static MrmRegisterArg widgets_list[] = {
 { "w_text_edit", (XtPointer) &text_edit },
 { "w_search_text", (XtPointer) &search_text },
 { "w_replace_text", (XtPointer) &replace_text },
 { "w_text_output", (XtPointer) &text_output },
 };

 void register_widget(), file_cb(), edit_cb(), search_cb(), file_select_cb();
 void popdown_cb();

 /* These definitions depend on the order of the menu entries and are
 also defined in the procedures.uih file with the callback decls. */
 typedef enum { FILE_OPEN, FILE_SAVE, FILE_EXIT } FileOp;
 typedef enum { EDIT_CUT, EDIT_COPY, EDIT_PASTE, EDIT_CLEAR } EditOp;
 typedef enum { SEARCH_FIND_NEXT, SEARCH_SHOW_ALL, SEARCH_REPLACE,
 SEARCH_CLEAR } SearchOp;

 static MrmRegisterArg callbacks_list[] = {
 { "register_widget", (XtPointer) register_widget },
 { "file_cb", (XtPointer) file_cb },
 { "edit_cb", (XtPointer) edit_cb },
 { "search_cb", (XtPointer) search_cb },
 { "file_select_cb", (XtPointer) file_select_cb },
 { "popdown_cb", (XtPointer) popdown_cb },
 };

 main(argc, argv)

26 Building an Application With UIL 26.2 Creating the Application

708

 int argc;
 char *argv[];
 {
 Widget main_window;

 XtSetLanguageProc (NULL, NULL, NULL);

 MrmInitialize();

 toplevel = XtVaAppInitialize (&app_context, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 status = MrmOpenHierarchyPerDisplay (XtDisplay(toplevel),
 XtNumber(uid_files), uid_files, NULL, &hierarchy);

 if (status != MrmSUCCESS) {
 XtAppError (app_context, "MrmOpenHierarchyPerDisplay failed");
 exit (1);
 }

 MrmRegisterNames (widgets_list, XtNumber (widgets_list));
 MrmRegisterNames (callbacks_list, XtNumber (callbacks_list));

 status = MrmFetchWidget (hierarchy, "main_window", toplevel,
 &main_window, &class_code);

 if (status != MrmSUCCESS) {
 XtAppError (app_context, "MrmFetchWidget failed");
 exit (1);
 }

 XtManageChild (main_window);
 XtRealizeWidget (toplevel);

 XtAppMainLoop (app_context);
 }

 /* routine to display an error dialog */
 void
 show_error (message)
 char *message;
 {
 static Widget dialog;
 XmString s;

 if (dialog == NULL) {
 MrmFetchWidget (hierarchy, "error_dialog", toplevel,
 &dialog, &class_code);
 if (dialog == NULL || ! XmIsMessageBox (dialog)) {
 XtAppError (app_context, "Creation of error dialog failed.");
 exit (1);
 }
 }

 s = XmStringCreateLocalized (message);
 XtVaSetValues (dialog, XmNmessageString, s, NULL);
 XmStringFree (s);

 XtManageChild (dialog);
 }

26 Building an Application With UIL 26.2 Creating the Application

709

 /* callback routine for "OK" button in FileSelectionDialogs */
 void
 file_select_cb (dialog, client_data, call_data)
 Widget dialog;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *filename, *text;
 struct stat statb;
 long len;
 FILE *fp;
 FileOp reason = *((FileOp *) client_data);
 XmFileSelectionBoxCallbackStruct *cbs =
 (XmFileSelectionBoxCallbackStruct *) call_data;

 XmTextSetString (text_output, NULL); /* clear the message area */

 if (!XmStringGetLtoR (cbs−>value, XmFONTLIST_DEFAULT_TAG, &filename))
 return; /* must have been an internal error */

 if (*filename == NULL) {
 XtFree (filename);
 XBell (XtDisplay (text_edit), 50);
 XmTextSetString (text_output, "Choose a file.");
 return; /* nothing typed */
 }

 if (reason == FILE_SAVE) {
 long bytes_written;
 if (!(fp = fopen (filename, "w"))) {
 perror (filename);
 sprintf (buf, "Can't save to %s.", filename);
 show_error (buf);
 XtFree (filename);
 return;
 }
 /* saving −− get text from Text widget... */
 text = XmTextGetString (text_edit);
 len = XmTextGetLastPosition (text_edit);
 /* write it to file (check for error) */

 bytes_written = fwrite (text, sizeof (char), len, fp);
 if (bytes_written != len) {
 strcpy (buf, "Warning: did not write entire file!");
 show_error (buf);
 }
 else {
 /* make sure a newline terminates file */
 if (text[len−1] != '0)
 fputc ('0, fp);
 sprintf (buf, "Saved %ld bytes to %s.", len, filename);
 XmTextSetString (text_output, buf);
 }
 }
 else { /* reason == FILE_OPEN */
 /* make sure the file is a regular text file and open it */
 if (stat (filename, &statb) == −1 ||
 (statb.st_mode & S_IFMT) != S_IFREG ||
 !(fp = fopen (filename, "r"))) {
 perror (filename);

26 Building an Application With UIL 26.2 Creating the Application

710

 sprintf (buf, "Can't read %s.", filename);
 show_error (buf);
 XtFree (filename);
 return;
 }
 /* put the contents of the file in the Text widget by
 * allocating enough space for the entire file, reading the
 * file into the space, and using XmTextSetString() to show
 * the file.
 */
 len = statb.st_size;
 if (!(text = XtMalloc ((unsigned)(len+1)))) { /* +1 for NULL */
 sprintf (buf, "%s: XtMalloc(%ld) failed.", len, filename);
 show_error (buf);
 }
 else {
 long bytes_read = fread (text, sizeof(char), len, fp);
 if (bytes_read != len) {
 sprintf (buf, "Did not read entire file!");
 show_error (buf);
 }

 sprintf (buf, "Loaded %ld bytes from %s.", bytes_read, filename);
 XmTextSetString (text_output, buf);
 text[len] = 0; /* NULL−terminate */
 XmTextSetString (text_edit, text);
 }
 }

 /* free all allocated space. */
 XtFree (text);
 XtFree (filename);
 fclose (fp);
 XtUnmanageChild (dialog);
 }

 /* a menu item from the "File" pulldown menu was selected */
 void
 file_cb (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 static Widget open_dialog, save_dialog;
 FileOp reason = *((FileOp *) client_data);

 if (reason == FILE_EXIT) {
 MrmCloseHierarchy (hierarchy);
 exit (0);
 }

 XmTextSetString (text_output, NULL); /* clear the message area */

 if (reason == FILE_OPEN) {
 if (open_dialog == NULL)
 MrmFetchWidget (hierarchy, "open_dialog", toplevel,
 &open_dialog, &class_code);
 if (open_dialog)
 XtManageChild (open_dialog);
 else
 show_error ("Creation of the open dialog failed.");

26 Building an Application With UIL 26.2 Creating the Application

711

 }
 else { /* reason == FILE_SAVE */
 if (save_dialog == NULL)
 MrmFetchWidget (hierarchy, "save_dialog", toplevel,
 &save_dialog, &class_code);
 if (save_dialog)
 XtManageChild (save_dialog);
 else
 show_error ("Creation of the save dialog failed.");
 }
 }

 /* a menu item from the "Search" pulldown menu was selected */
 void
 search_cb (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 char *search_pat, *p, *string, *new_pat;
 XmTextPosition pos = 0;
 int len, nfound = 0;
 int search_len, pattern_len;
 SearchOp reason = *((SearchOp *) client_data);
 Boolean found = False;

 XmTextSetString (text_output, NULL); /* clear the message area */

 if (reason == SEARCH_CLEAR) {
 pos = XmTextGetLastPosition (text_edit);
 XmTextSetHighlight (text_edit, 0, pos, XmHIGHLIGHT_NORMAL);
 return;
 }

 if (!(string = XmTextGetString (text_edit)) || !*string) {
 show_error ("No text to search.");
 return;
 }
 if (!(search_pat = XmTextGetString (search_text)) || !*search_pat) {
 XmTextSetString (text_output, "Specify a search pattern.");
 XtFree (string);
 return;
 }

 new_pat = XmTextGetString (replace_text);
 search_len = strlen (search_pat);
 pattern_len = strlen (new_pat);

 if (reason == SEARCH_FIND_NEXT) {
 pos = XmTextGetCursorPosition (text_edit) + 1;
 found = XmTextFindString (text_edit, pos, search_pat,
 XmTEXT_FORWARD, &pos);
 if (!found)
 found = XmTextFindString (text_edit, 0, search_pat,
 XmTEXT_FORWARD, &pos);
 if (found)
 nfound++;
 }
 else { /* reason == SHOW_ALL || reason == SEARCH_REPLACE */
 do {
 found = XmTextFindString (text_edit, pos, search_pat,

26 Building an Application With UIL 26.2 Creating the Application

712

 XmTEXT_FORWARD, &pos);
 if (found) {
 nfound++;
 if (reason == SEARCH_SHOW_ALL)
 XmTextSetHighlight (text_edit, pos, pos + search_len,
 XmHIGHLIGHT_SELECTED);
 else
 XmTextReplace (text_edit, pos, pos + search_len, new_pat);
 pos++;
 }
 }
 while (found);
 }

 if (nfound == 0) {
 XmTextSetString (text_output, "Pattern not found");
 } else {
 switch (reason) {
 case SEARCH_FIND_NEXT :
 sprintf (buf, "Pattern found at position %ld.", pos);
 XmTextSetInsertionPosition (text_edit, pos);
 break;
 case SEARCH_SHOW_ALL :
 sprintf (buf, "Found %d occurrences.", nfound);
 break;
 case SEARCH_REPLACE :
 sprintf (buf, "Made %d replacements.", nfound);
 }
 XmTextSetString (text_output, buf);
 }
 XtFree (string);
 XtFree (search_pat);
 XtFree (new_pat);
 }

 /* the callback routine for the items in the edit menu */
 void
 edit_cb (widget, client_data, call_data)
 Widget widget;
 XtPointer client_data;
 XtPointer call_data;
 {
 Boolean result = True;
 EditOp reason = *((EditOp *) client_data);
 XEvent *event = ((XmPushButtonCallbackStruct *) call_data)−>event;
 Time when;

 XmTextSetString (text_output, NULL); /* clear the message area */

 if (event != NULL &&
 reason == EDIT_CUT || reason == EDIT_COPY || reason == EDIT_CLEAR) {
 switch (event−>type) {
 case ButtonRelease :
 when = event−>xbutton.time;
 break;
 case KeyRelease :
 when = event−>xkey.time;
 break;
 default:
 when = CurrentTime;
 break;

26 Building an Application With UIL 26.2 Creating the Application

713

 }
 }

 switch (reason) {
 case EDIT_CUT :
 result = XmTextCut (text_edit, when);
 break;
 case EDIT_COPY :
 result = XmTextCopy (text_edit, when);
 break;
 case EDIT_PASTE :
 result = XmTextPaste (text_edit);
 case EDIT_CLEAR :
 XmTextClearSelection (text_edit, when);
 break;
 }

 if (result == False)
 XmTextSetString (text_output, "There is no selection.");
 }

 void
 popdown_cb (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XtUnmanageChild (w);
 }

 void
 register_widget (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget *w_ptr = (Widget *) client_data;
 *w_ptr = w;
 }

In order to create the interface that we defined in UIL, the application must use Mrm. Like any other application that
uses Mrm, this application calls MrmInitialize(), MrmOpenHierarchyPerDisplay(), and
MrmFetchWidget(). It also registers its callbacks and some global widget variables with
MrmRegisterNames(). While it is possible to register both types of data with one call, we use two separate calls
to distinguish between the two types of data. We create the main window of the application in main() and leave the
creation of the dialogs until they are needed.

26.2.1 Widget IDs

When you create an interface by calling the Motif creation functions directly, you get the ID of each widget that you
create. With Mrm, many widgets are created with a single call, and all you get back is the ID of the widget at the top
of the hierarchy. In most cases, application programs need the IDs of other widgets in the hierarchy; the editor_uil
program is no exception. It is easy to get the necessary widget IDs by using an MrmNcreateCallback. The
register_widget() routine is used as the creation callback for all of the widgets for which we need an ID.

The register_widget() callback takes a pointer to a widget as its client_data. The routine assigns the ID
of the widget that was just created to this pointer. The widget_list array declared at the beginning of the program

26 Building an Application With UIL 26.2.1 Widget IDs

714

specifies a list of UIL identifiers and global widget pointers. The application registers these identifiers with Mrm, so
they are available in the UIL modules for use as callback arguments. Each identifier is prefixed with w_, so that the
name does not conflict with the actual widget name defined in the UIL module. The identifiers are declared in
identifiers.uih, which is included by editor.uil.

26.2.2 Callbacks

The editor_uil application registers its callbacks with Mrm by calling MrmRegisterNames() with the
callbacks_list array. As with identifiers, you must declare any exported callbacks that you use in a UIL
module. We use the convention of placing these declarations in a file named procedures.uih, which is included by all
of our UIL modules.

The application uses a single callback for each PulldownMenu. The client_data argument to each callback
specifies the action that the callback should perform. The procedures.uih file contains the callback declarations, as
well as value definitions for the callback arguments. These values are defined with the same values used in the
application, so if any changes are made to the values in the application program, the UIL definitions must be updated
as well.

Most of the callbacks in our application are the same as in the original. Only the file_cb() callback has been
changed; it now includes code that creates part of the user interface, namely the FileSelectionDialogs. The creation
routines are replaced by calls to MrmFetchWidget(). The application creates each dialog the first time it is needed
and keeps the widget pointer in a static variable so the dialog can be reused. This type of delayed widget creation can
make a program start up faster and it can save memory. In order to allow delayed widget creation, the application does
not close the MrmHierarchy before calling XtAppMainLoop(). The hierarchy is closed when the user exits the
program, which is an action that is also handled by file_cb().

26.2.3 The Error Dialog

Originally, the TextField message area at the bottom of the main application window displayed both status and error
messages. However, we believe making error messages as explicit as possible is a good idea. As an enhancement to
the original editor program, we have added an ErrorDialog to display error messages. The show_error() routine
creates and displays the ErrorDialog shown in the figure.

The editor_uil ErrorDialog

The show_error() routine creates the ErrorDialog with a call to MrmFetchWidget() the first time an error
occurs. The standard Motif ErrorDialog includes three PushButtons: OK, Cancel, and Help. Since the OK button is
sufficient for our purposes, the routine unmanages the other two PushButtons after fetching the dialog. Unfortunately,

26 Building an Application With UIL 26.2.2 Callbacks

715

you cannot unmanage automatically−created children directly in UIL, which means that the program must handle this
step.

The program also updates the XmNmessageString of the ErrorDialog each time it is used to display an error
message. The error strings are hard−coded into this application. You can make your programs more open to
internationalization if you place the strings in a UIL module. Then you can easily set string resources by replacing
calls to XtVaSetValues() with calls to MrmFetchSetValues().

26.3 Summary

Creating an application that uses UIL and Mrm is very similar to creating an application that just uses Motif. The main
difference is that the user interface of the application is defined in one or more UIL modules, instead of being created
in application code by Motif and Xt creation procedures. Using UIL tends to simplify the application code by
separating the interface from the code itself. In some situations, provisions must be made to pass widget IDs from a
UIL module to the application, so that the application can modify a widget dynamically while it is running. While
using UIL certainly affects the creation of a user interface, application callbacks and other internal operations remain
much the same.

26 Building an Application With UIL 26.3 Summary

716

27 Advanced UIL Programming

This chapter describes advanced concepts and programming techniques in UIL. It builds on the UIL material
explained in the previous chapters.

This chapter introduces and examines ways that you can make the most of UIL's more advanced features. In the
following sections, we describe how to add non−Motif widgets to an interface description, discuss methods and ideas
for organizing UIL files, and examine the considerations that you face when setting resources in UIL. Finally, we
present material on advanced uses of UIL lists and user−interface prototyping.

27.1 Using Non−Motif Widgets

With UIL, it is easy to define instances of any of the Motif widgets, because their type names are built into the
compiler. However, you may need to use your own widget or a third−party widget in an application to provide
functionality that is not available in the Motif widget set. Fortunately, it is possible to include other widgets using the
special user_defined widget class along with the argument and reason value types.

OSF/Motif also supports non−Motif widget descriptions using the widget meta−language (WML). These widgets are
written into a separate WML description file which is run through the WML compiler. WML is typically used for
describing alternative widget sets; many third party widget sets include compiled WML description files. The use of
compiled WML description files is covered in #suilwmlopt, but a complete description of WML syntax and usage is
beyond the scope of this book.

Getting back to UIL, here are the steps involved in defining and creating a user−defined widget:

Write a widget creation procedure for the new widget.•
Register the creation procedure with Mrm using MrmRegisterClass().•
Declare the creation procedure in UIL.•
Declare the widget's resources and callbacks in UIL.•
Define one or more instances of the widget.•

To illustrate these steps, we are going to present an example that uses the Athena (Xaw) Tree and Panner widgets. The
Tree widget is a constraint widget that arranges its children in a tree, while the Panner is a two−dimensional scroll bar.

27.1.1 The Widget Creation Procedure

In order to create a non−Motif widget, you must write a creation procedure and register it with Mrm. A user−defined
widget creation procedure takes the same form as the Motif widget creation routines. The parent argument specifies
the parent of the widget to create, and the name argument is the widget's name. The args and num_args
parameters supply the initial resource settings for the widget. Most creation procedures create a widget simply by
calling XtCreateWidget().

Mrm must know about a new creation function before you can create widgets with it. Widget creation functions are
registered with MrmRegisterClass(), which must be called before any user−defined widgets are created. This
function takes the following form:

 Cardinal
 MrmRegisterClass(class_code, class_name, proc_name, create_proc,

717

widget_class)
 MrmType class_code;
 String class_name;
 String proc_name;
 Widget (*create_proc)();
 WidgetClass widget_class;

The first two arguments, class_code and class_name, are obsolete but remain to preserve backwards
compatibility. You should always pass 0 and NULL for these arguments, respectively. The proc_name parameter
specifies the name of the creation procedure as it appears in a UIL module. To avoid confusion, it is a good idea to use
the same name in both application code and UIL. The create_proc argument is the address of the creation
procedure, and widget_class is a pointer to the class structure of the widget. The function indicates the result of
the operation by returning either MrmSUCCESS or MrmFAILURE. A failure only occurs when the function cannot
allocate memory.

MrmRegisterClass() does not take an MrmHierarchy argument like many of the Mrm routines, which means
that any user−defined widgets that you register with this function are accessible from all open hierarchies. Mrm does
not provide a way to register a widget class with an individual hierarchy. the source code demonstrates the use of
MrmRegisterClass().

 /* tree.c −−
 * Program to show the Tree and Panner widgets.
 */

 #include <stdio.h>
 #include <X11/Intrinsic.h>
 #include <X11/Xaw/Tree.h>
 #include <X11/Xaw/Panner.h>
 #include <X11/StringDefs.h>
 #include <Mrm/MrmAppl.h>

 void pan();

 static MrmRegisterArg callback_list[] = {
 { "pan", (XtPointer) pan },
 /* Add additional callback procedures here... */
 };

 Widget
 XawCreateTreeWidget (parent, name, args, num_args)
 Widget parent;
 String name;
 ArgList args;
 Cardinal num_args;
 {
 return (XtCreateWidget (name, treeWidgetClass, parent, args, num_args));
 }

 Widget
 XawCreatePannerWidget (parent, name, args, num_args)
 Widget parent;
 String name;
 ArgList args;
 Cardinal num_args;
 {
 return (XtCreateWidget (name, pannerWidgetClass, parent, args, num_args));
 }

27 Advanced UIL Programming 27 Advanced UIL Programming

718

 void
 pan (panner, client_data, call_data)
 Widget panner;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget tree = (Widget) client_data;
 XawPannerReport *report = (XawPannerReport *) call_data;

 /* Should use XtSetValues, but DrawingArea bug prevents us */
 XtMoveWidget (tree, −report−>slider_x, −report−>slider_y);
 }

 int
 main (argc, argv)
 int argc;
 char *argv[];
 {
 XtAppContext app_context;
 Widget toplevel, root_widget;
 Cardinal status;
 static String uid_file_list[] = { "tree" };
 MrmType class_code;
 MrmHierarchy hierarchy;

 XtSetLanguageProc (NULL, NULL, NULL);

 MrmInitialize();

 toplevel = XtVaAppInitialize (&app_context, "Demos", NULL, 0,
 &argc, argv, NULL, NULL);

 status = MrmOpenHierarchyPerDisplay (XtDisplay (toplevel),
 XtNumber (uid_file_list), uid_file_list, NULL, &hierarchy);

 if (status != MrmSUCCESS) {
 XtAppError (app_context, "MrmOpenHierarchyPerDisplay failed");
 exit (1);
 }

 MrmRegisterNames (callback_list, XtNumber (callback_list));
 MrmRegisterClass (0, NULL, "XawCreateTreeWidget",
 XawCreateTreeWidget, treeWidgetClass);
 MrmRegisterClass (0, NULL, "XawCreatePannerWidget",
 XawCreatePannerWidget, pannerWidgetClass);

 status = MrmFetchWidget (hierarchy, "root", toplevel, &root_widget,
 &class_code);

 if (status != MrmSUCCESS) {
 XtAppError (app_context, "MrmFetchWidget failed");
 exit (1);
 }

 XtManageChild (root_widget);
 XtRealizeWidget (toplevel);

 XtAppMainLoop (app_context);
 }

27 Advanced UIL Programming 27 Advanced UIL Programming

719

This program defines widget creation functions for the Tree and Panner widgets and registers the routines with Mrm.
The program also defines the pan() callback routine for the Panner widget. This routine is specified for the
XtNreportCallback, as we'll show you shortly.

27.1.2 Widget Include Files

It usually makes sense to place the declarations for a user−defined widget in an include file so that they can be used in
more than one module. The include file for the Tree widget is shown in the source code

 /* UIL declarations for the Xaw Tree widget. */

 ! Declare the creation procedure
 procedure
 XawCreateTreeWidget();

 ! Declare resources
 value
 XtNautoReconfigure : argument ('autoReconfigure', boolean);
 XtNhSpace : argument ('hSpace', integer);
 XtNlineWidth : argument ('lineWidth', integer);
 XtNvSpace : argument ('vSpace', integer);
 XtNgravity : argument ('gravity', integer);
 NorthGravity : 2;
 WestGravity : 4;
 EastGravity : 6;
 SouthGravity : 8;

 ! Constraint resources
 XtNtreeGC : argument ('treeGC', any);
 XtNtreeParent : argument ('treeParent', widget);

The Tree creation procedure is declared in a procedure section, even though the application registers a widget
creation procedure differently from a callback procedure. Creation procedures should be declared as taking no
arguments.

The resources for the Tree widget are defined using the UIL argument type. The syntax is the same as for any other
value, although argument values cannot be imported or exported. The argument literal specifies the internal name
of the widget resource and the type of the resource. If a widget follows the Xt coding conventions, the internal
resource name is the name of the resource minus the XtN prefix. The UIL compiler uses the type argument for type
checking the resource, just like the built−in resources. UIL does not support a type that corresponds to a GC (graphics
context), so the type of the XtNtreeGC argument is specified as any. This resource can only be set correctly using a
GC imported from the application as an identifier. The file also contains constraint resource definitions for the
children of the Tree.

The include file also defines variables for the possible values of the XtNgravity resource. These values are merely
a convenience, as there is no way to make the UIL compiler check the setting of the resource for these values. (This
type of checking is possible for widget descriptions written with WML, however.) Once the resources are defined, the
UIL compiler allows you to set user−defined resources, such as XtNtreeGC and XtNtreeParent, in the
arguments subsection of any widget, including the built−in Motif widgets. You can also use the built−in Motif
resources in a user−defined widget definition, which is why we did not define the Tree widget's XtNbackground or
XtNforeground resources. These resources are the same as the Motif XmNbackground and XmNforeground
resources, even though the prefix is different. The names can be used interchangeably.

We use a separate include file for the Panner widget. The UIL definitions for the Panner appear in the source code

27 Advanced UIL Programming 27.1.2 Widget Include Files

720

 /* UIL declarations for thw Xaw Panner widget. */

 ! Declare the creation procedure
 procedure
 XawCreatePannerWidget();

 ! Declare resources
 value
 XtNallowOff : argument ('allowOff', boolean);
 XtNbackgroundStipple : argument ('backgroundStipple', string);
 XtNcanvasWidth : argument ('canvasWidth', integer);
 XtNcanvasHeight : argument ('canvasHeight', integer);
 XtNdefaultScale : argument ('defaultScale', integer);
 XtNinternalSpace : argument ('internalSpace', integer);
 XtNresize : argument ('resize', boolean);
 XtNrubberBand : argument ('rubberBand', boolean);
 XtNshadowThickness : argument ('shadowThickness', integer);
 XtNsliderX : argument ('sliderX', integer);
 XtNsliderY : argument ('sliderY', integer);
 XtNsliderWidth : argument ('sliderWidth', integer);
 XtNsliderHeight : argument ('sliderHeight', integer);

 ! Declare callbacks
 value
 XtNreportCallback : reason ('reportCallback');

This file declares the widget creation function and defines a number of resources. The Panner also has a callback, so
the include file declares the callback using the UIL reason type. The reason literal simply specifies the string
name of the callback resource. Unlike the argument literal, no type is necessary because the type is always a
callback.

27.1.3 Creating User−defined Widgets

A module can create instances of the user−defined Tree and Panner widgets by including the two files shown above.
the source code illustrates a typical application of these widgets.

 module tree

 include file 'XawTree.uih';
 include file 'XawPanner.uih';

 procedure
 pan (widget);

 object root : XmForm {
 controls {
 user_defined panner;
 XmDrawingArea viewport;
 };
 arguments {
 XmNdialogTitle = "Motif Widget Classes";
 };
 };

 object panner : user_defined procedure XawCreatePannerWidget {
 arguments {
 XtNdefaultScale = 10;
 XtNcanvasWidth = 325;
 XtNcanvasHeight = 300;

27 Advanced UIL Programming27.1.3 Creating User−defined Widgets

721

 XtNsliderWidth = 200;
 XtNsliderHeight = 200;
 XmNleftAttachment = XmATTACH_FORM;
 XmNtopAttachment = XmATTACH_FORM;
 };
 callbacks {
 XtNreportCallback = procedure pan (motif_widgets);
 };
 };

 object viewport : XmDrawingArea {
 arguments {
 XmNmarginWidth = 0;
 XmNmarginHeight = 0;
 XmNwidth = 200;
 XmNheight = 200;
 XmNtopAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_FORM;
 XmNleftAttachment = XmATTACH_FORM;
 XmNrightAttachment = XmATTACH_FORM;
 };
 controls {
 user_defined motif_widgets;
 };
 };

 object motif_widgets : user_defined procedure XawCreateTreeWidget {
 controls {
 Primitive : XmLabel { };
 ArrowButton : XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 Label : XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 CascadeButton : XmLabel {
 arguments {
 XtNtreeParent = Label;
 };
 };
 DrawnButton : XmLabel {
 arguments {
 XtNtreeParent = Label;
 };
 };
 PushButton : XmLabel {
 arguments {
 XtNtreeParent = Label;
 };
 };
 ToggleButton : XmLabel {
 arguments {
 XtNtreeParent = Label;
 };
 };
 List : XmLabel {
 arguments {

27 Advanced UIL Programming27.1.3 Creating User−defined Widgets

722

 XtNtreeParent = Primitive;
 };
 };
 Sash : XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 ScrollBar : XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 Separator : XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 Text : XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 TextField: XmLabel {
 arguments {
 XtNtreeParent = Primitive;
 };
 };
 };
 arguments {
 XtNlineWidth = 2;
 XmNborderWidth = 0;
 XtNhSpace = 22;
 XtNvSpace = 10;
 };
 };

 end module;

This module defines a Form that contains a DrawingArea and a Panner widget. The DrawingArea contains a Tree
widget that depicts the class hierarchy of the Motif primitive widgets. The Panner scrolls the Tree, so that the user can
view the entire hierarchy. The output of this example is shown in the figure.

27 Advanced UIL Programming27.1.3 Creating User−defined Widgets

723

User interface of tree.uil

The syntax of the Panner and Tree widget definitions is almost the same as the many Motif widget definitions that
you've already seen. The main difference is that you replace the Motif widget class name with user_defined
procedure followed by the name of the widget creation procedure. To reference a user−defined widget in the
controls subsection of a widget, you just use the keyword user_defined followed by the name of the widget.

You can mix user−defined resources and built−in resources as in the Panner definition, which contains some of its
own resource settings as well as a couple of Form constraint resource settings. You can also specify user−defined
resource names in the arguments subsection of a built−in widget definition. For example, the Label widget children
of the Tree contain resource settings for the user−defined XtNtreeParent resource. The Panner widget contains a
user−defined callback setting; the pan() callback routine is invoked when the user adjusts the Panner. The syntax of
using user−defined resources and callbacks is the same as that for built−in resources and callbacks. The main
drawback of user−defined widgets is that, unlike with the built−in Motif widgets, the compiler does not know which
resources are valid for the widget, so it lets you set any resources. This generally is not a problem when you are only
working with a few user−defined widgets, but as the number of user−defined widget instances increases, so does the
probability of making an error that the UIL compiler cannot catch. You can avoid this problem by describing
user−defined widgets with WML, at the expense of learning a more complicated widget description format.

27.2 Organizing UIL Modules

When developing an application with UIL, it is important to think about the organization of the modules that make up
the interface. There are a number of benefits to be gained from careful organization, such as code that is easier to edit,
test, and maintain, interface components that are reusable, and applications that are easier to internationalize. While
these benefits are not all unique to UIL, there are specific organizational strategies that make it easier to realize the
benefits. This section presents some organizational techniques for UIL modules. Since there are no rules when it
comes to organization, you should consider these techniques as guidelines.

You should adhere to the general principal of grouping things by purpose or function. Some of the things you should
consider grouping in UIL are interface components, procedures, lists and strings. Basically, it makes sense to group
any collection of UIL declarations or definitions that you consider to be logically related. You can organize aspects of
an application both in separate files and by sections within a file.

27 Advanced UIL Programming 27.2 Organizing UIL Modules

724

27.2.1 Using Separate Modules

When an application uses multiple top−level windows, such as a main window and various dialog boxes, it makes
sense to describe each window in a separate UIL module. When a window is especially complex, you may want to
describe the interface using several modules. For example, the menu system of an application could be described in a
separate module, as illustrated by the example in Chapter 25, Building an Application With UIL.

When you divide an application into separate modules, it is easier to find specific declarations or definitions because
the modules map directly to the appearance of the interface. Multiple files also help to reduce editing conflicts when
you are working on a project with a team of programmers. Breaking components into separate files helps to eliminate
dependencies between logically separate parts of the interface. For example, if you make a change to a dialog, it
shouldn't affect any other parts of the interface. Another benefit is rapid prototyping and testing. With a few
modifications, you can use the showuid program from Chapter 24, Creating a User Interface With UIL, to preview a
component without needing to have a complete application program. We'll take a closer look at prototyping a user
interface later in this chapter.

27.2.2 Organizing Within a Module

Within a UIL module, one organizational decision involves whether widgets are declared from the top−down or from
the bottom−up. Top−down organization means that you define the parent widgets first, followed by their children.
Bottom−up is the opposite, in that you define the child widgets and then define their parents. We recommend using
the top−down approach, since it is an extension of the organization at the file level. In addition, it is more natural for
developers who are accustomed to creating an interface in application code. Whichever approach you choose, you
should be sure to use it consistently in all of your modules.

Using value and list sections to define settings for widget resources that you use or change often is another useful
practice. This technique makes a module easier to read and maintain. As you know, UIL lets you define variables that
can be fetched by an application. It makes sense to place values that you intend to fetch in the same module as the part
of the interface to which they correspond. Although UIL allows forward references to most variables, you should try
to define or declare variables before using them, as it is a more familiar style. Grouping variables together at the
beginning of a module is another common practice that we recommend.

In some cases, you may need to share a variable or a list among several modules. For most types of variables, you can
place the definition in one module and include declarations in any other modules that use the value. For lists and for
values that cannot be exported, you must place the values directly in an include file. This kind of reuse frees you from
trying to maintain the same information in more than one place.

27.2.3 Supporting Internationalization

Although it is a good idea to put variable definitions in the module where you use them, we need to make an exception
to this guideline for internationalization purposes. To support internationalization, an application should not use literal
values for strings, compound strings, character sets, fonts, and font sets in a UIL module that contains widget
declarations. You should consolidate these values into one module per language and define a variable for each value.
Then, you can use the variables in widget declarations instead of literal values. You can create a single include file
that contains declarations of all of these values and include it anywhere you need to use one of the values. the source
code illustrates this -technique.

 ! i18n_dialog.uil − Dialog used to prompt the user for a filename

 module savebox

27 Advanced UIL Programming 27.2.1 Using Separate Modules

725

 include file 'strings.uih';

 object root : XmPromptDialog {
 arguments {
 XmNokLabelString = ok_text;
 XmNcancelLabelString = cancel_text;
 XmNhelpLabelString = help_text;
 XmNselectionLabelString = save_prompt_text;
 XmNdialogTitle = save_title_text;
 };
 };

 end module;

As you can see, a variable is used everywhere that we needed to set a language−dependent resource string. the source
code shows the corresponding strings.uih declaration file.

 ! strings.uih − Interface string declarations

 value
 ok_text : imported compound_string;
 cancel_text : imported compound_string;
 help_text : imported compound_string;
 save_title_text : imported compound_string;
 save_prompt_text : imported compound_string;

The declaration file is the same for every module that uses the strings, so you don't have to declare them in each
module. Each string variable is declared as an imported value, which we explained in Section #suilshare. All you
need is a string definition file for each language that is supported by the application. the source code contains the
English version of the strings for this dialog.

 ! strings.uil − English version of interface strings

 module strings

 value
 ok_text : exported compound_string ("Ok");
 cancel_text : exported compound_string ("Cancel");
 help_text : exported compound_string ("Help");
 save_title_text : exported compound_string ("Save Dialog");
 save_prompt_text : exported compound_string ("File Name:");

 end module;

To support another language, we only need to create a new version of strings.uil for that language. The English
version of the dialog is shown in the figure.

27 Advanced UIL Programming 27.2.1 Using Separate Modules

726

User interface of i18n_dialog.uil using an English strings.uil

A separate subdirectory in the development environment is typically created for each supported language. If the
directory names correspond to possible values of the LANG environment variable, it is easy to test the interface for
each language by setting the LANG and UIDPATH variables, which are described in Chapter 22, Introduction to
UIL.

At run−time, language−dependent UID files are normally installed in /usr/lib/X11/%L/uid/%N, where %L stands for
the LANG environment variable and %N is the application class name. For example, if the class name of the
appl icat ion that uses the save dia log is Demos, you insta l l the Engl ish vers ion of the str ings in
/ u s r / l i b / X 1 1 / C / u i d / D e m o s / s t r i n g s . u i d . L i k e w i s e , y o u i n s t a l l t h e F r e n c h v e r s i o n i n
/usr/lib/X11/Fr/uid/Demos/strings.uid. The language−dependent files, such as strings.uid, are the only ones for which
we need to have multiple versions; the rest of the UID files are installed in the /usr/lib/X11/uid/Demos directory.

27.2.4 Organizing With Include Files

UIL include files are quite useful for organizing a user interface. You can use include files that declare or define
values and define lists, as shown in Section #suiladvlist. You can also use include files for information defined in the
application program, namely callback procedures and identifiers. Include files provide a convenient place to organize
these declarations by functioning like C header files. If you use an include file, there is no need to declare the same
procedure or identifier in more than one module. Another advantage of keeping callback declarations and identifiers in
an include file is that you can make any changes and additions in a single file.

27.2.5 Creating Reusable Components

Reusability is another benefit of proper organization. You can organize for reusability at a number of levels, from
complete dialogs to individual widgets. You may not have recognized it at the time, but you've already seen an
example of reusable components in the guise of user−defined widgets. Widgets are generally designed to be reusable
items. You can extend this notion in UIL by creating a separate include file for any user−defined widgets that you use,
as Section #suiluserdef illustrated. The other alternative is to place the necessary definitions and declarations directly
in the module where the widget is used. Clearly, using an include file is the more flexible of the two techniques.

If you are developing several different applications, you may find that there are a number of common components
such as help windows, print dialogs, and various menus. While the Motif widget set provides some reusable
components, such as the FileSelectionBox, you can create your own reusable user−interface components using UIL.
For example, if you create a reusable context−sensitive help facility using UIL, it is easy to add help to all of your
applications. This use of UIL not only saves you time, but it also promotes a common look and feel across your set of

27 Advanced UIL Programming 27.2.4 Organizing With Include Files

727

applications.

You can also reuse callbacks to a certain degree. While most callbacks are specific to the task at hand, it is possible to
write generic callbacks that you can use in multiple applications. Section #suilproto describes several such callbacks.
You are not limited to a single callback procedure for a callback action, so it is possible to split the behavior of a
certain action over more than one callback. For example, a typical Cancel button on a dialog might reset the dialog
contents and then pop down the dialog. These two actions can be handled by two callbacks. Other dialogs can have
their own reset callback, but can reuse the pop down callback. If you have a group of related callbacks, it may make
sense to put the callbacks into a single source code file and write one UIL include file for all of the callbacks.

27.3 Specifying Resource Values

Even though all of the UIL examples in this book specify widget resource settings directly in UIL modules, it is
important to realize that this approach is not always the best, especially for real−world applications. With any
application, you have the choice of setting resources in a UIL module, in an X resource file, or directly in application
code. This section looks at the advantages and disadvantages of setting resources in each of these places.

27.3.1 Resource Name Checking

When it comes to error checking of resource settings, UIL comes out on top. Anytime you attempt to set a built−in
resource or callback, the UIL compiler makes sure that the resource exists and that it is supported by the widget in
which you are setting it. If you make a typing error or mistakenly set an unsupported resource, the compiler issues an
error message.

Neither one of these errors is caught in an X resource file because the X resource manager waits until run−time to
perform a search of the resource database. Since resource files are not validated, it is up to you to notice mistakes at
run−time when a widget doesn't look or act as you expect.

When you set a resource in application code, you only get partial error checking. The C preprocessor or the C
compiler generates an undefined symbol error if you use a resource name that does not exist, but this mechanism does
not prevent you from using a resource in the wrong context, as the compiler cannot detect this error.

27.3.2 Resource Type Checking

Type checking takes place for resources set in both UIL modules and X resource files. The UIL compiler knows the
expected type for each built−in resource as well as the type of a value, so it is able to produce an error message if you
try to set a resource to a value of an incompatible type. However, there are a few cases in which UIL doesn't perform
complete type checking. The UIL compiler only checks resources that can be set to enumerated values, such as
XmNalignment and XmNleftAttachment, for integer assignments. In addition, no type checking is performed
on user−defined resources of the type any or on resources that are set to identifier variables.

The type checking in X resource files is similar, but has slightly different limitations. The string is the only recognized
type in an X resource file. At run−time, Xt automatically calls the appropriate resource converter, which creates a
value of the type the widget expects for a particular resource. If you specify a string that cannot be converted, the
converter function generates a warning message. The Motif library includes a separate converter for each of the
enumerated types, so you cannot accidentally use an incorrect value. There is no type checking for string−typed
resources, however, as their values are taken literally. For example, if you set a string resource to False thinking that
its type is Boolean, you won't get a warning. The biggest weakness of setting resources in an X resource file is that
type checking does not occur until the widgets are created at run−time.

27 Advanced UIL Programming 27.3 Specifying Resource Values

728

There is essentially no type checking when you set resources in application code because of the general nature of the
Xt resource−setting API. The XtSetValues() macro takes an array of generic structures, and all of the values are
represented by the XtArgVal type. Therefore, the compiler cannot perform its usual type checking. You can get
partial type checking in C by using convenience functions, but only a few exist compared to the total number of
resources. If you set a resource to the wrong type in application code, the results are unpredictable. Nothing may
happen, but more likely the error will cause strange behavior and/or crash the application. Unfortunately, the source of
this kind of error is usually difficult to track down.

27.3.3 Resource Type Support

You can set every resource of a Motif widget from either a UIL module or application source code, while X resource
files allow you to set nearly every type. In source code, resource type support is almost inherent. As long as you
include the right header file and know the format of a resource type, you can create a value. Creating values for types
in non−Motif widget sets is no different, since you can use X, Xt, or Motif functions to create complex types.

Type support in UIL is built into the compiler; each type is specified with a unique literal syntax. Because UIL is
designed to support Motif, the built−in types are limited to the types used by the Motif widget set, and there is no way
to add a new type short of modifying the UIL compiler. You can work with new types imported from the application
using identifiers, but that's not quite the same as being able to define the values directly in a module.

As we just mentioned, type support in resource files is limited to the available resource converters. Without adding
any new converters, you can set most Motif resources. Two notable exceptions are resources that specify widget and
color pixmap values. You can add new type converters, but in order to do so you must have a strong knowledge about
the workings of Xt. Even then, perfecting a converter takes a good deal of work. See Volume Four, X Toolkit
Intrinsics Programming Manual, for more information on resource converters.

27.3.4 Callback Specifications

You can set callbacks in both UIL and application source code, but not in X resource files. You might think of
callbacks differently because they determine the behavior of an interface, while most other resources affect the
appearance. As far as a widget is concerned, however, a callback is just another resource whose type is an array of
function pointers. In UIL you use the callbacks subsection to set a callback resource. With Xt, you normally use
XtAddCallback() or XtAddCallbacks(). The situation is different in a resource file, where all values are
considered equal. In order to set a callback in a resource file, you need a callback resource converter, but such a
converter is not available by default. Several third−party software packages provide this functionality. Most notable is
the Widget Creation Language (Wcl), which also supports complete interface specifications with capabilities similar
to UIL. For more information on Wcl, see Issue 2 of The X Resource.

27.3.5 Wildcard Specification

Only X resource files give you the ability to set resources by widget class and to represent one or more widgets in the
hierarchy with wildcards. Neither of these powerful features are available from UIL or application source code. In
both UIL and application code, you are limited to setting resources on a specific widget instance. In an X resource file,
you can write a single resource setting that applies to a single widget, to widgets of a specific class, or to all of the
widgets in a hierarchy. This feature is particularly useful for specifying a common appearance for a group of widgets.
Doing the same thing in UIL or source code requires a lot of repetition. You can use a list in UIL or a convenience
routine in source code to factor out common settings, but at some point you still need an explicit list reference or
function call.

27 Advanced UIL Programming 27.3.3 Resource Type Support

729

27.3.6 User Customization

Another difference between the three methods of specifying resources is the freedom that they give a user to
customize or override a resource setting. Any settings that you place in an X resource file can be overridden by the
user. Settings made in UIL or in source code are fixed and cannot be changed by the user. This fact is generally true
about UIL. A user could conceivably replace a compiled UID module with a new version that contains different
settings, but it is rather unlikely. Neither behavior is any better or worse than the other. Allowing or disallowing user
customization is just something for you to consider when deciding where to set a resource, rather than a limitation of
the method.

27.3.7 Dynamic Updating

Many resource settings are not just set at widget creation time and left alone, but are continually updated to indicate
the state of the application in response to user actions. You can make dynamic resource changes in source code using
XtSetValues() or XtVaSetValues() and application−created values. The MrmFetchSetValues()
function is the counterpart for UIL. Instead of using application−defined values, the routine automatically loads the
data from exported values in a UIL module. (For more information on MrmFetchSetValues() see Section
#suilfetch.) With X resource files, the resource settings are loaded and applied only when a widget is created. Once
again, it is possible to write code to dynamically fetch and convert a value from a resource file, but the Xt library does
not provide this functionality.

27.3.8 Guidelines for Setting Resources

Now that we have explained the capabilities and limitations of each method of specifying resources, we can look at
where to place resource settings in some common situations. The first thing to think about for a resource setting is
whether you want to let the user change it. If so, using an X resource file is the only way to go. You should try to
allow the user to override settings that affect the appearance of widgets, such as colors and fonts. On the other hand,
you normally do not want to let the user change layout or behavior settings, such as form attachments and widget
sensitivity. It is fairly common to allow changes to translation tables, however.

You should also consider which specification methods support the resource in question, and how much work is
involved in creating the value. If you want to set a color pixmap resource, UIL is clearly the best choice, as the values
are not supported in X resource files or application code. Compound strings are good candidates for resource files or
UIL. It is easier to specify a compound string in one of these than it is in C code, where you must worry about creating
and freeing the values. However, X resource files only handle 8−bit left−to−right strings, so if you need to do
anything beyond that, look to UIL. Callbacks present yet another choice where you can go with source code or UIL.

When it is an option, UIL is generally the best method for setting resources, as it provides the most comprehensive
error−checking capabilities. The most common reason for not using UIL is to allow user customization.
Dynamically−computed or complex resource settings are best made in application source code. Sometimes a
combined approach is possible, in which the values are defined in UIL, but manipulated and set within the application.

These are only a few guidelines. When you encounter a new situation and have a choice, try to determine the
consequences of using a particular method. summarizes the features supported by each method. Finally, don't forget to
think about ease of use and reliability for both you and the people using your application. tab(@), linesize(2); l | l | l | l
l | l | l | l.
Feature@UIL@Resource File@Application
_
Existence Checking@Yes@No@Yes Validity Checking@Yes@No@No Type Checking@Yes@Yes@No Motif
Types Supported@Yes@No@Yes New Types Supported@No@Yes@Yes Callbacks Supported@Yes@No@Yes

27 Advanced UIL Programming 27.3.6 User Customization

730

Wildcard Specifications@No@Yes@No User Customization@No@Yes@No Dynamic Updating@Yes@No@Yes
_

27.4 Using Lists Effectively

Lists are a powerful feature of UIL because they give you an alternative to specifying widget children, callbacks, and
arguments directly in a widget definition. Lists also let you specify multiple procedures for a specific callback
resource. The ability to include lists in other lists makes them even more useful, as we'll show you in this section.

27.4.1 Specifying Common Resources

We talked about reusing interface components and callbacks earlier. By using lists, you can take this technique one
step further to the level of widget children, resources, and callbacks. You can reduce the size of your modules by
using lists to factor out common sets of resources. This technique is particularly useful for dealing with Form resource
settings, as this fragment illustrates:

 list attachments : arguments {
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 3;
 XmNrightAttachment = XmATTACH_FORM;
 XmNrightOffset = 3;
 };

The attachments list defines some attachments that we can apply to a group of widgets in a Form, as shown in the
following definitions:

 object name : XmTextField {
 arguments {
 arguments attach_args;
 XmNtopAttachment = XmATTACH_FORM;
 };
 };

 object phone : XmTextField {
 arguments {
 arguments attach_args;
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopWidget = name;
 XmNbottomAttachment = XmATTACH_FORM;
 };

Each TextField definition includes its own attachments and the list, instead of restating the common settings.
Although some of the resources are specified twice, only the last setting has any effect.

An extension of this concept gives us another interesting and useful way of working with lists. By including one or
more lists in another list, you can create a flexible hierarchy of resource or callback settings. For example, you might
use a list to specify a base style for all widgets, as in the following fragment:

 list base_style : arguments {
 XmNforeground = color ('black');
 XmNbackground = color ('magenta');
 XmNtraversalOn = true;
 };

27 Advanced UIL Programming 27.4 Using Lists Effectively

731

When you add components to the interface, you can build on this base style. The following fragment shows how you
might handle defining a ToggleButton−specific style:

 list toggle_btn_style : arguments {
 arguments base_style;
 XmNindicatorSize = 10;
 XmNindicatorType = XmN_OF_MANY;
 XmNselectColor = color ('yellow');
 };

Unfortunately, it turns out that most of the resource settings that work well in these situations are best left to resource
files, as we discussed in the previous section. This use of lists can still be useful, however, when you are prototyping
an application and don't feel like using an X resource file. When you are done prototyping, be sure to move the
resource settings that affect appearance to a resource file, so that they can be modified by the user.

You can also use a hierarchy of lists to specify callback resources. If you are developing an application that supports
context sensitive help, the root of your callback hierarchy might be specified as in the following list:

 list help_cbs : callbacks {
 XmNhelpCallback = procedure help();
 };

You can include this list in each widget that supports help. For a group of ToggleButtons, you can augment the list as
follows:

 list toggle_cbs : callbacks {
 callbacks help_cbs;
 XmNvalueChangedCallback = procedure toggle_changed();
 };

The following widget definition illustrates how both the style and callback lists might be used:

 object hot_fudge : XmToggleButton {
 arguments {
 arguments attach_args;
 arguments toggle_args;
 XmNlabelString = "Hot Fudge";
 };
 callbacks toggle_cbs;
 };

You gain a couple of advantages by using lists this way. First, if you decide to change a color or a callback, you only
need to make the change in one place, not in every widget definition. Second, each widget definition is considerably
shorter than it would be without the list, which saves typing and generally makes a module shorter and easier to read.

27.4.2 Reusing Components

You can also use lists to help create reusable components. Earlier in this chapter, we talked about reusing components
for top−level windows and dialogs. Although reusing parts of a dialog is not very common, reusing the panel of
buttons that compose the action area of a dialog makes some sense. An application may use the definitions of OK,
Cancel, and Help PushButtons repeatedly. Using lists, you can create a hierarchy of include files that allows you to
reuse the same definitions for each dialog that needs them.

27 Advanced UIL Programming 27.4.2 Reusing Components

732

The first thing that needs to be defined is a container widget to hold the buttons. We keep this example simple by
using a RowColumn manager widget. the source code shows the definition of the RowColumn.

 ! btn_panel.uih −− Button panel container

 object button_panel : XmRowColumn {
 controls buttons;
 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNpacking = XmPACK_COLUMN;
 XmNentryAlignment = XmALIGNMENT_CENTER;
 ! Assume bottom of form placement
 XmNleftAttachment = XmATTACH_FORM;
 XmNrightAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_FORM;
 ! Provide a hook for additional arguments
 arguments button_panel_args;
 };
 };

The button_panel RowColumn is an open−ended definition, as the children are specified as an undefined list. The
definition also contains an undefined list in its arguments subsection, which allows the specification of additional
resources. The next step is to add the OK, Cancel, and Help buttons to the panel using another include file, which is
shown in the source code

 ! three_btn.uih −− OK, Cancel, Help button definitions

 list buttons : controls {
 OK : XmPushButton {
 arguments ok_args;
 callbacks ok_cbs;
 };
 Cancel : XmPushButton {
 arguments cancel_args;
 callbacks cancel_cbs;
 };
 Help : XmPushButton {
 arguments help_args;
 callbacks help_cbs;
 };
 ! Hook for additional buttons
 controls more_buttons;
 };

 include file 'btn_panel.uih';

So far, all of the widget definitions have been placed in include files. This technique is necessary because UIL does
not support imported list values, so the only way you can reuse lists is by placing them in include files. We also define
the PushButtons in an include file because they reference callback and argument lists. These lists must be defined by
the module that includes the button definition. If the buttons were defined in a separate module, there would be no
way to specify their behavior from within UIL.

The three_btn.uih file defines the three buttons for the panel and defines the controls list referenced in
btn_panel.uih. An important feature of this example is that we have incorporated undefined lists in each of the
widget's callbacks and arguments subsections. These lists work like macros in that they allow a module to use
customized versions of the standard definitions. We also keep the list of buttons open−ended by including another
undefined controls list named more_buttons. The file ends by including the button panel definition so that the

27 Advanced UIL Programming 27.4.2 Reusing Components

733

main module does not need to include it. We normally recommend putting the include directives at the top of a file,
but in early releases of Motif 1.2, a forward reference to a list causes the UIL compiler to crash. Therefore, it is
necessary to include object definitions after the lists that they reference.

Now that the button panel and button definitions are complete, we can create a dialog that uses them. the source code
demonstrates the creation of such a dialog.

 /* dialog.uil − a simple dialog that contains reusable PushButtons */

 module dialog

 include file 'procedures.uih';

 object root : XmForm {
 controls {
 XmRowColumn dialog_contents;
 XmSeparator separator;
 XmRowColumn button_panel;
 };
 arguments {
 XmNdialogTitle = "Login";
 XmNdefaultButton = OK;
 };
 };

 object dialog_contents : XmRowColumn {
 controls {
 User : XmLabel { };
 Password : XmLabel { };
 XmTextField user_field;
 XmTextField pw_field;
 };
 arguments {
 XmNnumColumns = 2;
 XmNpacking = XmPACK_COLUMN;
 XmNtopAttachment = XmATTACH_FORM;
 XmNleftAttachment = XmATTACH_FORM;
 XmNrightAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_WIDGET;
 XmNbottomWidget = separator;
 };
 };

 object user_field : XmTextField {
 arguments {
 XmNcolumns = 2;
 };
 };

 object pw_field : XmTextField {
 arguments {
 XmNcolumns = 2;
 };
 };

 object separator : XmSeparator {
 arguments {
 XmNrightAttachment = XmATTACH_FORM;
 XmNleftAttachment = XmATTACH_FORM;
 XmNbottomAttachment = XmATTACH_WIDGET;

27 Advanced UIL Programming 27.4.2 Reusing Components

734

 XmNbottomWidget = button_panel;
 };
 };

 ! Button specific settings.
 list ok_args : arguments { };
 list ok_cbs : callbacks {
 XmNactivateCallback = procedure do_it();
 };

 list cancel_args : arguments { };
 list cancel_cbs : callbacks {
 XmNactivateCallback = procedure forget_it();
 };

 list help_args : arguments { };
 list help_cbs : callbacks {
 XmNactivateCallback = procedure help_me();
 };

 ! No additional button panel arguments
 list button_panel_args : arguments { };

 ! No more buttons
 list more_buttons : controls { };

 ! Include the button panel definition
 include file 'three_btn.uih';

 end module;

The module starts by including the files that contain the callback procedure declarations. The top−level Form of the
dialog contains the work area, a separator, and the button_panel. The work area consists of two labeled
TextFields in a RowColumn. We complete the button_panel by defining the lists referenced in the include files.
The arguments and callbacks lists for the OK, Cancel, and Help buttons are defined. There are no additional
arguments for the buttons, the arguments lists are empty. Since there are no additional button_panel arguments
and the dialog only has three buttons, the button_panel_args and more_buttons lists are also empty. With
these list definitions in place, the module finally includes the file that defines the buttons and the button panel. The
output of the dialog is shown in the figure.

You can reuse the button panel in as many dialogs as you want by following the model used in the source code
Although we did not use many of the undefined lists, they make the button panel more flexible and configurable.
These techniques can also be applied in a number of other situations throughout an application. This method of using
lists and include files can help to reduce redundancy in an interface definition.

27 Advanced UIL Programming 27.4.2 Reusing Components

735

User interface of dialog.uil

27.5 Prototyping an Interface With UIL

The showuid program in Chapter 24, Creating a User Interface With UIL, provides a useful foundation for
prototyping a user interface. The program contains two simple callbacks: one for printing a message and one for
exiting the program. By adding a few more callbacks, we can make the program even more useful as a building block
for developing interfaces.

27.5.1 Managing Widgets

Most user interfaces consist of a main application window and several support windows or dialogs. Since dialogs are
frequently posted and unposted, we can make prototyping easier by writing callbacks that manage and unmanage
widgets. the source code shows these routines.

 void
 manage (w, client_data,call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget target = (Widget) client_data;
 XtManageChild (target);
 }

 void
 unmanage (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget target = (Widget) client_data;
 XtUnmanageChild (target);
 }

When adding new callbacks, we also need to update the list of callbacks that the showuid application registers with
MrmRegisterNames(). With the addition of these two functions, the list is declared as follows:

 static MrmRegisterArg callback_list[] = {
 { "quit", (XtPointer) quit },

27 Advanced UIL Programming27.5 Prototyping an Interface With UIL

736

 { "print", (XtPointer) print },
 { "manage", (XtPointer) manage },
 { "unmanage", (XtPointer) unmanage },
 /* Add additional callback procedures here... */
 };

To demonstrate these new callbacks, we can create an interface with a Quit PushButton that displays a confirmation
dialog. This example is realistic, as many applications bring up a confirmation dialog to prevent you from quitting
accidentally or making irreversible changes. A module that uses the manage() callback is shown in the source code

 module quitbox

 procedure
 quit();
 manage (widget);
 unmanage (widget);

 object quit_dialog : XmQuestionDialog {
 controls {
 Xm_Help {
 ! Disable the help button for now.
 arguments {
 XmNsensitive = false;
 };
 };
 };
 callbacks {
 XmNokCallback = procedure quit();
 };
 arguments {
 XmNmessageString = "Really Quit?";
 XmNdialogTitle = "Confirm Quit";
 XmNdialogStyle = XmDIALOG_FULL_APPLICATION_MODAL;
 };
 };

 object quitb : XmPushButton {
 arguments {
 XmNlabelString = "Quit";
 };
 callbacks {
 XmNactivateCallback = procedure manage (quit_dialog);
 };
 };

 object root : XmMainWindow {
 controls {
 XmPushButton quitb;
 unmanaged XmQuestionDialog quit_dialog;
 };
 };

 end module;

The output of this example is shown in the figure.

27 Advanced UIL Programming27.5 Prototyping an Interface With UIL

737

User interface of quitbox.uil

The Quit PushButton manages the dialog, which causes it to be displayed. Pressing the OK PushButton exits the
application. There is no need to use the unmanage() callback in this example, as the Cancel PushButton unmanages
the dialog by default. You can easily apply the manage() and unmanage() callbacks to other dialogs in an
interface.

27.5.2 Creating Widgets

In the source code the entire user interface is defined in a single widget hierarchy. This technique is fine for a small
application, but for performance reasons it is not practical in a larger application. Creating a separate hierarchy for
each window allows you to divide an interface into separate modules, as discussed earlier in this chapter. The only
drawback to distributing dialog creation is that it takes longer for a dialog to appear the first time it is displayed. Since
this delay is typically not noticeable, we still recommend this approach.

You can support the as−needed dialog creation policy in UIL by adding another callback that creates a widget
hierarchy. A new widget hierarchy is created by calling MrmFetchWidget(). As a reminder, this function takes the
following form:

 Cardinal
 MrmFetchWidget(hierarchy, widget_name, parent, widget_return,

class_return)
 MrmHierarchy hierarchy;
 String widget_name;
 Widget parent;
 Widget *widget_return;
 MrmType *class_return;

A creation callback needs three values to be able to create a new widget hierarchy. These values are the first three
arguments to MrmFetchWidget(). The MrmHierarchy is already available in the application program, so we
only need to make it a global variable instead of a local variable in main(). Since the callback accesses the hierarchy
repeatedly, we also need to remove the call to MrmCloseHierarchy(). In order to get the other two arguments,
we use an asciz_table that contains the names of the parent widget and the widget to create. We can convert the
name of the parent to a widget ID using XtNameToWidget(). This technique only works if we specify a unique
name for each widget. Since we need the top−level widget as an argument to this routine, it becomes a global variable
as well. The complete callback appears in the source code

 void

27 Advanced UIL Programming 27.5.2 Creating Widgets

738

 create (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 String *args = (String *) client_data;
 String parent_name = args[0];
 Widget parent;

 /* Get a widget id for the parent widget. */
 if (strcmp (parent_name, "toplevel") != 0)
 parent = XtNameToWidget (toplevel, parent_name);
 else
 parent = toplevel;

 /* If the parent was found try to create the hierarchy. */
 if (parent == NULL)
 fprintf (stderr, "Create: No such widget '%s'0, args[0]);
 else {
 String child_name = args[1];
 Widget new_w;
 Cardinal status;
 MrmType class;

 status = MrmFetchWidget (hierarchy, child_name, parent,
 &new_w, &class);
 if (status != MrmSUCCESS)
 fprintf (stderr, "Failed to create hierarchy '%s'0, child_name);
 }

 /* After the widget is created, this callback can be removed. */
 XtRemoveCallback (w, XmNactivateCallback, create, client_data);
 }

The callback assigns the client_data argument to a String array, since that is appropriate for the UIL
asciz_table type. The routine also converts the name of the parent widget to a widget ID using
XtNameToWidget(). Since that routine does not consider the top−level widget in its search, the callback performs
a special test for that widget. If the routine finds the ID for the parent widget, it attempts to create the new widget
hierarchy. Once the hierarchy is created, the callback is removed so that the widget hierarchy is not created more than
once. We make the assumption that if the creation fails once, subsequent attempts will also fail.

With the addition of the create() callback, we can split the source code into two modules. Unfortunately, breaking
up the module into two introduces a new problem. Now that we have two separate widget hierarchies, the manage()
callback can no longer reference the quit_dialog widget because it is defined in another hierarchy. One solution
to this problem is to export the widget ID of the dialog as a UIL identifier, using the MrmNcreateCallback
(illustrated in Chapter 25, Building an Application With UIL). The problem with this approach is that you must
maintain a list of identifiers for all of the exported widgets. Another solution, which avoids this problem, uses
XtNameToWidget() in the manage() and unmanage() callbacks to obtain a widget ID given a widget name.
The revised callbacks are shown in the source code

 void
 manage (w, client_data,call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 String name = (String) client_data;
 Widget target = XtNameToWidget (toplevel, name);

27 Advanced UIL Programming 27.5.2 Creating Widgets

739

 if (target != NULL)
 XtManageChild (target);
 else
 fprintf (stderr, "Cannot manage widget named %s0, name);
 }

 void
 unmanage (w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 String name = (String) client_data;
 Widget target = XtNameToWidget (toplevel, name);
 if (target != NULL)
 XtUnmanageChild (target);
 else
 fprintf (stderr, "Cannot unmanage widget named %s0, name);
 }

Now we can rewrite the quitbox example using two modules. The main window definition is listed in the source code

 module mainwindow

 procedure
 manage (string);
 create (asciz_table);

 list confirm_quit : procedures {
 create (asciz_table ("toplevel", "quit_dialog"));
 manage ("*quit_dialog");
 };

 object quitb : XmPushButton {
 arguments {
 XmNlabelString = "Quit";
 };
 callbacks {
 XmNactivateCallback = procedures confirm_quit;
 };
 };

 object root : XmMainWindow {
 controls {
 XmPushButton quitb;
 };
 };

 end module;

The XmNactivateCallback of the Quit PushButton now creates the confirmation dialog and manages it. The
parent and widget to be created are passed to the creation callback in an asciz_table. Because the create()
callback removes itself, subsequent invocations of the callback only manage the dialog. XtNameToWidget()
expects a qualified widget name, much like resource specifications, so we must precede the name passed to the
manage() callback with an asterisk. The quit_dialog is now defined in a separate module, shown in the source
code

 module quitbox

27 Advanced UIL Programming 27.5.2 Creating Widgets

740

 procedure
 quit();

 object quit_dialog : XmQuestionDialog {
 controls {
 Xm_Help {
 ! Disable the help button for now.
 arguments {
 XmNsensitive = false;
 };
 };
 };
 callbacks {
 XmNokCallback = procedure quit();
 };
 arguments {
 XmNmessageString = "Really Quit?";
 XmNdialogTitle = "Confirm Quit";
 XmNdialogStyle = XmDIALOG_FULL_APPLICATION_MODAL;
 };
 };

 end module;

The only potential disadvantage of this method of creating dialogs is that string−to−widget lookup is slightly slower
than using a widget pointer directly. For most moderately−sized widget trees, the difference should not be noticeable.
The creation callback is a useful tool that can be especially helpful when you are prototyping an interface.

27.6 Summary

Once you've learned the basics of UIL, you can begin to take full advantage of its features. Some advanced techniques
include: defining non−Motif widgets; using lists to shorten modules and create reusable interface components, and
using UIL to rapidly prototype the interface for an application. As UIL modules grow, it is important to pay attention
to their organization. A well−organized set of modules can ease the task of editing and maintaining an interface. When
you develop a real−world application with UIL, it is also important to consider the best location for resource settings.
While most fixed resources can be set in UIL and possibly modified in application code, it is usually best to specify
values that a user might want to change in an app−defaults file.

27 Advanced UIL Programming 27.6 Summary

741

28 Additional Example Programs

This appendix provides some additional example programs that illustrate techniques not discussed in the body of the
book.

This appendix contains a number of programs that provide more realistic examples of how the Motif toolkit is used.
Most of the examples are also intended to encourage further investigation into other X−related topics, such as the use
of app−defaults files, fallback resources, and command−line option parsing. Our discussion of the examples is fairly
limited; see the comments in the code for explanations of various implementation details.

28.1 A Postcard Interface for Mail

The first example provides a GUI wrapper for a mail program. The user−interface model is that of a postcard. The
program does not provide any facilities for reading mail messages; it simply allows the user to compose and send one
message at a time. Before compiling the program shown in the source code check the definition of MAIL_CMD. If you
don' t have zmai l on your system, set the value to the name of the mai l agent you normal ly use.
XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1. XmFONTLIST_DEFAULT_TAG replaces XmSTRING_DEFAULT_CHARSET in
Motif 1.2.

 /* Written by Dan Heller. Copyright 1991, 1993, Z−Code Software Corp.
 * This program is freely distributable without licensing fees and
 * is provided without guarantee or warrantee expressed or implied.
 * This program is −not− in the public domain.
 */

 /* zcard.c −− a postcard interface for zmail.
 */
 #include <stdio.h>
 #include <Xm/List.h>
 #include <Xm/LabelG.h>
 #include <Xm/PushB.h>
 #include <Xm/MessageB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Form.h>
 #include <Xm/Text.h>

 #include "zcard.icon"

 /* redefine to "mush" or "Mail" if you don't have Z−Mail */
 #define MAIL_CMD "mush"

 extern char *strcpy();
 Widget list_w, text_w, to_w, subj_w;
 Widget CreateLabeledTextForm();
 void add_user(), send_it(), add_to_to(), move();

 /* These only take effect if the app−defaults file is not found */
 String fallback_resources[] = {
 "*XmText.fontList: −*−courier−medium−r−*−−12−*",
 "*XmText.translations: #override Ctrl<Key>D: activate() 0 Ctrl<Key>U: kill−to−start−of−line() 0 Ctrl<Key>W: delete−previous−word() 0 <Key>osfDelete: delete−previous−character()",
 "*msg−text.rows: 15",

742

 "*msg−text.columns: 35",
 "*XmPushButton.fontList: −*−new century schoolbook−bold−r−*−−12−*",
 "*XmPushButtonGadget.fontList: −*−new century schoolbook−bold−r−*−−12−*",
 "*XmLabelGadget.fontList: −*−new century schoolbook−bold−r−*−−12−*",
 "*XmList.fontList: −*−courier−medium−r−*−−12−*",
 "*zcard.labelString: Z−Card",
 "*title.labelString: Quick Message Sender",
 "*actions*leftAttachment: attach_position",
 "*actions*rightAttachment: attach_position",
 "*to−label.labelString: To:",
 "*to−list.visibleItemCount: 6",
 "*subject−label.labelString: Subject:",
 "*add−btn.labelString: Add",
 "*delete−btn.labelString: Delete",
 "*send−btn.labelString: Send",
 "*quit−btn.labelString: Quit",
 "*error.messageString: You must provide at least one message recipient.",
 NULL
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, label, left, heading, icon, titles;
 Widget actions, rc, w, send_w;
 XtAppContext app;
 Arg args[5];
 int n;
 Pixel fg, bg;
 Pixmap pixmap;
 extern void exit();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "Zcard", NULL, 0,
 &argc, argv, fallback_resources,
 XmNallowShellResize, True,
 NULL);

 /* The form is the general layout manager for the application.
 * It contains two main widgets: a rowcolumn and a scrolled text.
 */
 rc = XtVaCreateWidget ("rc",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 /* left side is a RowColumn −− a child of the bigger RowColumn */
 left = XtVaCreateWidget ("left", xmRowColumnWidgetClass, rc, NULL);

 /* start the left side with a Form to hold the heading */
 heading = XtVaCreateWidget ("heading", xmFormWidgetClass, left, NULL);

 /* create an icon to make things pretty */
 XtVaGetValues (heading,
 XmNforeground, &fg,
 XmNbackground, &bg,
 NULL);
 pixmap = XCreatePixmapFromBitmapData (XtDisplay (heading),
 RootWindowOfScreen (XtScreen (heading)),

28 Additional Example Programs 28 Additional Example Programs

743

 /* these values are defined in "zcard.icon" */
 zcard_logo_bits, zcard_logo_width, zcard_logo_height,
 fg, bg, DefaultDepthOfScreen (XtScreen (heading)));
 icon = XtVaCreateManagedWidget ("zcard_icon",
 xmLabelGadgetClass, heading,
 XmNleftAttachment, XmATTACH_FORM,
 XmNlabelType, XmPIXMAP,
 XmNlabelPixmap, pixmap,
 XmNalignment, XmALIGNMENT_END,
 NULL);

 /* identify the program */
 titles = XtVaCreateWidget ("titles",
 xmRowColumnWidgetClass, heading,
 XmNrightAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, icon,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);
 XtVaCreateManagedWidget ("zcard", xmLabelGadgetClass, titles, NULL);
 XtVaCreateManagedWidget ("title", xmLabelGadgetClass, titles, NULL);
 XtManageChild (titles);
 XtManageChild (heading);

 /* provide the "To:" prompt (see the resources above) */
 to_w = CreateLabeledTextForm (left, "to−label", "to");

 /* prompt for the subject (see the resources above) */
 subj_w = CreateLabeledTextForm (left, "subject−label", "subject−text");

 /* when user hits <Return>, advance caret to next input item */
 XtAddCallback (subj_w, XmNactivateCallback, move, NULL);

 /* right side is a scrolled text region for letter input. */
 n = 0;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtSetArg (args[n], XmNscrollVertical, True); n++;
 XtSetArg (args[n], XmNscrollHorizontal, True); n++;
 text_w = XmCreateScrolledText (rc, "msg−text", args, n);
 XtManageChild (text_w);

 /* Ctrl−D in text_w causes activate() which calls send_it() */
 XtAddCallback (text_w, XmNactivateCallback, send_it, send_w);

 /* Create a ScrolledList of all the recipients entered in To: */
 n = 0;
 XtSetArg (args[n], XmNscrollingPolicy, XmAUTOMATIC); n++;
 XtSetArg (args[n], XmNselectionPolicy, XmEXTENDED_SELECT); n++;
 XtSetArg (args[n], XmNlistSizePolicy, XmRESIZE_IF_POSSIBLE); n++;
 list_w = XmCreateScrolledList (left, "to−list", args, n);
 XtAddCallback (list_w, XmNdefaultActionCallback, add_to_to, to_w);
 XtManageChild (list_w);

 /* Any command line args are recipients */
 while (argc−− > 1) {
 XmString str = XmStringCreateLocalized (*++argv);
 XmListAddItemUnselected (list_w, str, 0);
 XmStringFree (str);
 }

28 Additional Example Programs 28 Additional Example Programs

744

 /* Add, Delete, Send and Quit buttons −− space equally */
 actions = XtVaCreateWidget ("actions", xmFormWidgetClass, left, NULL);

 send_w = XtVaCreateManagedWidget ("send−btn",
 xmPushButtonWidgetClass, actions,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 0,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 23,
 NULL);
 XtAddCallback (send_w, XmNactivateCallback, send_it, NULL);

 w = XtVaCreateManagedWidget ("add−btn",
 xmPushButtonWidgetClass, actions,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 26,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 46,
 NULL);
 /* clicking on Add user adds user to scrolled list */
 XtAddCallback (w, XmNactivateCallback, add_user, (XtPointer) 1);

 /* Make it appear as tho hitting return in To: text widget
 * is just like clicking on the Add button.
 */
 XtAddCallback (to_w, XmNactivateCallback, add_user, w);

 w = XtVaCreateManagedWidget ("delete−btn",
 xmPushButtonWidgetClass, actions,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 49,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 75,
 NULL);
 /* clicking on delete calls add_user() with a 0 client_data */
 XtAddCallback (w, XmNactivateCallback, add_user, (XtPointer) 0);

 w = XtVaCreateManagedWidget ("quit−btn",
 xmPushButtonWidgetClass, actions,
 XmNleftAttachment, XmATTACH_POSITION,
 XmNleftPosition, 78,
 XmNrightAttachment, XmATTACH_POSITION,
 XmNrightPosition, 100,
 NULL);
 XtAddCallback (w, XmNactivateCallback, exit, NULL);
 XtManageChild (actions);

 XtManageChild (left);
 XtManageChild (rc);

 /* specify tab groups in the order we'd like tabbing to follow */
 XtVaSetValues (to_w, XmNnavigationType, XmEXCLUSIVE_TAB_GROUP, NULL);
 XtVaSetValues (subj_w, XmNnavigationType, XmEXCLUSIVE_TAB_GROUP, NULL);
 XtVaSetValues (text_w, XmNnavigationType, XmEXCLUSIVE_TAB_GROUP, NULL);
 XtVaSetValues (actions, XmNnavigationType, XmEXCLUSIVE_TAB_GROUP, NULL);
 XtVaSetValues (list_w, XmNnavigationType, XmEXCLUSIVE_TAB_GROUP, NULL);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

28 Additional Example Programs 28 Additional Example Programs

745

 /* add_user() −− add an address to the list of recipients.
 * The user clicked on either Add or Delete buttons, or he hit return in
 * the To: text field. In the latter case, client data is the add_btn,
 * so call that widget's ArmAndActivate() action proc.
 */
 void
 add_user(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 int data = (int) client_data;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;

 if (w == to_w) {
 /* User hit return... make it look as tho he clicked on Add */
 XtCallActionProc (data, "ArmAndActivate", cbs−>event, NULL, 0);
 return;
 }

 /* User clicked on Add if data == 1, or delete otherwise */
 if (data) {
 /* get the value of the To: text widget */
 char *text = XmTextGetString (to_w);
 XmString str = XmStringCreateLocalized (text);
 if (text && *text) /* if not a null string, add to List */
 XmListAddItemUnselected (list_w, str, 0);
 XmStringFree (str);
 XtFree (text);
 XmTextSetString (to_w, NULL); /* reset so user can add more */
 }
 else {
 /* user clicked on Delete; delete all selected names */
 int *sel, n;
 if (!XmListGetSelectedPos (list_w, &sel, &n))
 return;
 /* Must delete in reverse order or positions get messed up! */
 while (n−−)
 XmListDeletePos (list_w, sel[n]);
 XtFree (sel);
 }
 }

 /* add_to_to() −− callback for double−clicking a list item that
 * causes the selected item to be added to To: text. Now
 * the user can edit the address.
 */
 void
 add_to_to(list_w, client_data, call_data)
 Widget list_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget to_w = (Widget) client_data;
 XmListCallbackStruct *cbs = (XmListCallbackStruct *) call_data;
 char *text;

 XmStringGetLtoR (cbs−>item, XmFONTLIST_DEFAULT_TAG, &text);
 XmTextSetString (to_w, text);
 XmTextSetInsertionPosition (to_w, strlen(text));
 XtFree (text);

28 Additional Example Programs 28 Additional Example Programs

746

 XmListDeletePos (list_w, cbs−>item_position);
 /* it's a long way, but traverse to To: text field */
 XmProcessTraversal (list_w, XmTRAVERSE_NEXT_TAB_GROUP);
 }

 /* send_it() −− callback for when user clicked on Send. Build
 * a command line, use popen() to open pipe to mail command, send
 * text data to it and then exit. The message is sent to all
 * of the addresses that have been specified and are shown in the
 * list.
 */
 void
 send_it(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 Widget send_w;
 XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct *) call_data;
 char *text, *subj, cmd[BUFSIZ], *p, *dummy, *getenv();
 int n, i, status;
 XmString *list;
 FILE *pp, *popen();

 if (w == text_w) {
 send_w = (Widget) client_data;
 XtCallActionProc (send_w, "ArmAndActivate", cbs−>event, NULL, 0);
 return;
 }

 /* if something was left in the To: field, grab it */
 text = XmTextGetString (to_w);
 if (text != 0 && *text != 0) {
 XmString str = XmStringCreateLocalized (text);
 XmListAddItemUnselected (list_w, str, 0);
 XmTextSetString (to_w, "");
 XmStringFree (str);
 XtFree (text);
 }

 /* Get the list of users entered */
 XtVaGetValues (list_w,
 XmNitems, &list,
 XmNitemCount, &n,
 NULL);
 if (n == 0) {
 static Widget dialog;
 /* user goofed −− must provide at least one recipient */
 if (!dialog) {
 Arg args[5];
 n = 0;
 XtSetArg (args[n], XmNdialogStyle,
 XmDIALOG_APPLICATION_MODAL); n++;
 dialog = XmCreateErrorDialog (to_w, "error", args, n);
 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_HELP_BUTTON));
 XtUnmanageChild (
 XmMessageBoxGetChild (dialog, XmDIALOG_CANCEL_BUTTON));
 }
 XtManageChild (dialog);
 return;

28 Additional Example Programs 28 Additional Example Programs

747

 }

 /* get the subject (may be empty) */
 subj = XmTextGetString (subj_w);

 /* build command line */
 if (!(p = getenv ("MAIL_CMD")))
 p = MAIL_CMD;
 p = strcpy (cmd, p);
 p += strlen (cmd);
 *p++ = ' ';
 if (subj && *subj) {
 /* if subject not empty, add to mail command */
 sprintf (p, "−s
 p += strlen (p);
 }

 /* Add each user in the List to the command line */
 for (i = 0; i < n; i++) {
 XmStringGetLtoR (list[i], XmFONTLIST_DEFAULT_TAG, &dummy);
 p += strlen (strcpy (p, dummy));
 if (i < n−1) /* more to come yet... */
 *p++ = ',', *p++ = ' '; /* separate addresses w/commas */
 }

 /* open pipe to mail command */
 if (!(pp = popen (cmd, "w"))) {
 fprintf (stderr, "Can't execute");
 perror (cmd);
 return;
 }
 /* give it the text user typed (may be empty) */
 text = XmTextGetString (text_w);
 fputs (text, pp);
 fputc ('0, pp); /* make sure there's a terminating newline */
 status = pclose (pp); /* close mail program */

 XtFree (text);
 XtFree (subj);
 if (status == 0) {
 XmTextSetString (to_w, NULL);
 XmTextSetString (text_w, NULL);
 XmTextSetString (subj_w, NULL);
 XmListDeleteAllItems (list_w);
 }
 /* send complete −− start back at beginning */
 XmProcessTraversal (w, XmTRAVERSE_HOME);
 }

 /* move() −− callback for when the user hits return in the Text widget */
 void
 move(text_w, client_data, call_data)
 Widget text_w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmProcessTraversal (text_w, XmTRAVERSE_NEXT_TAB_GROUP);
 }

 /* CreateLabeledTextForm() −− create a Form widget that has a label on
 * the left and a Text widget to the right. Attach perimeter edges to

28 Additional Example Programs 28 Additional Example Programs

748

 * form. We use it twice in the program, so make a function out of it.
 */
 Widget
 CreateLabeledTextForm(parent, label_name, text_name)
 Widget parent;
 char *label_name, *text_name;
 {
 Widget form, label, ret;

 form = XtVaCreateWidget ("form",
 xmFormWidgetClass, parent,
 XmNorientation, XmHORIZONTAL,
 NULL);
 label = XtVaCreateManagedWidget (label_name,
 xmLabelGadgetClass, form,
 XmNleftAttachment, XmATTACH_FORM,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);
 ret = XtVaCreateManagedWidget (text_name,
 xmTextWidgetClass, form,
 XmNleftAttachment, XmATTACH_WIDGET,
 XmNleftWidget, label,
 XmNtopAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 NULL);
 XtManageChild (form);

 return ret;
 }

the figure shows the output of the program.

Output of zcard.c

28 Additional Example Programs 28 Additional Example Programs

749

28.2 A Bitmap Display Utility

The xshowbitmap program is a useful utility for reviewing a group of bitmap files. The filenames for the bitmaps can
be specified on the command line, sent through a pipe, or typed into stdin. All of the bitmaps are drawn into a
pixmap, which is rendered into a DrawingArea widget. The DrawingArea is used as the work window for a
ScrolledWindow, so that we can demonstrate application−defined scrolling for the Motif ScrolledWindow. The
bitmaps are displayed in an equal number of rows and columns if possible. Alternatively, you can specify either the
number of rows or the number of columns using the −rows or −columns command−line option, respectively.

The example in the source code demonstrates the use of Xt mechanisms for adding command−line options and
application−level resources in an application. For an explanation of these Xt features, see Volume Four, X Toolkit
Intrinsics Programming Manual. For details on the Xlib functions for reading and manipulating bitmaps, see
Volume One, Xlib Programming Manual. XtSetLanguageProc() is only available in X11R5; there is no
corresponding function in X11R4.

 /* xshowbitmap.c −− displays a set of bitmaps specified on the command
 * line, from a pipe, or typed into stdin. Bitmaps must be specified
 * as file names.
 *
 * Usage: xshowbitmap
 * −s sorts the bitmaps in order of size with largest first
 * −v verbose mode for when input is redirected to stdin
 * −w width of viewport window
 * −h height of viewport window
 * −fg foreground color
 * −bg background color
 * −label labels each bitmap with its corresponding filename; default
 * −nolabel doesn't label each bitmap with its filename
 * −grid N line width for grid between bitmaps; defaults to 1
 * −rows N number of rows; cannot be used with −cols
 * −cols N number of columns; cannot be used with −rows
 * −fn font font for bitmap filenames
 * −bw max−width excludes bitmaps larger than this width; defaults to 64
 * −bh max−height excludes bitmaps larger than this height; defaults to 64
 * − indicates to read from stdin; piping doesn't require the '−'
 * argument
 * no arguments reads from stdin
 *
 * Example usage:
 * xshowbitmaps /usr/include/X11/bitmaps/*
 */

 #include <stdio.h>
 #include <X11/Xos.h>
 #include <Xm/ScrolledW.h>
 #include <Xm/DrawingA.h>
 #include <Xm/ScrollBar.h>

 #ifdef max
 #undef max
 #endif
 #define max(a,b) ((int)(a)>(int)(b)?(int)(a):(int)(b))
 #define min(a,b) ((int)(a)<(int)(b)?(int)(a):(int)(b))

 typedef struct {
 char *name;
 int len;

28 Additional Example Programs 28.2 A Bitmap Display Utility

750

 unsigned int width, height;
 Pixmap bitmap;
 } Bitmap;

 /* Resrcs is an object that contains global variables that we want the
 * user to be able to initialize through resources or command line options.
 * XtAppInitialize() initializes the fields in this data structure to values
 * indicated by the XrmOptionsDescRec structure defined later.
 */
 struct _resrcs {
 Boolean sort; /* sort the bitmaps */
 Boolean verbose; /* loading bitmaps verbosely */
 Boolean label_bitmap; /* whether to label bitmaps */
 int max_width, max_height; /* largest allowable bitmap */
 unsigned int grid; /* line width between bitmaps */
 Pixel fg, bg; /* colors of bitmaps */
 XFontStruct *font; /* font for bitmap labels */
 Dimension view_width, view_height; /* initial clip window size */
 int rows, cols; /* forcefully set #rows/cols */
 } Resrcs;

 /* .Xdefaults or app−defaults resources. The last field in each structure
 * is used as the default values for the field in the Resrcs struct above.
 */
 static XtResource resources[] = {
 { "sort", "Sort", XmRBoolean, sizeof (Boolean),
 XtOffsetOf (struct _resrcs, sort), XmRImmediate, False },
 { "verbose", "Verbose", XmRBoolean, sizeof (Boolean),
 XtOffsetOf (struct _resrcs,verbose), XmRImmediate, False },
 { "labelBitmap", "LabelBitmap", XmRBoolean, sizeof (Boolean),
 XtOffsetOf (struct _resrcs, label_bitmap), XmRImmediate,
 (char *) True },
 { "grid", "Grid", XmRInt, sizeof (int),
 XtOffsetOf (struct _resrcs, grid), XmRImmediate, (char *) 1 },
 { "bitmapWidth", "BitmapWidth", XmRInt, sizeof (int),
 XtOffsetOf (struct _resrcs, max_width), XmRImmediate, (char *) 64 },
 { "bitmapHeight", "BitmapHeight", XmRInt, sizeof (int),
 XtOffsetOf (struct _resrcs, max_height), XmRImmediate, (char *) 64 },
 { XmNfont, XmCFont, XmRFontStruct, sizeof (XFontStruct *),
 XtOffsetOf (struct _resrcs, font), XmRString, XtDefaultFont },
 { XmNforeground, XmCForeground, XmRPixel, sizeof (Pixel),
 XtOffsetOf (struct _resrcs, fg), XmRString, XtDefaultForeground },
 { XmNbackground, XmCBackground, XmRPixel, sizeof (Pixel),
 XtOffsetOf (struct _resrcs, bg), XmRString, XtDefaultBackground },
 { "view−width", "View−width", XmRDimension, sizeof (Dimension),
 XtOffsetOf (struct _resrcs, view_width), XmRImmediate,
 (char *) 500 },
 { "view−height", "View−height", XmRDimension, sizeof (Dimension),
 XtOffsetOf (struct _resrcs, view_height), XmRImmediate,
 (char *) 300 },
 { "rows", "Rows", XmRInt, sizeof (int),
 XtOffsetOf (struct _resrcs, rows), XmRImmediate, 0 },
 { "cols", "Cols", XmRInt, sizeof (int),
 XtOffsetOf (struct _resrcs, cols), XmRImmediate, 0 },
 };

 /* If the following command line args (1st field) are found, set the
 * associated resource values (2nd field) to the given value (4th field).
 */
 static XrmOptionDescRec options[] = {
 { "−sort", "sort", XrmoptionNoArg, "True" },

28 Additional Example Programs 28.2 A Bitmap Display Utility

751

 { "−v", "verbose", XrmoptionNoArg, "True" },
 { "−fn", "font", XrmoptionSepArg, NULL },
 { "−fg", "foreground", XrmoptionSepArg, NULL },
 { "−bg", "background", XrmoptionSepArg, NULL },
 { "−w", "view−width", XrmoptionSepArg, NULL },
 { "−h", "view−height", XrmoptionSepArg, NULL },
 { "−rows", "rows", XrmoptionSepArg, NULL },
 { "−cols", "cols", XrmoptionSepArg, NULL },
 { "−bw", "bitmapWidth", XrmoptionSepArg, NULL },
 { "−bh", "bitmapHeight", XrmoptionSepArg, NULL },
 { "−bitmap_width", "bitmapWidth", XrmoptionSepArg, NULL },
 { "−bitmap_height", "bitmapHeight", XrmoptionSepArg, NULL },
 { "−label", "labelBitmap", XrmoptionNoArg, "True" },
 { "−nolabel", "labelBitmap", XrmoptionNoArg, "False" },
 { "−grid", "grid", XrmoptionSepArg, NULL },
 };

 /* size_cmp() −− used by qsort to sort bitmaps into alphabetical order
 * This is used when the "sort" resource is true or when −sort is given.
 */
 size_cmp(b1, b2)
 Bitmap *b1, *b2;
 {
 int n = (int) (b1−>width * b1−>height) − (int) (b2−>width * b2−>height);
 if (n)
 return n;
 return strcmp (b1−>name, b2−>name);
 }

 /* int_sqrt() −− get the integer square root of n. Used to put the
 * bitmaps in an equal number of rows and colums.
 */
 int_sqrt(n)
 register int n;
 {
 register int i, s = 0, t;
 for (i = 15; i >= 0; i−−) {
 t = (s | (1L << i));
 if (t * t <= n)
 s = t;
 }
 return s;
 }

 /* global variables that are not changable thru resources or command
 * line options.
 */
 Widget drawing_a, vsb, hsb;
 Pixmap pixmap; /* used the as image for Label widget */
 GC gc;
 Display *dpy;
 unsigned int cell_width, cell_height;
 unsigned int pix_hoffset, pix_voffset, sw_hoffset, sw_voffset;
 void redraw();

 main(argc, argv)
 int argc;
 char *argv[];
 {
 extern char *strcpy();
 XtAppContext app;

28 Additional Example Programs 28.2 A Bitmap Display Utility

752

 Widget toplevel, scrolled_w;
 Bitmap *list = (Bitmap *) NULL;
 char buf[128], *p;
 XFontStruct *font;
 int istty = isatty(0), redirect = !istty, i = 0, total = 0;
 unsigned int bitmap_error;
 int j, k;
 void scrolled(), expose_resize();

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtAppInitialize (&app, "XShowbitmap",
 options, XtNumber (options), &argc, argv, NULL, NULL, 0);
 dpy = XtDisplay (toplevel);

 XtGetApplicationResources (toplevel, &Resrcs,
 resources, XtNumber (resources), NULL, 0);

 if (Resrcs.rows && Resrcs.cols)
 XtWarning ("You can't specify both rows *and* columns.");

 font = Resrcs.font;

 /* check to see if we have to load the bitmaps from stdin */
 if (!argv[1] || !strcmp(argv[1], "−")) {
 printf ("Loading bitmap names from standard input. ");
 if (istty) {
 puts ("End with EOF or .");
 redirect++;
 }
 else
 puts ("Use −v to view bitmap names being loaded.");
 }
 else if (!istty && strcmp(argv[1], "−")) {
 printf ("%s: either use pipes or specify bitmap names.0,
 argv[0]);
 exit (1);
 }

 /* Now, load the bitmap file names */
 while (*++argv || redirect) {
 if (!redirect)
 /* this may appear at the end of a list of filenames */
 if (!strcmp (*argv, "−"))
 redirect++; /* switch to stdin prompting */
 else
 (void) strcpy (buf, *argv);
 if (redirect) {
 if (istty)
 printf ("Bitmap file: "), fflush(stdout);
 if (!fgets (buf, sizeof buf − 1, stdin) || !strcmp (buf, ".0))
 break;
 buf[strlen (buf) − 1] = 0; /* plug a null at the newline */
 }
 if (!buf[0])
 continue;
 if (Resrcs.verbose)
 printf ("Loading
 if (i == total) {
 total += 10; /* allocate bitmap structures in groups of 10 */
 if (!(list = (Bitmap *) XtRealloc

28 Additional Example Programs 28.2 A Bitmap Display Utility

753

 (list, total * sizeof (Bitmap))))
 XtError ("Not enough memory for bitmap data");
 }
 if ((bitmap_error = XReadBitmapFile (dpy, DefaultRootWindow(dpy),
 buf, &list[i].width, &list[i].height, &list[i].bitmap,
 &j, &k)) == BitmapSuccess) {
 if (p = rindex (buf, '/'))
 p++;
 else
 p = buf;
 if (Resrcs.max_height && list[i].height > Resrcs.max_height ||
 Resrcs.max_width && list[i].width > Resrcs.max_width) {
 printf ("%s: bitmap too big0, p);
 XFreePixmap (dpy, list[i].bitmap);
 continue;
 }
 list[i].len = strlen (p);
 list[i].name = strcpy (XtMalloc (list[i].len + 1), p);
 if (Resrcs.verbose)
 printf ("size: %dx%d0, list[i].width, list[i].height);
 i++;
 }
 else {
 printf ("Couldn't load bitmap: ");
 if (!istty && !Resrcs.verbose)
 printf("
 switch (bitmap_error) {
 case BitmapOpenFailed : puts ("open failed."); break;
 case BitmapFileInvalid : puts ("bad file format."); break;
 case BitmapNoMemory : puts ("not enough memory."); break;
 }
 }
 }
 if ((total = i) == 0) {
 puts ("couldn't load any bitmaps.");
 exit (1);
 }
 printf ("Total bitmaps loaded: %d0, total);
 if (Resrcs.sort) {
 printf ("Sorting bitmaps...");
 fflush (stdout);
 qsort (list, total, sizeof (Bitmap), size_cmp);
 putchar ('0);
 }

 /* calculate size for pixmap by getting the dimensions of each bitmap. */
 printf ("Calculating sizes for pixmap...");
 fflush (stdout);
 for (i = 0; i < total; i++) {
 if (list[i].width > cell_width)
 cell_width = list[i].width;
 if (list[i].height > cell_height)
 cell_height = list[i].height;
 if (Resrcs.label_bitmap && (j = XTextWidth
 (font, list[i].name, list[i].len)) > cell_width)
 cell_width = j;
 }

 /* Compensate for vertical font height if label_bitmap is true.
 * Add value of grid line weight and a 6 pixel padding for aesthetics.
 */

28 Additional Example Programs 28.2 A Bitmap Display Utility

754

 cell_height += Resrcs.grid + 6 +
 Resrcs.label_bitmap * (font−>ascent + font−>descent);
 cell_width += Resrcs.grid + 6;

 /* if user didn't specify row/column layout figure it out ourselves.
 * optimize layout by making it "square".
 */
 if (!Resrcs.rows && !Resrcs.cols) {
 Resrcs.cols = int_sqrt (total);
 Resrcs.rows = (total + Resrcs.cols − 1) / Resrcs.cols;
 }
 else if (Resrcs.rows)
 /* user specified rows −− figure out columns */
 Resrcs.cols = (total + Resrcs.rows − 1) / Resrcs.rows;
 else
 /* user specified cols −− figure out rows */
 Resrcs.rows = (total + Resrcs.cols − 1) / Resrcs.cols;

 printf ("Creating pixmap area of size %dx%d (%d rows, %d cols)0,
 Resrcs.cols * cell_width, Resrcs.rows * cell_height,
 Resrcs.rows, Resrcs.cols);

 if (!(pixmap = XCreatePixmap (dpy, DefaultRootWindow(dpy),
 Resrcs.cols * cell_width, Resrcs.rows * cell_height,
 DefaultDepthOfScreen (XtScreen (toplevel)))))
 XtError ("Can't Create pixmap.");

 if (!(gc = XCreateGC (dpy, pixmap, NULL, 0)))
 XtError ("Can't create gc.");
 XSetForeground (dpy, gc, Resrcs.bg); /* init GC's foreground to bg */
 XFillRectangle (dpy, pixmap, gc, 0, 0,
 Resrcs.cols * cell_width, Resrcs.rows * cell_height);
 XSetForeground (dpy, gc, Resrcs.fg);
 XSetBackground (dpy, gc, Resrcs.bg);
 XSetFont (dpy, gc, font−>fid);
 if (Resrcs.grid) {
 if (Resrcs.grid != 1)
 /* Line weight of 1 is faster when left as 0 (the default) */
 XSetLineAttributes (dpy, gc, Resrcs.grid, 0, 0, 0);
 for (j = 0; j <= Resrcs.rows * cell_height; j += cell_height)
 XDrawLine (dpy, pixmap, gc, 0, j, Resrcs.cols * cell_width, j);
 for (j = 0; j <= Resrcs.cols * cell_width; j += cell_width)
 XDrawLine (dpy, pixmap, gc, j, 0, j, Resrcs.rows * cell_height);
 }

 /* Draw each of the bitmaps into the big picture */
 for (i = 0; i < total; i++) {
 int x = cell_width * (i % Resrcs.cols);
 int y = cell_height * (i / Resrcs.cols);
 if (Resrcs.label_bitmap)
 XDrawString (dpy, pixmap, gc,
 x + 5 + Resrcs.grid / 2, y + font−>ascent + Resrcs.grid / 2,
 list[i].name, list[i].len);
 if (DefaultDepthOfScreen (XtScreen (toplevel)) > 1)
 XCopyPlane (dpy, list[i].bitmap, pixmap, gc,
 0, 0, list[i].width, list[i].height,
 x + 5 + Resrcs.grid / 2,
 y + font−>ascent + font−>descent + Resrcs.grid / 2, 1L);
 else
 XCopyArea (dpy, list[i].bitmap, pixmap, gc,
 0, 0, list[i].width, list[i].height,

28 Additional Example Programs 28.2 A Bitmap Display Utility

755

 x + 5 + Resrcs.grid / 2,
 y + font−>ascent + font−>descent + Resrcs.grid / 2);
 XFreePixmap (dpy, list[i].bitmap);
 XtFree (list[i].name);
 }
 XtFree (list);

 /* Now we get into the Motif stuff */

 /* Create automatic Scrolled Window */
 scrolled_w = XtVaCreateManagedWidget ("scrolled_w",
 xmScrolledWindowWidgetClass, toplevel,
 XmNscrollingPolicy, XmAPPLICATION_DEFINED,
 XmNvisualPolicy, XmVARIABLE,
 XmNshadowThickness, 0,
 NULL);

 /* Create a drawing area as a child of the ScrolledWindow.
 * The DA's size is initialized (arbitrarily) to view_width and
 * view_height. The ScrolledWindow will expand to this size.
 */
 drawing_a = XtVaCreateManagedWidget ("drawing_a",
 xmDrawingAreaWidgetClass, scrolled_w,
 XmNwidth, Resrcs.view_width,
 XmNheight, Resrcs.view_height,
 NULL);
 XtAddCallback (drawing_a, XmNexposeCallback, expose_resize, NULL);
 XtAddCallback (drawing_a, XmNresizeCallback, expose_resize, NULL);

 /* Application−defined ScrolledWindows won't create their own
 * ScrollBars. So, we create them ourselves as children of the
 * ScrolledWindow widget. The vertical ScrollBar's maximum size is
 * the number of rows that exist (in unit values). The horizontal
 * ScrollBar's maximum width is represented by the number of columns.
 */
 vsb = XtVaCreateManagedWidget ("vsb",
 xmScrollBarWidgetClass, scrolled_w,
 XmNorientation, XmVERTICAL,
 XmNmaximum, Resrcs.rows,
 XmNsliderSize, min (Resrcs.view_height / cell_height, Resrcs.rows),
 NULL);
 if (Resrcs.view_height / cell_height > Resrcs.rows)
 sw_voffset = (Resrcs.view_height − Resrcs.rows * cell_height) / 2;
 hsb = XtVaCreateManagedWidget ("hsb",
 xmScrollBarWidgetClass, scrolled_w,
 XmNorientation, XmHORIZONTAL,
 XmNmaximum, Resrcs.cols,
 XmNsliderSize, min (Resrcs.view_width / cell_width, Resrcs.cols),
 NULL);
 if (Resrcs.view_width / cell_width > Resrcs.cols)
 sw_hoffset = (Resrcs.view_width − Resrcs.cols * cell_width) / 2;

 /* Allow the ScrolledWindow to initialize itself accordingly...*/
 XmScrolledWindowSetAreas (scrolled_w, hsb, vsb, drawing_a);

 XtAddCallback (vsb, XmNvalueChangedCallback, scrolled, XmVERTICAL);
 XtAddCallback (hsb, XmNvalueChangedCallback, scrolled, XmHORIZONTAL);
 XtAddCallback (vsb, XmNdragCallback, scrolled, XmVERTICAL);
 XtAddCallback (hsb, XmNdragCallback, scrolled, XmHORIZONTAL);

 XtRealizeWidget (toplevel);

28 Additional Example Programs 28.2 A Bitmap Display Utility

756

 XtAppMainLoop (app);
 }

 /* scrolled() −− react to scrolling actions; cbs−>value is ScrollBar's
 * new position.
 */
 void
 scrolled(scrollbar, client_data, call_data)
 Widget scrollbar;
 XtPointer client_data;
 XtPointer call_data;
 {
 int orientation = (int) client_data;
 XmScrollBarCallbackStruct *cbs =
 (XmScrollBarCallbackStruct *) call_data;

 if (orientation == XmVERTICAL)
 pix_voffset = cbs−>value * cell_height;
 else
 pix_hoffset = cbs−>value * cell_width;
 redraw (XtWindow (drawing_a));
 }

 /* expose_resize() −− handles both expose and resize (configure) events.
 * For XmCR_EXPOSE, just call redraw() and return. For resizing,
 * we must calculate the new size of the viewable area and possibly
 * reposition the pixmap's display and position offset. Since we
 * are also responsible for the ScrollBars, adjust them accordingly.
 */
 void
 expose_resize(drawing_a, client_data, call_data)
 Widget drawing_a;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmDrawingAreaCallbackStruct *cbs =
 (XmDrawingAreaCallbackStruct *) call_data;
 Dimension view_width, view_height, oldw, oldh;
 int do_clear = 0;

 if (cbs−>reason == XmCR_EXPOSE) {
 redraw (cbs−>window);
 return;
 }
 oldw = Resrcs.view_width;
 oldh = Resrcs.view_height;

 /* Unfortunately, the cbs−>event field is NULL, we have to have
 * get the size of the drawing area manually.
 */
 XtVaGetValues (drawing_a,
 XmNwidth, &Resrcs.view_width,
 XmNheight, &Resrcs.view_height,
 NULL);

 /* Get the size of the viewable area in "units lengths" where
 * each unit is the cell size for each dimension. This prevents
 * rounding error for the {vert,horiz}_start values later.
 */
 view_width = Resrcs.view_width / cell_width;
 view_height = Resrcs.view_height / cell_height;

28 Additional Example Programs 28.2 A Bitmap Display Utility

757

 /* When the user resizes the frame bigger, expose events are generated,
 * so that's not a problem, since the expose handler will repaint the
 * whole viewport. However, when the window resizes smaller, then no
 * expose event is generated. In this case, the window does not need
 * to be redisplayed if the old viewport was smaller than the pixmap.
 * (The existing image is still valid−−no redisplay is necessary.)
 * The window WILL need to be redisplayed if:
 * 1) new view size is larger than pixmap (pixmap needs to be centered).
 * 2) new view size is smaller than pixmap, but the OLD view size was
 * larger than pixmap.
 */
 if ((int) view_height >= Resrcs.rows) {
 /* The height of the viewport is taller than the pixmap, so set
 * pix_voffset = 0, so the top origin of the pixmap is shown,
 * and the pixmap is centered vertically in viewport.
 */
 pix_voffset = 0;
 sw_voffset = (Resrcs.view_height − Resrcs.rows * cell_height) / 2;
 /* Case 1 above */
 do_clear = 1;
 /* scrollbar is maximum size */
 view_height = Resrcs.rows;
 }
 else {
 /* Pixmap is larger than viewport, so viewport will be completely
 * redrawn on the redisplay. (So, we don't need to clear window.)
 * Make sure upper side has origin of a cell (bitmap).
 */
 pix_voffset = min (pix_voffset,
 (Resrcs.rows−view_height) * cell_height);
 sw_voffset = 0; /* no centering is done */
 /* Case 2 above */
 if (oldh > Resrcs.rows * cell_height)
 do_clear = 1;
 }
 XtVaSetValues (vsb,
 XmNsliderSize, max (view_height, 1),
 XmNvalue, pix_voffset / cell_height,
 XmNpageIncrement, max (view_height − 1, 1),
 NULL);

 /* identical to vertical case above */
 if ((int) view_width >= Resrcs.cols) {
 /* The width of the viewport is wider than the pixmap, so set
 * pix_hoffset = 0, so the left origin of the pixmap is shown,
 * and the pixmap is centered horizontally in viewport.
 */
 pix_hoffset = 0;
 sw_hoffset = (Resrcs.view_width − Resrcs.cols * cell_width) / 2;
 /* Case 1 above */
 do_clear = 1;
 /* scrollbar is maximum size */
 view_width = Resrcs.cols;
 }
 else {
 /* Pixmap is larger than viewport, so viewport will be completely
 * redrawn on the redisplay. (So, we don't need to clear window.)
 * Make sure left side has origin of a cell (bitmap).
 */
 pix_hoffset = min (pix_hoffset,

28 Additional Example Programs 28.2 A Bitmap Display Utility

758

 (Resrcs.cols − view_width) * cell_width);
 sw_hoffset = 0;
 /* Case 2 above */
 if (oldw > Resrcs.cols * cell_width)
 do_clear = 1;
 }
 XtVaSetValues (hsb,
 XmNsliderSize, max (view_width, 1),
 XmNvalue, pix_hoffset / cell_width,
 XmNpageIncrement, max (view_width − 1, 1),
 NULL);

 if (do_clear)
 /* XClearWindow() doesn't generate an ExposeEvent */
 XClearArea (dpy, cbs−>window, 0, 0, 0, 0, True);
 }

 void
 redraw(window)
 Window window;
 {
 XCopyArea (dpy, pixmap, window, gc, pix_hoffset, pix_voffset,
 Resrcs.view_width, Resrcs.view_height, sw_hoffset, sw_voffset);
 }

The output of the example is shown in the figure.

Output of xshowbitmap.c

28.3 A Memo Calendar

28 Additional Example Programs 28.3 A Memo Calendar

759

The xmemo program creates a main application window that contains a calendar and a list of months. Selecting a
month changes the calendar, while selecting a day causes that date to become activated. When a date is activated, the
application displays another window that contains a Text widget. The Text widget could be used to keep a memo for
that day if you were to add code to save and retrieve the contents of the memo. If you select the same day a second
time, the window is popped down. the figure shows the output of the program.

The program shown in the source code demonstrates a number of very subtle quirks about X and Motif programming.
What separates simple programs from sophisticated ones is how well you get around quirks like the ones
demonstrated in this example. For example, the way the dates in the calendar are handled is not as simple as it might
appear. Unlike the xcal example in Chapter 11, Labels and Buttons, which used a single Label widget as the calendar,
here each date in a month is a separate PushButton widget. To give the appearance that the calendar is a single flat
area, the XmNShadowThickness of each PushButton is initialized to 0. When a date is selected, the shadow
thickness for that PushButton is reset to 2 (the default) to provide visual feedback that there is a memo associated with
it. XtSetLanguageProc() is only available in X11R5; there is no corresponding function in X11R4.
XmStringCreateLocalized() is only available in Motif 1.2; XmStringCreateSimple() is the
corresponding function in Motif 1.1.

Output of xmemo.c

 /* xmemo.c −− a memo calendar program that creates a calendar on the
 * left and a list of months on the right. Selecting a month changes
 * the calendar. Selecting a day causes that date to become activated
 * and a popup window is displayed that contains a text widget. This
 * widget is presumably used to keep memos for that day. You can pop
 * up and down the window by continuing to select the date on that month.
 */
 #include <stdio.h>

28 Additional Example Programs 28.3 A Memo Calendar

760

 #include <X11/Xos.h>
 #include <Xm/List.h>
 #include <Xm/Frame.h>
 #include <Xm/LabelG.h>
 #include <Xm/PushB.h>
 #include <Xm/RowColumn.h>
 #include <Xm/Form.h>
 #include <Xm/Text.h>

 int year;
 void XmStringFreeTable(), date_dialog(), set_month();
 Widget list_w, month_label;

 typedef struct _month {
 char *name;
 Widget form, dates[6][7];
 } Month;

 Month months[] = { /* only initialize "known" data */
 { "January" }, { "February" }, { "March" }, { "April" },
 { "May" }, { "June" }, { "July" }, { "August" }, { "September" },
 { "October" }, { "November" }, { "December" }
 };

 /* These only take effect if the app−defaults file is not found */
 String fallback_resources[] = {
 "*XmPushButton.fontList: −*−courier−bold−r−*−−18−*",
 "*XmLabelGadget.fontList: −*−courier−bold−r−*−−18−*",
 "*XmList.fontList: −*−courier−medium−r−*−−18−*",
 NULL
 };

 main(argc, argv)
 int argc;
 char *argv[];
 {
 Widget toplevel, frame, rowcol, rowcol2;
 XtAppContext app;
 int month;

 XtSetLanguageProc (NULL, NULL, NULL);

 toplevel = XtVaAppInitialize (&app, "XMemo", NULL, 0,
 &argc, argv, fallback_resources, NULL);

 /* The form is the general layout manager for the application.
 * It will contain two widgets (the calendary and the list of months).
 * These widgets are laid out horizontally.
 */
 rowcol = XtVaCreateWidget ("rowcol",
 xmRowColumnWidgetClass, toplevel,
 XmNorientation, XmHORIZONTAL,
 NULL);

 /* Place a frame around the calendar... */
 frame = XtVaCreateManagedWidget ("frame1",
 xmFrameWidgetClass, rowcol, NULL);
 /* the calendar is placed inside of a RowColumn widget */
 rowcol2 = XtVaCreateManagedWidget ("rowcol2",
 xmRowColumnWidgetClass, frame, NULL);
 /* the month label changes dynamically as each month is selected */

28 Additional Example Programs 28.3 A Memo Calendar

761

 month_label = XtVaCreateManagedWidget ("month_label",
 xmLabelGadgetClass, rowcol2, NULL);
 XtVaCreateManagedWidget (" Su Mo Tu We Th Fr Sa",
 xmLabelGadgetClass, rowcol2, NULL);

 /* Create a ScrolledText that contains the months. You probably won't
 * see the ScrollBar unless the list is resized so that not all of
 * the month names are visible.
 */
 {
 XmString strs[XtNumber (months)];
 for (month = 0; month < XtNumber (months); month++)
 strs[month] = XmStringCreateLocalized (months[month].name);
 list_w = XmCreateScrolledList (rowcol, "list", NULL, 0);
 XtVaSetValues (list_w,
 XmNitems, strs,
 XmNitemCount, XtNumber (months),
 NULL);
 for (month = 0; month < XtNumber (months); month++)
 XmStringFree (strs[month]);
 XtAddCallback (list_w, XmNbrowseSelectionCallback, set_month, NULL);
 XtManageChild (list_w);
 }

 /* Determine the year we're dealing with and establish today's month */
 if (argc > 1)
 year = atoi (argv[1]);
 else {
 long time(), t = time (0);
 struct tm *today = localtime (&t);
 year = 1900 + today−>tm_year;
 month = today−>tm_mon + 1;
 }
 XmListSelectPos (list_w, month, True);

 XtManageChild (rowcol);

 XtRealizeWidget (toplevel);
 XtAppMainLoop (app);
 }

 /* set_month() −− callback routine for when a month is selected.
 * Each month is a separate, self−contained widget that contains the
 * dates as PushButton widgets. New months do not overwrite old ones,
 * so the old month must be "unmanaged" before the new month is managed.
 * If the month has not yet been created, then figure out the dates and
 * which days of the week they fall on using clever math computations...
 */
 void
 set_month(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 XmListCallbackStruct *list_cbs = (XmListCallbackStruct *) call_data;
 char text[BUFSIZ];
 register char *p;
 int i, j, m, tot, day;
 static int month = −1;

 if (list_cbs−>item_position == month + 1)

28 Additional Example Programs 28.3 A Memo Calendar

762

 return; /* same month, don't bother redrawing */

 if (month >= 0 && months[month].form)
 XtUnmanageChild (months[month].form); /* unmanage last month */
 month = list_cbs−>item_position − 1; /* set new month */
 sprintf (text, "%s %d", months[month].name, year);
 XtVaSetValues (month_label,
 XtVaTypedArg, XmNlabelString, XmRString, text, strlen (text) + 1,
 NULL);
 if (months[month].form) {
 /* it's already been created −− just manage and return */
 XtManageChild (months[month].form);
 return;
 }

 /* Create the month Form widget and dates PushButton widgets */
 months[month].form = XtVaCreateWidget ("month_form",
 xmRowColumnWidgetClass, XtParent (month_label),
 XmNorientation, XmHORIZONTAL,
 XmNnumColumns, 6,
 XmNpacking, XmPACK_COLUMN,
 NULL);

 /* calculate the dates of the month using science */
 /* day_number() takes day−of−month (1−31), returns day−of−week (0−6) */
 m = day_number (year, month + 1, 1);
 tot = days_in_month (year, month + 1);

 /* We are creating a whole bunch of PushButtons, but not all of
 * them have dates associated with them. The buttons that have
 * dates get the number sprintf'ed into it. All others get two blanks.
 */
 for (day = i = 0; i < 6; i++) {
 for (j = 0; j < 7; j++, m += (j > m && −−tot > 0)) {
 char *name;
 if (j != m || tot < 1)
 name = " ";
 else {
 sprintf(text, "%2d", ++day);
 name = text;
 }
 months[month].dates[i][j] =
 XtVaCreateManagedWidget (name,
 xmPushButtonWidgetClass, months[month].form,
 /* this is where we will hold the dialog later. */
 XmNuserData, NULL,
 XmNsensitive, (j % 7 == m && tot > 0),
 XmNshadowThickness, 0,
 NULL);
 XtAddCallback (months[month].dates[i][j],
 XmNactivateCallback, date_dialog, day);
 }
 m = 0;
 }
 XtManageChild (months[month].form);

 /* The RowColumn widget creates equally sized boxes for each child
 * it manages. If one child is bigger than the rest, all children
 * are that big. If we create all the PushButtons with a 0 shadow
 * thickness, as soon as one PushButton is selected and its thickness
 * is set to 2, the entire RowColumn resizes itself. To compensate

28 Additional Example Programs 28.3 A Memo Calendar

763

 * for the problem, we need to set the shadow thickness of at least
 * one of the buttons to 2, so that the entire RowColumn is
 * initialized to the right size. But this will cause the button to
 * have a visible border and make it appear preselected, so, we have
 * to make it appear invisible. If it is invisible then it cannot be
 * selected, but it just so happens that the last 5 days in
 * the month will never have selectable dates, so we can use any one
 * of those. To make the button invisible, we need to unmap the
 * widget. We can't simply unmanage it or the parent won't consider
 * its size, which defeats the whole purpose. We can't create the
 * widget and then unmap it because it has not been realized, so it
 * does not have a window yet. We don't want to realize and manage
 * the entire application just to realize this one widget, so we
 * set XmNmappedWhenManaged to False along with the shadow thickness
 * being set to 2. Now the RowColumn is the right size.
 */
 XtVaSetValues (months[month].dates[5][6],
 XmNshadowThickness, 2,
 XmNmappedWhenManaged, False,
 NULL);
 }

 /* date_dialog() −− when a date is selected, this function is called.
 * Create a dialog (toplevel shell) that contains a multiline text
 * widget for memos about this date.
 */
 void
 date_dialog(w, client_data, call_data)
 Widget w;
 XtPointer client_data;
 XtPointer call_data;
 {
 int date = (int) client_data;
 Widget dialog;
 XWindowAttributes xwa;

 /* the dialog is stored in the PushButton's XmNuserData */
 XtVaGetValues (w, XmNuserData, &dialog, NULL);
 if (!dialog) {
 /* it doesn't exist yet, create it. */
 char buf[32];
 Arg args[5];
 int n, n_pos, *list;

 /* get the month that was selected −− we just need it for its name */
 if (!XmListGetSelectedPos (list_w, &list, &n_pos))
 return;
 sprintf (buf, "%s %d %d", months[list[0]−1].name, date, year);
 XtFree (list);
 dialog = XtVaCreatePopupShell ("popup",
 topLevelShellWidgetClass, XtParent (w),
 XmNtitle, buf,
 XmNallowShellResize, True,
 XmNdeleteResponse, XmUNMAP,
 NULL);
 n = 0;
 XtSetArg (args[n], XmNrows, 10); n++;
 XtSetArg (args[n], XmNcolumns, 40); n++;
 XtSetArg (args[n], XmNeditMode, XmMULTI_LINE_EDIT); n++;
 XtManageChild (XmCreateScrolledText (dialog, "text", args, n));
 /* set the shadow thickness to 2 so user knows there is a memo

28 Additional Example Programs 28.3 A Memo Calendar

764

 * attached to this date.
 */
 XtVaSetValues (w,
 XmNuserData, dialog,
 XmNshadowThickness, 2,
 NULL);
 }
 /* See if the dialog is realized and is visible. If so, pop it down */
 if (XtIsRealized (dialog) && XGetWindowAttributes
 (XtDisplay (dialog), XtWindow (dialog), &xwa) &&
 xwa.map_state == IsViewable)
 XtPopdown (dialog);
 else
 XtPopup (dialog, XtGrabNone);
 }

 /* the rest of the file is junk to support finding the current date. */

 static int mtbl[] = { 0,31,59,90,120,151,181,212,243,273,304,334,365 };

 int
 days_in_month(year, month)
 int year, month;
 {
 int days;

 days = mtbl[month] − mtbl[month − 1];
 if (month == 2 && year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))
 days++;
 return days;
 }

 int
 day_number(year, month, day)
 int year, month, day;
 {
 /* Lots of foolishness with casts for Xenix−286 16−bit ints */

 long days_ctr; /* 16−bit ints overflowed Sept 12, 1989 */

 year −= 1900;
 days_ctr = ((long)year * 365L) + ((year + 3) / 4);
 days_ctr += mtbl[month − 1] + day + 6;
 if (month > 2 && (year % 4 == 0))
 days_ctr++;
 return (int) (days_ctr % 7L);
 }

28 Additional Example Programs 28.3 A Memo Calendar

765

	Motif Programming Manual
	1 Preface
	1.1 The Plot
	1.2 Assumptions
	1.3 How This Book Is Organized
	1.4 Related Documents
	1.5 Conventions Used in This Book
	1.6 Obtaining Motif
	1.7 Obtaining the Example Programs
	1.7.1 FTP
	1.7.2 FTPMAIL
	1.7.3 BITFTP
	1.7.4 UUCP
	1.7.5 Copyright
	1.7.6 Compiling the Example Programs

	1.8 Notes on Z-Mail
	1.9 Acknowledgments
	1.10 We'd Like to Hear From You

	2 Introduction to Motif
	2.1 A True Story
	2.2 Basic User-interface Concepts
	2.3 What Is Motif?
	2.4 Designing User Interfaces

	3 The Motif Programming Model
	3.1 Basic X Toolkit Terminology and Concepts
	3.2 The Xm and Xt Libraries
	3.3 Programming With Xt and Motif
	3.3.1 Header Files
	3.3.2 Setting the Language Procedure
	3.3.3 Initializing the Toolkit
	3.3.4 Creating Widgets
	3.3.5 Setting and Getting Widget Resources
	3.3.6 Event Handling for Widgets
	3.3.7 The Event Loop

	3.4 Summary

	4 Overview of the Motif Toolkit
	4.1 The Motif Style
	4.2 Application Controls
	4.2.1 The Primitive Widget Class
	4.2.2 Gadgets

	4.3 Application Layout
	4.3.1 The Manager Widget Class
	4.3.2 Geometry Management
	4.3.3 Gadget Management
	4.3.4 Keyboard Traversal

	4.4 Putting Together a Complete Application
	4.4.1 The Main Window
	4.4.2 Menus
	4.4.3 The Window Manager
	4.4.4 Dialogs
	4.4.5 Pixmaps
	4.4.6 Color

	4.5 Changes in Motif 1.2
	4.5.1 General Toolkit Changes
	4.5.2 Specific Widget Changes
	4.5.3 Changes to the Example Programs

	4.6 Summary

	5 The Main Window
	5.1 Creating a MainWindow
	5.2 The MenuBar
	5.2.1 Creating a PulldownMenu
	5.2.2 SimpleMenu Callback Routines
	5.2.3 A Sample Application

	5.3 The Command and Message Areas
	5.4 Using Resources
	5.5 Summary
	5.6 Exercises

	6 Introduction to Dialogs
	6.1 The Purpose of Dialogs
	6.2 The Anatomy of a Dialog
	6.3 Creating Motif Dialogs
	6.3.1 Dialog Header Files
	6.3.2 Creating a Dialog
	6.3.3 Setting Resources
	6.3.4 Dialog Management
	6.3.5 Closing Dialogs
	6.3.6 Generalizing Dialog Creation

	6.4 Dialog Resources
	6.4.1 The Default Button
	6.4.2 Initial Keyboard Focus
	6.4.3 Button Sizes
	6.4.4 The Dialog Title
	6.4.5 Dialog Resizing
	6.4.6 Dialog Fonts

	6.5 Dialog Callback Routines
	6.6 Piercing the Dialog Abstraction
	6.6.1 Convenience Routines
	6.6.2 The DialogShell
	6.6.3 Internal Widgets

	6.7 Dialog Modality
	6.7.1 Implementing Modal Dialogs
	6.7.2 Forcing an Immediate Response

	6.8 Summary

	7 Selection Dialogs
	7.1 Types of SelectionDialogs
	7.2 SelectionDialogs
	7.2.1 Callback Routines
	7.2.2 Internal Widgets

	7.3 PromptDialogs
	7.4 The Command Widget
	7.5 FileSelectionDialogs
	7.5.1 Creating a FileSelectionDialog
	7.5.2 Internal Widgets
	7.5.3 Callback Routines
	7.5.4 File Searching

	7.6 Summary

	8 Custom Dialogs
	8.1 Modifying Motif Dialogs
	8.1.1 Modifying MessageDialogs
	8.1.2 Modifying SelectionDialogs

	8.2 Designing New Dialogs
	8.2.1 The Shell
	8.2.2 The Manager Child
	8.2.3 The Control Area
	8.2.4 The Action Area

	8.3 Building a Dialog
	8.3.1 The Shell
	8.3.2 The Manager Child
	8.3.3 The Control Area
	8.3.4 The Action Area

	8.4 Generalizing the Action Area
	8.5 Using a TopLevelShell for a Dialog
	8.6 Positioning Dialogs
	8.7 Summary

	9 Manager Widgets
	9.1 Types of Manager Widgets
	9.2 Creating Manager Widgets
	9.3 The BulletinBoard Widget
	9.3.1 Resources
	9.3.2 Geometry Management

	9.4 The Form Widget
	9.4.1 Form Attachments
	9.4.2 Attachment Offsets
	9.4.3 Position Attachments
	9.4.4 Additional Resources
	9.4.5 Nested Forms
	9.4.6 Common Problems

	9.5 The RowColumn Widget
	9.5.1 Rows and Columns
	9.5.2 Homogeneous Children
	9.5.3 Callbacks

	9.6 The Frame Widget
	9.7 The PanedWindow Widget
	9.7.1 Pane Constraints
	9.7.2 Sashes

	9.8 Keyboard Traversal
	9.8.1 Turning Traversal Off
	9.8.2 Modifying Tab Groups
	9.8.3 Handling Event Translations
	9.8.4 Processing Traversal Manually

	9.9 Summary

	10 ScrolledWindows and ScrollBars
	10.1 The ScrolledWindow Design Model
	10.1.1 The Automatic Scrolling Model
	10.1.2 The Application-defined Scrolling Model

	10.2 Creating a ScrolledWindow
	10.2.1 Automatic Scrolling
	10.2.2 Application-defined Scrolling
	10.2.3 Additional Resources
	10.2.4 An Automatic ScrolledWindow Example

	10.3 Working Directly With ScrollBars
	10.3.1 Resources
	10.3.2 Orientation
	10.3.3 Callback Routines

	10.4 Implementing True Application-defined Scrolling
	10.5 Working With Keyboard Traversal in ScrolledWindows
	10.6 Summary
	10.7 Exercises

	11 The DrawingArea Widget
	11.1 Creating a DrawingArea Widget
	11.2 Using DrawingArea Callback Functions
	11.2.1 Handling Input Events
	11.2.2 Redrawing a DrawingArea

	11.3 Using Translations on a DrawingArea
	11.4 Using Color in a DrawingArea
	11.5 Summary
	11.6 Exercises

	12 Labels and Buttons
	12.1 Labels
	12.1.1 Creating a Label
	12.1.2 Text Labels
	12.1.3 Images as Labels
	12.1.4 Label Sensitivity
	12.1.5 Label Alignment
	12.1.6 Multi-line and Multi-font Labels

	12.2 PushButtons
	12.2.1 PushButton Callbacks
	12.2.2 Multiple Button Clicks

	12.3 ToggleButtons
	12.3.1 Creating ToggleButtons
	12.3.2 ToggleButton Resources
	12.3.3 ToggleButton Pixmaps
	12.3.4 ToggleButton Callbacks
	12.3.5 RadioBoxes
	12.3.6 CheckBoxes

	12.4 ArrowButtons
	12.5 DrawnButtons
	12.6 Summary
	12.7 Exercise

	13 The List Widget
	13.1 Creating a List Widget
	13.2 Using ScrolledLists
	13.3 Manipulating Items
	13.3.1 Adding Items
	13.3.2 Finding Items
	13.3.3 Replacing Items
	13.3.4 Deleting Items
	13.3.5 Selecting Items
	13.3.6 An Example

	13.4 Positioning the List
	13.5 List Callback Routines
	13.5.1 The Default Action
	13.5.2 Browse and Single Selection Callbacks
	13.5.3 Multiple Selection Callback
	13.5.4 Extended Selection Callback

	13.6 Summary
	13.7 Exercises

	14 The Scale Widget
	14.1 Creating a Scale Widget
	14.2 Scale Values
	14.3 Scale Orientation and Movement
	14.4 Scale Callbacks
	14.5 Scale Tick Marks
	14.6 Summary

	15 Text Widgets
	15.1 Interacting With Text Widgets
	15.1.1 Inserting Text
	15.1.2 Selecting Text

	15.2 Text Widget Basics
	15.2.1 The Textual Data
	15.2.2 Single and Multiple Lines
	15.2.3 Scrollable Text
	15.2.4 Text Positions
	15.2.5 Output-only Text

	15.3 Text Clipboard Functions
	15.3.1 Getting the Selection
	15.3.2 Modifying the Selection Mechanisms

	15.4 A Text Editor
	15.5 Text Callbacks
	15.5.1 The Activation Callback
	15.5.2 Text Modification Callbacks
	15.5.3 The Cursor Movement Callback
	15.5.4 Focus Callbacks

	15.6 Text Widget Internationalization
	15.6.1 Text Representation
	15.6.2 Text Output
	15.6.3 Text Input

	15.7 Summary
	15.8 Exercises

	16 Menus
	16.1 Menu Types
	16.2 Creating Simple Menus
	16.2.1 Popup Menus
	16.2.2 Cascading Menus
	16.2.3 Option Menus

	16.3 Designing Menu Systems
	16.3.1 Menu Titles
	16.3.2 Menu Items
	16.3.3 Mnemonics
	16.3.4 Accelerators
	16.3.5 The Help Menu
	16.3.6 Sensitivity
	16.3.7 Tear-Off Menus

	16.4 General Menu Creation Techniques
	16.4.1 Building Pulldown Menus
	16.4.2 Building Cascading Menus
	16.4.3 Building Popup Menus
	16.4.4 Building Option Menus

	16.5 Summary
	16.6 Exercises

	17 Interacting With the Window Manager
	17.1 Interclient Communication
	17.2 Shell Resources
	17.2.1 Shell Positions
	17.2.2 Shell Sizes
	17.2.3 The Shell's Icon

	17.3 VendorShell Resources
	17.3.1 Window Manager Decorations
	17.3.2 Window Menu Functions

	17.4 Handling Window Manager Messages
	17.4.1 Adding New Protocols
	17.4.2 Saving Application State

	17.5 Customized Protocols
	17.6 Summary
	17.7 Exercises

	18 The Clipboard
	18.1 Simple Clipboard Copy and Retrieval
	18.1.1 Copying Data
	18.1.2 Retrieving Data
	18.1.3 Querying the Clipboard for Data Size

	18.2 Copy by Name
	18.3 Clipboard Data Formats
	18.4 The Primary Selection and the Clipboard
	18.4.1 Clipboard Functions With Text Widgets
	18.4.2 The Owner of the Selection

	18.5 Implementation Issues
	18.6 Summary

	19 Drag and Drop
	19.1 Using Drag and Drop
	19.2 The Drag and Drop Model
	19.2.1 The Drag Source
	19.2.2 The Drop Site
	19.2.3 The Drag Icon
	19.2.4 Protocols
	19.2.5 The Programming Model

	19.3 Customizing Built-in Drag and Drop
	19.3.1 Specifying the Drag Protocol
	19.3.2 Turning Off Drag and Drop Functionality
	19.3.3 Modifying the Visual Effects

	19.4 Working With Drag Sources
	19.4.1 Creating a Drag Source
	19.4.2 Starting the Drag
	19.4.3 Converting the Data
	19.4.4 Modifying an Existing Drag Source
	19.4.5 Providing Custom Drag-over Visuals
	19.4.6 Cleaning Up

	19.5 Working With Drop Sites
	19.5.1 Creating a Drop Site
	19.5.2 Modifying an Existing Drop Site
	19.5.3 Handling the Drop
	19.5.4 Providing Help
	19.5.5 Providing Custom Drag-under Visuals

	19.6 Summary

	20 Compound Strings
	20.1 Internationalized Text Output
	20.2 Creating Compound Strings
	20.2.1 The Simple Case
	20.2.2 Font List Tags
	20.2.3 Compound String Segments
	20.2.4 Multiple-font Strings

	20.3 Manipulating Compound Strings
	20.3.1 Compound String Functions
	20.3.2 Compound String Retrieval
	20.3.3 Compound String Conversion

	20.4 Working With Font Lists
	20.4.1 Creating Font Lists
	20.4.2 Retrieving Font Lists
	20.4.3 Querying Font Lists

	20.5 Rendering Compound Strings
	20.6 Summary

	21 Signal Handling
	21.1 Handling Signals in Xlib
	21.2 Handling Signals in Xt
	21.3 An Example
	21.4 Additional Issues
	21.5 Summary

	22 Advanced Dialog Programming
	22.1 Help Systems
	22.1.1 Multi-level Help
	22.1.2 Context-sensitive Help

	22.2 Working Dialogs
	22.2.1 Using Work Procedures
	22.2.2 Using Timers
	22.2.3 Processing Events
	22.2.4 Updating the Display
	22.2.5 Avoiding Forks

	22.3 Dynamic Message Symbols
	22.4 Summary

	23 Introduction to UIL
	23.1 Overview of UIL and Mrm
	23.1.1 Using UIL and Mrm
	23.1.2 Advantages and Disadvantages of UIL

	23.2 The
	23.3 Describing an Interface With UIL
	23.3.1 Starting and Ending a Module
	23.3.2 Specifying Module-wide Options
	23.3.3 Include Files
	23.3.4 Adding Comments
	23.3.5 Overview of UIL Language Syntax
	23.3.6 Sections of a UIL Module

	23.4 Compiling the UIL Module
	23.5 Structure of an Mrm Application
	23.5.1 Initializing the Application
	23.5.2 Creating the Interface
	23.5.3 Displaying the Interface

	23.6 Summary

	24 Using the UIL Compiler
	24.1 Compiler Options
	24.1.1 Output File
	24.1.2 Include Path
	24.1.3 Generate Listing
	24.1.4 Set Locale
	24.1.5 Suppress Warnings
	24.1.6 Machine Listing
	24.1.7 Use WML Description

	24.2 Errors, Warnings, and Informational Messages
	24.2.1 Severe Error Messages
	24.2.2 Regular Error Messages
	24.2.3 Warning Messages
	24.2.4 Informational Messages

	24.3 Summary

	25 Creating a User Interface With UIL
	25.1 Viewing UIL Examples
	25.2 Defining and Creating Widgets
	25.2.1 Specifying Widget Attributes
	25.2.2 Sharing Widgets Among Modules
	25.2.3 The Widget Creation Process

	25.3 Defining and Fetching Values
	25.3.1 Sharing Values Between Modules
	25.3.2 Fetching Values
	25.3.3 Numeric Values
	25.3.4 Text-related Values
	25.3.5 Colors
	25.3.6 Pixmaps
	25.3.7 Widget Classes
	25.3.8 Keysyms
	25.3.9 Translation Tables

	25.4 Working With Callbacks
	25.5 Using Lists
	25.6 Exporting Application Data
	25.6.1 Declaring Identifiers in UIL
	25.6.2 Exporting Identifiers From Application Code

	25.7 Summary

	26 Building an Application With UIL
	26.1 Defining the User Interface
	26.1.1 The Main Application Window
	26.1.2 The Menu System
	26.1.3 Dialog Boxes

	26.2 Creating the Application
	26.2.1 Widget IDs
	26.2.2 Callbacks
	26.2.3 The Error Dialog

	26.3 Summary

	27 Advanced UIL Programming
	27.1 Using Non-Motif Widgets
	27.1.1 The Widget Creation Procedure
	27.1.2 Widget Include Files
	27.1.3 Creating User-defined Widgets

	27.2 Organizing UIL Modules
	27.2.1 Using Separate Modules
	27.2.2 Organizing Within a Module
	27.2.3 Supporting Internationalization
	27.2.4 Organizing With Include Files
	27.2.5 Creating Reusable Components

	27.3 Specifying Resource Values
	27.3.1 Resource Name Checking
	27.3.2 Resource Type Checking
	27.3.3 Resource Type Support
	27.3.4 Callback Specifications
	27.3.5 Wildcard Specification
	27.3.6 User Customization
	27.3.7 Dynamic Updating
	27.3.8 Guidelines for Setting Resources

	27.4 Using Lists Effectively
	27.4.1 Specifying Common Resources
	27.4.2 Reusing Components

	27.5 Prototyping an Interface With UIL
	27.5.1 Managing Widgets
	27.5.2 Creating Widgets

	27.6 Summary

	28 Additional Example Programs
	28.1 A Postcard Interface for Mail
	28.2 A Bitmap Display Utility
	28.3 A Memo Calendar

